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Abstract. Motivated by the work of Grujić and Kalisch, [Z. Grujić and H.

Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation
in spaces of analytic functions, Differential and Integral Equations 15 (2002)

1325–1334], we prove the local well-posedness for the periodic KdV equation

in spaces of periodic functions analytic on a strip around the real axis without
shrinking the width of the strip in time.

1 Introduction This paper studies the local well-posedness of the Cauchy prob-
lem for the generalized periodic Korteweg-deVries equation (GKdV){

∂tu+ ∂3xxxu+ uk∂xu = 0 u : T× [0, T ]→ R
u(x, 0) = u0(x) x ∈ T

(1)

with initial data u0(x) in a class of periodic functions analytic in a symmetric strip
around the real axis. The number k is taken to be a positive integer and T = R/Z
is the torus. For σ > 0, s ∈ R, denote Gevrey classes Gσ,s to be the subset of L2(T)
such that

‖u0‖2Gσ,s =
∑
n∈Z
〈n〉2se2σ〈n〉|û0(n)|2 <∞

where 〈n〉 := 1 + |n| and û0(n) denotes the Fourier transform of u0 on torus.
In [18], Kato and Masuda introduced a method of obtaining spatial analyticity

of solution for a large class of semi-linear evolution equations, and the research
on Gevrey regularity for the solution of the semi-linear equations goes back to the
work of Foias and Temam [10]. Further results concerning periodic solutions of
Navier-Stokes equations in Gevrey spaces have been obtained by Biswas [1]. We
refer to [2, 12] for the study of Kuramoto-Sivashinsky equation. For a treatment
of a more general case of nonlinear parabolic equations, we refer the reader to [9].
Also, a number of authors have obtained solutions in Gevrey spaces without strong
regularizing effects. Here we mention the recent work of Kukavica and Vicol on the
three-dimensional Euler equations [21], and a body of work concerning KdV-like
equations (see, for example, Hayashi [14, 15], Bouard et al. [5], Grujić and Kalisch
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[13], Bona et al. [4]). As explained in [3, 16, 17], analyticity of solution of the KdV
equation plays an essential role in the numerical study of the equation.

The example constructed in [11] shows that the solution of GKdV equation with
an appropriate analytic data may not be analytic in the time variable t. So, we must
restrict our attention to the spatial analyticity of the solution of GKdV. Grujić and
Kalisch [13] proved local well-posedness of non-periodic GKdV for a strip without
shrinking the width of the strip in time. It is of interest to know whether it is
possible to establish the same result for the periodic case.

Kato’s smoothing effect was shown to be useful in the proof of the main theorem
in [13]. However, this technique cannot be used in dealing with GKdV with periodic
boundary data. Our approach is in the spirit of [8, Theorem 1] and the proof relies on
the Bourgain’s bilinear estimate [6], multilinear estimate in [22] and linear estimates
in [7, 8]. In addition, the proof reveals some new aspects in the estimation of the
time-cutoff function which are essential in the proof of the main nonlinear estimate
which is given in Lemma 3.2.

Denote by C([0, T ], Gσ,s) the space of continuous functions from the time interval
[0, T ] into Gσ,s. We will prove the following theorem.

Theorem 1.1. Let s ≥ 1 and k ≥ 1. For initial data in Gσ,s, σ > 0, there exists
a small positive time T , such that the initial-value problem (1) is well-posed in the
space C([0, T ], Gσ,s).

The paper is organized as follows. In Section 2, we set up notations and termi-
nologies and deal with linear estimates. Section 3 is devoted to the study of bilinear
estimates, and Section 4 provides a proof of the multilinear estimate. In Section 5,
Theorem 1.1 is proved via a contraction argument.

2 Some notations and linear estimates Throughout this paper, A . B de-
notes the estimate A ≤ CB, where the constant C > 0 possibly depending on
s, k and independent of σ. We say that A ≈ B, if A . B and B . A. We
also denote by A � B the estimate A . 1

KB for a large constant K > 0. The
Lebesgue classes on the integer set and real line are denoted by lp and Lq respec-
tively, while the following notation is used to denote the lp −Lq space-time norms:
‖f(n, λ)‖lpnLqλ = ‖‖f(n, λ)‖Lqλ‖lpn .

Let u(x, t) be a function defined on the cylinder T × R and s, b ∈ R. The
space-time Fourier transform of u(x, t) is defined by

û(n, λ) =

∫
R

∫
T
u(x, t)e−2πiλt−2πinxdxdt,

where n ∈ Z. We denote by Ft[u(x, t)] the partial Fourier transform of u in variable
t and by Fx[u(x, t)] the partial Fourier transform in variable x. We define the

Xs,b = Xs,b
τ=ξ3(T× R) norm of u(x, t) by

‖u‖Xs,b =
∥∥〈λ− n3〉b〈n〉sû(n, λ)

∥∥
l2nL

2
λ

,

where 〈·〉 := 1 + | · |. This norm was introduced by Bourgain [6] and the space-time
symbol is adapted to the linear part of KdV equation.

The low-regularity study of (1) is usually considered in spacesXs, 12 (see [6, 8, 22]).
In order to overcome difficulty in persistence property in this case, authors [8] and
[22] introduced the function space Y s,b to be the subset of Xs,b such that

‖u‖Y s,b = ‖u‖Xs,b + ‖〈n〉sû(n, λ)‖l2nL1
λ
<∞.
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It is indicated in [13] that we have to introduce another family of function spaces
which are adapted to the study of Gevrey regularity. For σ ≥ 0, define Xσ,s,b norm
of u(x, t) by

‖u‖Xσ,s,b =
∥∥∥〈λ− n3〉b〈n〉seσ〈n〉û(n, λ)

∥∥∥
l2nL

2
λ

.

We shall use the space Y σ,s,b which equipped with the norm

‖u‖Y σ,s,b = ‖u‖Xσ,s,b +
∥∥∥eσ〈n〉〈n〉sû(n, λ)

∥∥∥
l2nL

1
λ

.

By the Riemann-Lebesgue lemma, the Fourier transform of an L1 function is con-
tinuous and bounded, and we have the embedding property

Y σ,s,b ⊂ C([0, T ], Gσ,s) ⊂ L∞([0, T ], Gσ,s). (2)

We will also need the space Zσ,s,b with the norm defined by

‖u‖Zσ,s,b = ‖u‖Xσ,s,−b +

∥∥∥∥eσ〈n〉〈n〉s〈λ− n3〉
û(n, λ)

∥∥∥∥
l2nL

1
λ

.

Consider initial value problem of the Airy equation on T:{
∂tw + ∂3xxxw = 0

w(x, 0) = w0(x), x ∈ T.
(3)

The explicit solution of the initial value problem (3) can be expressed in terms of
the semigroup S(t) via Fourier transform,

w(x, t) = S(t)w0 = c
∑
n∈Z

e2πi(xn+tn
3)ŵ0(n).

We shall establish linear estimates for the propagator S(t). Let ψ(t) be a bump
function supported in [−2, 2] and equal to one on [−1, 1]. Denote by 0 < δ < 1 a
small constant which need to be determined later.

Lemma 2.1. We have

‖ψ(t/δ)S(t)u0‖
Y σ,s,

1
2
. ‖u0‖Gσ,s

for all s ∈ R and σ ≥ 0.

Proof. Let us first write ̂ψ(t/δ)S(t)u0(n, λ) = û0(n)δψ̂(δ(λ−n3)). By the definition
of Xσ,s,b,

‖ψ(t/δ)S(t)u0‖2
Xσ,s,

1
2

=
∑
n

e2σ〈n〉〈n〉2s|û0(n)|2
∫
R
〈λ〉δ2|ψ̂(δλ)|2dλ.

Since
∫
R〈λ〉δ

2|ψ̂(δλ)|2dλ . 1 + δ, we get ‖ψ(t/δ)S(t)u0‖
Xσ,s,

1
2
. ‖u0‖Gσ,s . On the

other hand, we see at once that
∥∥∥eσ〈n〉〈n〉s ̂ψ(t/δ)S(t)u0

∥∥∥2
l2nL

1
λ

. ‖u0‖2Gσ,s , which

completes the proof.

Having established Lemma 2.1, we repeat the proof of [8, Lemma 3.1], and we
get Lemma 2.2.

Lemma 2.2. We have∥∥∥∥ψ(t/δ)

∫ t

0

S(t− t′)F (t′)dt′
∥∥∥∥
Y σ,s,

1
2

. ‖F‖
Zσ,s,

1
2

for all s ∈ R, σ ≥ 0 and test functions F on T× R.
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We also need to estimate the cutoff function ψ(t/δ)u in the space Xσ,s, 12 . We
present a proof in a spirit of [20, Lemma 3.2].

Lemma 2.3. Let σ ≥ 0. We have

‖ψ(t/δ)u‖
Xσ,s,

1
2
. ‖u‖

Y σ,s,
1
2

for all s ∈ R and σ ≥ 0.

Proof. By the definition of Y σ,s, the proof is reduced to showing that, if a = n3

then ∫
R
|û ∗λ (δψ̂(δλ))(l)|2〈l − a〉dl .

∫
R
|û(n, λ)|2〈λ− a〉dλ+ ‖û(n, λ)‖2L1

λ
(4)

where ∗λ is the convolution in variable λ.
According to the proof of [20, Lemma 3.2], we have∫

R
|û ∗λ (δψ̂(δλ))(l)|2〈l − a〉dl

.
∫
R
|e2πiatFx[u](n, t)∂

1
2
t ψ(δ−1t)|2dt+

∫
R
|û(n, λ)|2|λ− a|dλ

and ∫
R
|û ∗λ (δψ̂(δλ))(l)|2dl .

∫
R
|û(n, λ)|2dλ.

By the Plancherel theorem and the Young inequality,∫
R
|e2πiatFx[u](n, t)∂

1
2
t ψ(δ−1t)|2dt =

∥∥∥∥ ̂e2πin3tu(n, λ) ∗λ ∂̂
1
2
t ψ(δ−1t)(λ)

∥∥∥∥2
L2
λ

≤
∥∥û(n, λ− n3)

∥∥2
L1
λ

∥∥∥λ 1
2 δψ̂(δλ)

∥∥∥2
L2
λ

. ‖û(n, λ)‖2L1
λ
,

which shows (4), and the proof of Lemma 2.3 is completed.

3 Bilinear estimates The bilinear estimate is a standard technique in dealing
with nonlinear term in the equation. This kind of technique has been used and
developed by many authors (See, for instance [6, 13, 19, 23]).

Lemma 3.1. Let s ≥ 0, σ ≥ 0, and suppose the functions u, v satisfy
∫
T udx = 0

and
∫
T vdx = 0. Assume that ‖v‖

Y σ,s,
1
2
<∞ and ‖ψ(t/δ)u‖

Xσ,s,
1
2
<∞. Then∥∥ψ(t/δ)2∂x (uv)

∥∥
Xσ,s,−

1
2
. δ

1
12 ‖v‖

Y σ,s,
1
2
‖ψ(t/δ)u‖

Xσ,s,
1
2
.

Proof. The main idea of the proof is due to Bourgain [6, page 221].
Since

∫
T u = 0 and

∫
T v = 0, we write

f(n, λ) = 〈λ− n3〉 12 |n|seσ〈n〉|ψ̂(t/δ)u(n, λ)|,

g(n, λ) = 〈λ− n3〉 12 |n|seσ〈n〉|ψ̂(t/δ)v(n, λ)|.
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Let h(n, λ) ∈ l2nL2
λ and ‖h‖l2nL2

λ
≤ 1, we introduce a trilinear form:

Λ(f, g, h) =
∑
n 6=0

∑
n1 6=0,
n1 6=n

∫
R

∫
R

eσ〈n〉e−σ〈n−n1〉e−σ〈n1〉h(n, λ)f(n1, λ1)

〈λ− n3〉 12 〈λ1 − n31〉
1
2

× g(n− n1, λ− λ1)|n|s+1|n1|−s|n− n1|−s

〈λ− λ1 − (n− n1)3〉 12
dλdλ1.

Thus we need only to estimate Λ(f, g, h).
Since |n| . |n1||n− n1| and eσ|n|e−σ|n−n1|e−σ|n1| ≤ 1, we obtain

|Λ(f, g, h)| .
∑
n6=0

∑
n1 6=0,
n1 6=n

∫
R

∫
R

|f(n1, λ1)g(n− n1, λ− λ1)h(n, λ)||n|dλ1
〈λ− n3〉 12 〈λ1 − n31〉

1
2 〈λ− λ1 − (n− n1)3〉 12

.

From resonance identity n3 = (n− n1)3 + n31 + 3nn1(n− n1), we get

max
{
|λ− λ1 − (n− n1)3|, |λ1 − n31|, |λ− n3|

}
≥ |n||n1||n− n1|. (5)

As pointed out in [6, Theorem 7.41], we have

|Λ(f, g, h)| . ‖FG‖L2
xL

2
t
‖h‖l2nL2

λ
if |λ− n3| & n2,

|Λ(f, g, h)| . ‖G‖L4
xL

4
t
‖H‖L4

xL
4
t
‖f‖l2nL2

λ
if |λ1 − n31| & n2,

where F̂ (n, λ) = f(n, λ)〈λ − n3〉− 1
2 , Ĝ(n, λ) = g(n, λ)〈λ − n3〉− 1

2 and Ĥ(n, λ) =

h(n, λ)〈λ − n3〉− 1
2 . Let us focus on the first of the above cases. Recalling that

‖h‖l2nL2
λ
≤ 1 by assumption, and using Cauchy-Schwarz, it appears that we have

to estimate the terms ‖F‖L4
xL

4
t

and ‖G‖L4
xL

4
t
. Recalling the Strichartz estimate [6,

Proposition 7.15]
‖F‖L4

xL
4
t
. ‖F‖

X0, 1
3

(6)

it becomes plain that the terms ‖F‖
X0, 1

3
and ‖G‖

X0, 1
3

have to be controlled. To

this end, define a a square-integrable function

θ(x, t) = |∂x|seσ(I+|∂x|)u(x, t) = F−1x

[
|n|seσ〈n〉Fxu

]
(x, t)

where I denotes the identity operator. We also set

ϑ̂(n, λ) = |n|seσ〈n〉ψ̂(t/δ)u(n, λ) = Ft [ψ(t/δ)(Fxθ)(n, t)] (λ).

Using the Strichartz estimate (6) for the function ψ(t/δ)θ yields∑
n 6=0

∫
R
|ϑ̂(n, λ)|2dλ =

∫
R

∫
T
χ[−3,3](t/δ) |ψ(t/δ)θ(x, t)|2 dxdt

. δ
1
2 ‖ψ(t/δ)θ‖2L4

xL
4
t
. δ

1
2 ‖ψ(t/δ)θ‖2

X0, 1
3

= δ
1
2 ‖ψ(t/δ)u‖2

Xσ,s,
1
3
.

(7)

By Hölder’s inequality and (7), we get

‖F‖2
X0, 1

3
=
∑
n 6=0

∫
R
〈λ− n3〉− 1

3 f(n, λ)2dλ

=
∑
n 6=0

∫
R

(
|ψ̂(t/δ)u(n, λ)|2|n|2se2σ〈n〉

) 1
3

f(n, λ)
4
3 dλ

≤ δ 1
6 ‖ψ(t/δ)u‖2

Xσ,s,
1
2
.

(8)
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Making use of the argument above, we deduce

‖G‖
X0, 1

3
. δ

1
12 ‖ψ(t/δ)v‖

Xσ,s,
1
2
. δ

1
12 ‖v‖

Y σ,s,
1
2

from Lemma 2.3. Thus the estimate in the case |λ− n3| & n2 may be continued as
follows.

‖FG‖L2
xL

2
t
≤ ‖F‖L4

xL
4
t
‖G‖L4

xL
4
t
. δ

1
12 ‖v‖

Y σ,s,
1
2
‖ψ(t/δ)u‖

Xσ,s,
1
2
. (9)

For the case when |λ1 − n31| & n2, we use the Strichartz estimate (6) to find
‖H‖L4

xL
4
t
. ‖h‖l2nL2

λ
≤ 1. Recalling the definition of f(n, λ), a similar argument

yields as in the previous case yields

‖G‖L4
xL

4
t
‖f‖l2nL2

λ
. δ

1
12 ‖ψ(t/δ)u‖

Xσ,s,
1
2
‖v‖

Y σ,s,
1
2

(10)

Finally, interchanging f and g, we obtain

|Λ(f, g, h)| . δ
1
12 ‖ψ(t/δ)u‖

Xσ,s,
1
2
‖v‖

Y σ,s,
1
2

(11)

for the case |λ−λ1− (n−n1)3| & n2 by symmetry. Now based on (9)-(11), we have∥∥∂x (ψ(t/δ)2uv
)∥∥
Xσ,s,−

1
2

= sup
‖h‖

l2nL
2
λ
≤1
|Λ(f, g, h)|

. δ
1
12 ‖v‖

Y σ,s,
1
2
‖ψ(t/δ)u‖

Xσ,s,
1
2
.

Remark 1. Note we have actually proved that

‖∂x(uv)‖
Xσ,s,−

1
2
. ‖u‖

Xσ,s,
1
2
‖v‖

Xσ,s,
1
2

(12)

for s ≥ 0 and σ ≥ 0.
The bilinear estimate for periodic KdV equation in Sobolev spaces with negative

indices has been studied by Kenig, Ponce and Vega [19]. As the counterexample
shows in [19, Theorem 1.4], the boundedness of the quadratic term fails for Sobolev
indices below − 1

2 .

Corollary 1. For functions u, v satisfying
∫
T u = 0,

∫
T v = 0, the estimate (12)

holds for s ≥ − 1
2 .

Proof. According to the above remark, we only need to consider the case − 1
2 ≤

s ≤ 0. Let ρ = −s ≥ 0, we follow the definition of multiplier bounds which was
introduced by Tao [23]. It remains to show that∥∥∥∥∥ eσ〈n〉e−σ〈n−n1〉e−σ〈n1〉|n|1−ρ|n1|ρ|n− n1|ρ

〈λ− n3〉 12 〈λ1 − n31〉
1
2 〈λ− λ1 − (n− n1)3〉 12

∥∥∥∥∥
[3,Z×R]

. 1.

Since eσ|n|e−σ|n−n1|e−σ|n1| ≤ 1, the comparison principle [23, Lemma 3.1] reduce
this estimate to∥∥∥∥∥ |n|1−ρ|n1|ρ|n− n1|ρ

〈λ− n3〉 12 〈λ1 − n31〉
1
2 〈λ− λ1 − (n− n1)3〉 12

∥∥∥∥∥
[3,Z×R]

. 1,

which has been proved by Kenig, Ponce and Vega [19, Theorem 1.2].

In order to estimate the bilinear term in space of Zσ,s,
1
2 , it will necessary to

analyze the proof of [8, Proposition 1 ]. We will prove the following result in
analogy with discussions in [8, Proposition 1 ].
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Lemma 3.2. Let s ≥ 1
2 , σ ≥ 0,

∫
T udx = 0,

∫
T vdx = 0 and 0 ≤ κ � 1. Assume

that
∫
T uvdx = 0, ‖v‖

Y σ,s−1, 1
2
<∞ and ‖ψ(t/δ)u‖

Xσ,s−1, 1
2
<∞. Then∥∥∥∥∥ 〈n〉seσ〈n〉 ̂ψ(t/δ)2uv(n, λ)

〈λ− n3〉1−κ

∥∥∥∥∥
l2nL

1
λ

. δ
1

200 ‖ψ(t/δ)u‖
Xσ,s−1, 1

2
‖v‖Y σ,s−1, 12

.

Proof. Since
∫
T uv = 0, the quantity 〈n〉s can be replaced with |n|s in the left hand

side of the estimate. Let square-integrable functions u1 and u2 be defined by

û1(n, λ) = 〈λ− n3〉 12 |n|s−1eσ〈n〉ψ̂(t/δ)v(n, λ)

û2(n, λ) = 〈λ− n3〉 12 |n|s−1eσ〈n〉ψ̂(t/δ)u(n, λ).

Since eσ|n| ≤ eσ|n1|eσ|n−n1| and |n|s− 1
2 ≤ |n− n1|s−

1
2 |n1|s−

1
2 , we obtain

|n|seσ〈n〉| ̂ψ(t/δ)2uv(n, λ)|
〈λ− n3〉1−κ

≤
∑
n1 6=0,
n1 6=n

∫
R

|û1(n− n1, λ− λ1)û2(n1, λ1)|dλ1
〈λ− n3〉1−κ〈λ1 − n31〉

1
2 〈λ− λ1 − (n− n1)3〉 12

× eσ〈n〉|n|s

eσ〈n1〉eσ〈n−n1〉|n1|s−1|n− n1|s−1

≤
∑
n1 6=0,
n1 6=n

∫
R

|û1(n− n1, λ− λ1)û2(n1, λ1)|dλ1
〈λ− n3〉1−κ〈λ1 − n31〉

1
2 〈λ− λ1 − (n− n1)3〉 12

× |n| 12 |n1|
1
2 |n− n1|

1
2

:=S(n, λ).

To estimate ‖S(n, λ)‖l2nL1
λ

we note that the resonance relation (5) enables us to

distinguish three cases once again.
If |λ− λ1 − (n− n1)3| ≥ |n||n1||n− n1|, S(n, λ) can be dominated by

S(n, λ) ≤
∑
n1 6=0,
n1 6=n

∫
R

|û1(n− n1, λ− λ1)û2(n1, λ1)|dλ1
〈λ− n3〉 23−κ〈λ− n3〉 13 〈λ1 − n31〉

1
2

.

Taking first the L1
λ-norm, using the Cauchy-Schwarz inequality, and recognizing

that
∫
R |〈λ− n

3〉− 2
3+κ|2dλ is finite, it follows from duality that

‖S(n, λ)‖l2nL1
λ
. sup
‖û3‖l2nL2

λ
≤1

∑
n,n1

∫
R2

û1(n− n1, λ− λ1)û2(n1, λ1)〈λ1 − n31〉−
1
2

× û3(n, λ)〈λ− n3〉− 1
3 dλ1dλ.

(13)

Now define û′2(n1, λ1) = û2(n1, λ1)〈λ1 − n31〉−
1
2 and û′3(n, λ) = û3(n, λ)〈λ− n3〉− 1

3 .
Note that from (6) and (8), we gain the estimates

‖u′2‖L4
xL

4
t
. ‖u′2‖X0, 1

3
. δ

1
12 ‖ψ(t/δ)u‖

Xσ,s−1, 1
2

(14)

and

‖u′3‖L4
xL

4
t
. ‖u′3‖X0, 1

3
= ‖û3‖l2nL2

λ
. (15)
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Thus, using Parseval’s relation, (14)-(15) and Lemma 2.3, the estimate takes the
form

‖S(n, λ)‖l2nL1
λ
. sup
‖û3‖l2nL2

λ
≤1

∫
T×R

u1u
′
2u
′
3dtdx

. sup
‖û3‖l2nL2

λ
≤1
‖u1‖L2

xL
2
t
‖u′2‖L4

xL
4
t
‖u′3‖L4

xL
4
t

. δ
1
12 ‖ψ(t/δ)u‖

Xσ,s−1, 1
2
‖v‖

Y σ,s−1, 1
2
.

(16)

By symmetry, we also have

‖S(n, λ)‖l2nL1
λ
. δ

1
12 ‖v‖

Y σ,s−1, 1
2
‖ψ(t/δ)u‖

Xσ,s−1, 1
2

(17)

for the case |λ1 − n31| ≥ |n||n1||n− n1|.
We now turn to the remaining case |λ− n3| ≥ |n||n1||n− n1|. This will be split

into three subcases. Suppose first that we also have

|λ− λ1 − (n− n1)3| & (δ|n||n− n1||n1|)
1

100 .

Let û′1(n−n1, λ−λ1) = û1(n−n1, λ−λ1)〈λ−λ1−(n−n1)3〉− 1
3 , and let û′2(n1, λ1) =

û2(n1, λ1)〈λ1 − n31〉−
1
2 as before. Then we deduce that

S(n, λ) ≤
∑
n1 6=0,
n1 6=n

∫
R

|n| 12 |n1|
1
2 |n− n1|

1
2

〈λ− n3〉1−κ
û′1(n− n1, λ− λ1)û′2(n1, λ1)

〈λ− λ1 − (n− n1)3〉 16
dλ1

≤
∑
n1 6=0,
n1 6=n

∫
R

|n| 12 |n1|
1
2 |n− n1|

1
2

〈λ− n3〉1−κ
û′1(n− n1, λ− λ1)û′2(n1, λ1)

(δ|n| |n1| |n− n1|)
1

600

dλ1,

and the estimate continues as

‖S(n, λ)‖l2nL1
λ
.δ−

1
600

∥∥∥∥∥〈λ−n3〉− 1
2−

1
600+κ

∑
n1

∫
R
û′1(n−n1, λ−λ1)û′2(n1, λ1)dλ1

∥∥∥∥∥
l2nL

1
λ

.δ−
1

600 ‖u′1u′2‖L2
xL

2
t
. δ−

1
600 ‖u′1‖L4

xL
4
t
‖u′2‖L4

xL
4
t

by using the Cauchy-Schwarz inequality, and the Plancherel theorem in the same
way as in the previous case. It follows from (14) and (15) that

‖S(n, λ)‖l2nL1
λ
. δ

1
12−

1
600 ‖v‖

Y σ,s−1, 1
2
‖ψ(t/δ)u‖

Xσ,s−1, 1
2
. (18)

Similarly, for the second subcase |λ1 − n31| & (δ|n||n− n1||n1|)
1

100 , the argument
above can be repeated, and (18) holds, as well.

We proceed to consider the third subcase where

max
{
|λ− λ1 − (n− n1)3|, |λ1 − n31|

}
� (δ|n||n1||n− n1|)

1
100 .

Since δ is taken to be a small number, we have |λ−n3| ≈ |n||n1||n−n1|. Therefore,
it is plain that ‖S(n, λ)‖L1

λ
can be majorized by∑

n1 6=0,
n1 6=n

∫
A2

∫
A1

(|n||n1||n− n1|)κ−
1
2 û1(n− n1, λ− λ1)û2(n1, λ1)dλ1dλ,

where the domain of integration is given by

A1(n, n1, λ) = {λ1 ∈ R : |λ− λ1 − (n− n1)3| ≤ (δ|n||n1||n− n1|)
1

100 }
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and

A2(n, n1) = {λ1 ∈ R : |λ1 − n31| ≤ (δ|n||n1||n− n1|)
1

100 }
Using the Cauchy-Schwarz inequality in each integral, the last expression is domi-
nated by

δ
1

200+
1

200

∑
n1 6=0,
n1 6=n

(|n||n1||n− n1|)κ−
1
2+

1
200+

1
200 ‖û1(n− n1, λ)‖L2

λ
‖û2(n1, λ)‖L2

λ
.

Now since |n||n1||n− n1| takes only nonzero integer values, we may write

‖S(n, λ)‖l2nL1
λ

.δ
1

100

∥∥∥∥∥∑
n1

〈nn1n− n1〉κ−
1
2+

1
100 ‖û1(n− n1, λ)‖L2

λ
‖û2(n1, λ)‖L2

λ

∥∥∥∥∥
l2n

.δ
1

100 ‖û1(n, λ)‖l2nL2
λ
‖û2(n, λ)‖l2nL2

λ
.

(19)

Now recalling the definition of û1 and û2, it becomes clear that the estimated can
be concluded in the same way as the previous cases. For more details of the last
step we refer the reader to [8, page 200]. Combining estimates (16)-(19), we finish
the proof of the lemma.

4 A multilinear estimate We shall use the multilinear estimate in a variant of
[22, Lemma 4.2].

Lemma 4.1. If k ≥ 1, s ≥ 1 and σ ≥ 0, then∥∥∥∥∥ψ(t/δ)

k∏
i=1

ui

∥∥∥∥∥
Xσ,s−1, 1

2

.
k∏
i=1

‖ui‖
Y σ,s,

1
2
.

Proof. Denote h(n, λ) ∈ l2nL2
λ and ‖h‖l2nL2

λ
≤ 1. We let ε > 0 be a sufficiently small

number, it follows that∥∥∥λ 1
2−εδψ̂(δλ)

∥∥∥
L2
λ

. δε . 1,
∥∥∥λ−εδψ̂(δλ)

∥∥∥
L1
λ

. δε . 1. (20)

Since s ≥ 1 > 1
2 , by the Cauchy-Schwarz inequality,∥∥∥eσ〈n〉û(n, λ)

∥∥∥
l1nL

1
λ

=
∑
n

〈n〉−s〈n〉seσ〈n〉
∫
R
|û(n, λ)|dλ

.
∥∥∥eσ〈n〉〈n〉sû(n, λ)

∥∥∥
l2nL

1
λ

≤ ‖u‖
Y σ,s,

1
2
.

(21)

We will only prove the Lemma 4.1 for k ≥ 3, since the situation will be simpler

when we deal with the case k = 1 and k = 2. We let v3 =
∏k
i=3 ui. Since

eσ|n| ≤ eσ|n−n3|eσ|n3−n4| · · · eσ|nk−1|, it follows from (21) and the Young inequality,∥∥∥eσ〈n〉v̂3∥∥∥
l1nL

1
λ

=
∑

n,n3,...,nk−1

∫
R

∫
Rk−3

eσ〈n〉|û3(n− n3, λ− λ3)||û4(n3 − n4, λ3 − λ4)| × · · ·

× |ûk−1(nk−2 − nk−1, λk−2 − λk−1)||ûk(nk−1, λk−1)|dλ3 · · · dλk−1dλ
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≤
∥∥∥eσ〈n〉û3 ∗ · · · ∗ eσ〈n〉ûk∥∥∥

l1nL
1
λ

≤
k∏
i=3

∥∥∥eσ〈n〉ûi∥∥∥
l1nL

1
λ

≤
k∏
i=3

‖ui‖
Y σ,s,

1
2
.

(22)

The multilinear form Λ(h, u1, u2, v3) is defined by

Λ(h, u1, u2, v3) =
∑

n,n1,n2

∫
R4

eσ〈n〉〈λ− n3〉 12−ε〈n〉s−1+2ε|h(n, λ)|

× |û1(n− n1, λ− λ1)||û2(n1 − n2, λ1 − λ2)|

× |v̂3(n2, λ2 − λ3)||δψ̂(δλ3)|dλ1dλ2dλ3dλ

and, consequently,∥∥∥∥∥ψ(t/δ)

k∏
i=1

ui

∥∥∥∥∥
Xσ,s−1+2ε, 1

2
−ε

= sup
‖h(n,λ)‖

l2nL
2
λ
≤1

Λ(h, u1, u2, v3).

Let u′1, u′2 and v′3 be square integrable functions such that

û′1 = eσ〈n〉û1, û′2 = eσ〈n〉û2, and v̂′3 = eσ〈n〉v̂3.

Since eσ|n| ≤ eσ|n−n1|eσ|n1−n2|eσ|n2|, we have

Λ(h, u1, u2, v3)

≤
∑

n,n1,n2

∫
R4

〈λ− n3〉 12−ε〈n〉s−1+2ε|h(n, λ)||û′1(n− n1, λ− λ1)|

× |û′2(n1 − n2, λ1 − λ2)||v̂′3(n2, λ2 − λ3)||δψ̂(δλ3)|dλ1dλ2dλ3dλ

(23)

We denote by Λ′(h, u′1, u
′
2, v
′
3) the right hand side of (23). As in the proof of [22,

Lemma 4.2], estimate (20) gives

Λ′(h, u′1, u
′
2, v
′
3) . ‖u′1‖Y s, 12 ‖u

′
2‖Y s, 12 ‖v

′
3‖l1nL1

λ
.

Combining this estimate with (22) and (23), we get∥∥∥∥∥ψ(t/δ)

k∏
i=1

ui

∥∥∥∥∥
Xσ,s−1, 1

2
−ε

.
k∏
i=1

‖ui‖
Y σ,s,

1
2
.

The Lemma 4.1 follows for k ≥ 3 by letting ε→ 0 and the Fatou lemma.

5 Proof of Theorem 1.1 It is indicated in [22] and [8] that up to a gauge
transform, we can rewrite (1) as follows:{

∂tu+ ∂3xxxu+ P(P(uk)∂xu) = 0

u(x, 0) = u0(x), x ∈ T,
(24)

where P is the projection operator defined by P(u) = u −
∫
T u(x, t)dx. The well-

posedness problem of (1) is reduced to consider the initial value problem (24).
Since we have the embedding property (2), it is necessary to use the contraction

principle on function space Y σ,s,
1
2 . Let r = ‖u0‖Gσ,s < ∞. By Lemma 2.1, there

exists a constant c1 > 0 such that

‖ψ(t/δ)S(t)u0‖
Y σ,s,

1
2
≤ c1‖u0‖Gσ,s .
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We aim to show that the integral operator

Γ(u) = ψ(t/δ)S(t)u0 − ψ(t/δ)

∫ t

0

S(t− t′)ψ2(t′/δ)P
(
P(uk)∂xu

)
dt′

is a contraction map on the set B = {‖u‖
Y σ,s,

1
2
≤ 2c1r}.

It is easy to check that ∂xu = P(∂xu), P∂x = ∂xP and ‖∂xv‖
Y σ,s−1, 1

2
≈ ‖v‖

Y σ,s,
1
2

for v ∈ Y σ,s, 12 and
∫
T v(x, t)dx = 0. It follows from Lemma 3.1 and Lemma 4.1 that∥∥ψ(t/δ)2P

[
P(uk)∂xu

]∥∥
Xσ,s,−

1
2
≈
∥∥ψ(t/δ)2∂x

[
P(uk)P(∂xu)

]∥∥
Xσ,s−1,− 1

2

. δ
1

200 ‖u‖
Y σ,s,

1
2

∥∥ψ(t/δ)uk
∥∥
Xσ,s−1, 1

2

. δ
1

200 ‖u‖k+1

Y σ,s,
1
2
.

On the other hand, by Lemma 2.3, Lemma 3.2 with κ = 0, and Lemma 4.1,∥∥∥∥∥ 〈n〉seσ〈n〉 ̂P(ψ(t/δ)uk)P(ψ(t/δ)∂xu)(n, λ)

〈λ− n3〉

∥∥∥∥∥
l2nL

1
λ

. δ
1

200 ‖∂xu‖
Y σ,s−1, 1

2

∥∥ψ(t/δ)uk
∥∥
Xσ,s−1, 1

2

. δ
1

200 ‖u‖k+1

Y σ,s,
1
2
.

Therefore, we have∥∥ψ(t/δ)2P
(
P(uk)∂xu

)∥∥
Zσ,s,

1
2
. δ

1
200 ‖u‖k+1

Y σ,s,
1
2
.

Combining this estimate with Lemma 2.2, we deduce that there exists a constant
c2 > 0 such that

‖Γ(u)‖
Y σ,s,

1
2
≤ c1‖u0‖Gσ,s + c2δ

1
200 ‖u‖k+1

Y σ,s,
1
2
.

If we take

T < δ <

(
1

2k+1c2(c1r)k

)200

then Γ(B) ⊂ B.
We are now in a position to verify that Γ is a contraction. By a similar argument

as above, it is not hard to show that

‖Γ(u)− Γ(v)‖
Y σ,s,

1
2
. δ

1
200

∑
k−1≤l≤k

‖ψ(t/δ)Pl(u, v)‖
Xσ,s−1, 1

2
‖u− v‖

Y σ,s,
1
2
,

where Pl(u, v) is a homogeneous polynomial of degree l. Since u, v ∈ B, there exists
a constant c3 > 0 by Lemma 4.1, such that

‖Γ(u)− Γ(v)‖
Y σ,s,

1
2
≤ c3δ

1
200 rk‖u− v‖

Y σ,s,
1
2
.

If we set

T < δ < min

{(
1

2k+1c2(c1r)k

)200

,

(
1

2rkc3

)200
}
,

then Γ is a contraction on B. It follows that Γ has a unique fixed point u in B and
u solves the initial value problem (1).
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To prove continuous dependence on the initial data, suppose u and ū are solutions
corresponding to initial data u0 and ū0. Following the argument above, we arrive
at

‖u− ū‖
Y σ,s,

1
2
≤ c‖u0 − ū0‖Gσ,s +

1

2
‖u− ū‖

Y σ,s,
1
2
.

Combining this inequality with (2), continuous dependence in C([0, T ], Gσ,s) of the
solution on the initial data in Gσ,s is immediate, as shown by the estimate

‖u− ū‖L∞([0,T ],Gσ,s) ≤ c‖u− ū‖Y σ,s, 12 ≤ c‖u0 − ū0‖Gσ,s .

Remark 2. If we consider the integral operator

Φ(u) = ψ(t)S(t)u0 − ψ(t)

∫ t

0

S(t− t′)ψ2(t′)P
[
P(uk)∂xu

]
dt′,

from a similar contraction argument and Corollary 1, it is a simple matter to es-
tablish the following corollary.

Corollary 2. Let s ≥ 1
2 when k = 1 and s ≥ 1 when k ≥ 2. The initial-value

problem (1) is well-posed in the space C([0, 1], Gσ,s) if initial data in Gσ,s, σ > 0 is
sufficiently small.

Remark 3. Similarly as in the proof of [13, Lemma 6], we can prove the uniqueness
of the solution (1) in C([0, T ], Gσ,s) when s > 3

2 .

In fact, if s > 3
2 , from Hölder inequality,

‖∂xu‖L∞x L∞t = sup
0≤t≤T

‖∂xu‖L∞x

≤ sup
0≤t≤T

∥∥∥neσ〈n〉Fxu(n, t)
∥∥∥
l1n

. sup
0≤t≤T

‖u(·, t)‖Gσ,s <∞.
(25)

Suppose u and v are solutions to (1) in C([0, T ], Gσ,s) with u(x, 0) = v(x, 0). Let
e = u− v. Using the fact eexxx = ∂x(eexx)− 1

2∂x(e2x), we get the estimate

d

dt
‖e(·, t)‖2L2(T) ≤ cP (u, ux, v, vx)‖e(·, t)‖2L2(T)

where P (u, ux, v, vx) is a polynomial with respect to u, ux, v and vx. From (25)
and Gronwall’s inequality, we know that e ≡ 0.
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Anal. Non Linéaire, 6 (1995), 673–725.

http://www.ams.org/mathscinet-getitem?mr=MR2147468&return=pdf
http://dx.doi.org/10.1016/j.jde.2004.12.012
http://dx.doi.org/10.1016/j.jde.2004.12.012
http://www.ams.org/mathscinet-getitem?mr=MR2349168&return=pdf
http://dx.doi.org/10.1016/j.jde.2007.05.022
http://dx.doi.org/10.1016/j.jde.2007.05.022
http://www.ams.org/mathscinet-getitem?mr=MR2308773&return=pdf
http://dx.doi.org/10.1016/j.physleta.2006.12.085
http://dx.doi.org/10.1016/j.physleta.2006.12.085
http://www.ams.org/mathscinet-getitem?mr=MR2172859&return=pdf
http://dx.doi.org/10.1016/j.anihpc.2004.12.004
http://dx.doi.org/10.1016/j.anihpc.2004.12.004
http://www.ams.org/mathscinet-getitem?mr=MR1360541&return=pdf


PERIODIC KORTEWEG-DE VRIES EQUATION IN GEVREY CLASSES 1109

[6] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to
nonlinear evolution equations, Parts II, Geometric Funct. Anal., 3 (1993), 209–262.

[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for

KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705–749.
[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic

KdV equations and applications, J. Functional Anal., 211 (2004), 173–218.
[9] A. B. Ferrari and E. S. Titi, Gevrey regularity for nonlinear analytic parabolic equations,

Comm. Partial Differential Equations, 23 (1998), 1–16.

[10] C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equa-
tions, J. Functional Anal., 87 (1989), 359–369.

[11] J. Gorsky and A. A. Himonas, Construction of non-analytic solutions for the generalized

KdV equation, J. Math. Anal. Appl., 303 (2005), 522–529.
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