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Abstract.
The regularized Benjamin–Ono equation appears in the modeling of long-crested

interfacial waves in two-fluid systems. For this equation, Fourier–Galerkin and colloca-
tion semi-discretizations are proved to be spectrally convergent. A new exact solution is
found and used for the experimental validation of the numerical algorithm. The scheme
is then used to study the interaction of two solitary waves.
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1 Introduction.

In this article, consideration is given to the error analysis of a spatial dis-
cretization of the regularized Benjamin–Ono equation

ut + ux + εuux + εHuxt = 0,(1.1)

where H denotes the Hilbert transform, and ε is a small parameter related
to some physical quantities appearing in the derivation of the equation. The
equation is a model for the time evolution of long-crested waves at the interface
between two immiscible fluids. It is approximately valid for long waves with
small amplitude if one of the fluid layers has large depth and the other is very
thin. Typical situations in which the equation is useful are the pycnocline in the
deep ocean, and the two-layer system created be the inflow of fresh water from a
river into the sea. The variable u(x, t) denotes the deflection of the free interface
from the rest position at the spatial point x and at time t, and the x-axis points
in the direction of propagation of the waves. The equation is formally equivalent
to the Benjamin–Ono equation

ut + ux + εuux − εHuxx = 0,(1.2)
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which was introduced by Benjamin [2], and later rederived by Ono [7] as a model
equation in the same situation.

Equation (1.1) has appeared previously in [1] and [4], where it was proved
that the equation is well posed globally in time in the Sobolev space Hs, when
s ≥ 3/2. It was also shown in [1] that solutions of the two equations with the
same initial data stay close on a time scale long enough to observe nonlinear and
dispersive effects.

Both equations admit so-called solitary-wave solution. These are profiles that
decay to zero at infinity, and propagate without changing their shape over time.
For the Benjamin–Ono equation, these solutions are given by an explicit formula
which was found by Benjamin [2]. The solitary waves for (1.1) are given by a sim-
ple rescaling of the Benjamin–Ono solitary waves [4]. A related class of solutions
which are known in closed form are the periodic traveling waves. For (1.2), these
were also obtained by Benjamin [2]. Periodic traveling waves for the regularized
Benjamin–Ono equation (1.1) are exhibited in the present article. To the best of
knowledge of the author, explicit formulae for these solutions have not appeared
previously.

In [4], a numerical approximation was used to indicate that Equation (1.1)
does not constitute an infinite-dimensional completely integrable system. This
was suggested by the observation that two solitary waves do not interact cleanly,
but leave behind a small oscillatory tail. The discretization used in these compu-
tations was a Fourier–collocation approximation, coupled with a 4-stage Runge–
Kutta time stepping method. The convergence of the numerical scheme was
tested on some special solutions, but no proof of convergence was given. There-
fore, it it our purpose now to demonstrate a proof of convergence of the space
semi discretization put forward in [4]. The proof makes use of an argument ap-
pearing in the work of Maday and Quarteroni [6], where a spectral discretization
of the Korteweg–deVries equation was proven to be convergent. The equation
under study in the present paper appears simpler than the Korteweg-deVries
equation because it can be written as an integral equation containing no net
spatial derivatives (see (2.1)). Accordingly, a spatial discretization will result in
a system of ordinary differential equations which is not stiff. This fact indicates
that (1.1) might be more convenient in a modeling situation than (1.2), because
it is better-suited for numerical integration.

In this paper, both the Fourier–Galerkin and the Fourier–collocation methods
for the regularized Benjamin–Ono equation are proven to be spectrally conver-
gent, although in practice only the collocation method is used. The Galerkin
projection will be in focus in Section 2 while the collocation method will be
treated in Section 3. In Section 4, an implementation of the collocation method
is presented. The exact traveling-wave solutions are used to test the rate of
convergence of the numerical scheme. Finally, the scheme is put to work to
study the interaction of two solitary waves.

There has been some previous work on the error analysis of spectral discretiza-
tions of evolution equations for internal waves. The results of Pasciak [9] are for
a family of equations similar, but not including the equation under study here.
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Moreover, the proof for the collocation projection is not given in detail. More
recently, some work has been done on the Benjamin–Ono and related equations
such as the intermediate-long wave equation by Pelloni and Dougalis [10, 11].
They analyze a fully discrete scheme using a Fourier–Galerkin projection for the
spatial discretization. An interesting numerical scheme for the Benjamin–Ono
equation has been advocated by Thomeé and Vasudeva Murthy [12]. Though
not a spectral approximation, they nevertheless make use of the discrete Fourier
transform in the evaluation of the convolution integral giving the Hilbert trans-
form.

One of the reasons for deriving simplified models for wave motion in fluid
surfaces or interfaces is the relative ease with which these model equations
can be treated numerically. It is appealing that it can be proved that some
of the numerical approximations in use are indeed convergent, as this in effect
validates the rationale behind using these simple equations instead of the more
complicated Euler equations from which they are extracted.

In the following, some notation will be established. We assume that the vari-
ables are nondimensional, and have been normalized to reach the tidy form

ut + ux + uux + Huxt = 0.(1.3)

On the real line R, the Hilbert transform H of a function f is defined by the
singular integral

Hf(x) = p.v.
1
π

∫ ∞

−∞

f(x − y)
y

dy.

Although the equation is originally posed on the real line, for the purpose of
numerical approximation, the problem with periodic boundary conditions will
be considered. The Hilbert transform of a periodic function with period 2π is
given by the principal value of another singular integral, namely

Hf(x) = p.v.
1
2π

∫ 2π

0

cot
(

y

2

)
f(x − y) dy.

Alternatively, the Hilbert transform could be defined as a Fourier multiplier
operator given by

Ĥf(k) = −i sgn(k)f̂(k).

The Fourier transform will be defined momentarily. Denote by | · |p the Lp-norm
on the interval [0, 2π], given by

|f |pp =
∫ 2π

0

|f(x)|p dx

for 1 ≤ p < ∞, and by
|f |∞ = ess sup

x
|f(x)|

if p = ∞. In particular, the L2-norm can be defined by

|f |22 = (f, f),
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where the inner product (·, ·) is given by

(f, g) =
∫ 2π

0

f(x) g(x) dx,

for functions f and g which have finite L2-norm. Denote by ‖ · ‖s the Sobolev
norm, given by

‖f‖2
s =

∑
k∈Z

(1 + |k|2)s|f̂(k)|2,

where the Fourier coefficients f̂(k) of the function f are defined by

f̂(k) =
1
2π

∫ 2π

0

e−ikxf(x) dx.

Recall the inversion formula

f(x) =
∑
k∈Z

eikxf̂(k),

and the convolution formula

(f̂ ∗ ĝ)(k) = f̂ g(k),

where the convolution of two functions f̂ and ĝ on Z is formally defined by

(f̂ ∗ ĝ)(k) =
∑

m+n=k

f̂(m)ĝ(n).

The subspace of L2 spanned by the set
{

eikx
∣∣∣ k ∈ Z, −N

2
≤ k ≤ N

2
− 1

}

for N even is denoted by SN . In the following, it will always be assumed that N
is even. The operator PN denotes the orthogonal projection from L2 onto SN ,
defined by

PNf(x) =
∑

−N/2≤k≤N/2−1

eikxf̂(k).

PN may also be characterized by the property that
∫ 2π

0

(PNf − f)φ dx = 0,(1.4)

for all φ ∈ SN and for all f ∈ L2.
The space of n times continuously differentiable periodic functions on [0, 2π]

is denoted by Cn
� (0, 2π), while C0

� (0, 2π) stands for the space of continuous
periodic functions. The space of periodic Sobolev functions on the interval [0, 2π]
is defined as the closure of the space of smooth periodic functions C∞

� (0, 2π) with



SPECTRAL PROJECTION OF THE REGULARIZED BO EQUATION 73

respect to the Hs-norm, and is denoted by Hs
� = Hs

� (0, 2π). For f ∈ Hm
� , the

estimates

‖f − PNf‖0 ≤ CP N−m|∂m
x f |2,(1.5)

‖f − PNf‖n ≤ CP Nn−m|∂m
x f |2(1.6)

hold for an appropriate constant CP (cf. [3]). Note that while the Sobolev spaces
can be defined for any real number s, the error estimates are generally written
for positive integer values which are then denoted by m. The space of continuous
functions from the interval [0, T ] into the space Hs

� is denoted by C([0, T ], Hs
� ).

Similarly, we also consider the space C([0, T ], SN ), where the topology on SN

can be given by any norm. Finally note the inverse inequality

|∂n
x φ|0 ≤ Nn‖φ‖0,(1.7)

for integers n > 0 and φ ∈ SN .
The periodic initial value problem associated to Equation (1.3) is




ut + ux + uux + Huxt = 0, x ∈ [0, 2π] , t ≥ 0,

u(x, 0) = u0(x),
u(0, t) = u(2π, t), t ≥ 0.

(1.8)

Existence, uniqueness and continuous dependence on the initial data of solutions
to (1.8) pose no special difficulty, and can be established in much the same way
as in [4], where this was done for the initial-value problem on the real line. Short-
time existence can be proved using a contraction argument, and a global solution
is obtained via a priori estimates. The results are summarized in the following
theorem.

Theorem 1.1. Suppose s ≥ 3/2, and u0 ∈ Hs
� (0, 2π). For any T > 0, there

exists a solution u ∈ C([0, T ], Hs
� ) of (1.8). Moreover, there is a constant κ

depending on T and ‖u0‖s, such that u satisfies the estimate

sup
t∈[0,T ]

‖u(·, t)‖s ≤ κ.(1.9)

2 The Fourier–Galerkin method.

In this section, the Fourier–Galerkin method is presented and a proof of con-
vergence given. Note that the equation in (1.8) is formally equivalent to the
integral equation

ut = K(u + 1
2u2),(2.1)

where K is a Fourier multiplier operator with the symbol

K̂f(k) =
−ik

1 + |k| f̂(k).
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A space-discretization of (1.8) is defined as follows. Find a function uN from
[0, T ] to SN which satisfies

{ (
∂tuN + ∂xuN + 1

2∂x(u2
N ) + ∂x∂tHuN , φ

)
= 0, t ∈ [0, T ],

uN (0) = PNu0,
(2.2)

for all φ ∈ SN . Since for each t, uN (·, t) ∈ SN , uN has the form

uN (x, t) =

N
2 −1∑

k=−N
2

ûN (k, t)eikx,

where ûN (k, t) are the Fourier coefficients of uN (·, t). Since the discrete dif-
ferentiation operator commutes with the projection operator PN , we continue
to denote it by ∂x. An equivalent characterization of uN uses the formulation
of (1.8) as an integral equation.

{ (
∂tuN − KuN − 1

2K(u2
N ), φ

)
= 0, t ∈ [0, T ],

uN (0) = PNu0,
(2.3)

for all φ ∈ SN .
Since functions in SN are smooth, it can be seen immediately that the two

formulations are equivalent. Equation (2.3) is useful for proving local existence
of a solution as well as error estimates, while (2.2) can be exploited to derive a
priori estimates. Taking φ = eikx for −N/2 ≤ k ≤ N/2 − 1 in (2.3) yields the
following system of equations for the Fourier coefficients of uN .

{
∂tûN (k, t) = −ik

1+|k|
[
ûN (k, t) + 1

2 (ûN ∗ ûN )(k, t)
]
,

ûN (k, 0) = û0(k),
(2.4)

for −N/2 ≤ k ≤ N/2 − 1.
For the initial-value problem (2.4), it is straightforward to prove the existence

of a local solution as (2.4) represents a system of coupled first-order ordinary
differential equations. The following theorem is proved using the contraction
mapping principle. Since the argument is standard, the proof is omitted here.

Theorem 2.1. The initial-value problem (2.4) has a unique real solution in
the space C([0, t0], SN ) for some positive time t0.

In order to continue the solution to a prescribed time interval [0, T ], a priori
estimates on ‖uN‖s are used. For the problem (1.8), an a priori bound is available
for the H

3
2 -norm. As it turns out, a similar estimate is also available for the

discrete solution. The first step is to prove the conservation of a quantity related
to the H

1
2 -norm of uN .
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Theorem 2.2. Suppose uN ∈ C([0, T ], SN ) is a solution of (2.2). Then the
following two equations hold.

d
dt

{ ∫ 2π

0

uN (x, t) dx

}
= 0,(2.5)

d
dt

{ ∫ 2π

0

u2
N (x, t) dx +

∫ 2π

0

uN (x, t)∂xHuN (x, t) dx

}
= 0.(2.6)

Proof. To prove (2.5), use 1 ∈ SN as a test function in (2.2) to obtain

∫ 2π

0

∂tuN (x, t) dx =
∫ 2π

0

(
∂xuN (x, t) +

1
2
∂x(u2

N )(x, t) + ∂x∂tHuN (x, t)
)

dx.

From the periodicity and the fact that uN is smooth, it follows that the integral
on the right-hand side is zero. Again using that uN is smooth, we can interchange
the integral and the time derivative in the term on the left, and it is plain that
(2.5) holds true. To prove (2.6), use uN ∈ SN as a test function in (2.2) to
obtain

(∂tuN + ∂x∂tHuN , uN ) = −(∂xuN , uN ) − 1
2 (∂x(u2

N ), uN ).

It is readily seen that the right-hand side is zero. Rewriting the left-hand side
gives (2.6).

Corollary 2.3. Suppose s ≥ 3/2, and u0 ∈ Hs
� (0, 2π). For any T > 0, there

exists a solution uN ∈ C([0, T ], Hs
� ) of (2.4). Moreover, there is a constant κ

depending on T and ‖u0‖s, such that

sup
t∈[0,T ]

‖uN (·, t)‖s ≤ κ.(2.7)

The proof of this corollary follows the same lines as the proof for the initial-
value problem on the real line R in [4]. The conservation of the H

1
2 -norm is

used to bootstrap up to a bound on the Hs-norm for s ≥ 3/2. For the sake
of simplicity, the same constant κ as in (1.9) is used. This bound allows us
to continue the local solution by reapplying the contraction argument a finite
number of times to obtain a solution uN on the fixed time interval [0, T ]. Having
shown the existence of such a solution for a fixed N , we turn to the proof of
convergence of the Galerkin scheme.

Theorem 2.4. Suppose u0 ∈ Hm
� (0, 2π) for m ≥ 2. Given T > 0 and

N ∈ Z+, there is a unique solution uN to the finite-dimensional problem (2.2).
Moreover, there exists a constant Λ, such that

sup
t∈[0,T ]

‖u(·, t) − uN (·, t)‖0 ≤ ΛN−m.
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Proof. The existence and uniqueness of a solution for a fixed N on the time
interval [0, T ] has already been shown. To prove the convergence of the solution
of the semi-discrete problem to a solution of the continuous problem, suppose
uN is a solution of (2.2) and u is a solution of (1.8). Let h = PNu−uN . Since K
commutes with the projection operator PN , it follows that h satisfies the relation

(ht, ψ) = (Kh, ψ) − 1
2 (K(u2

N ), ψ) + 1
2 (PNK(u2), ψ), for all ψ ∈ SN .

Choosing h ∈ SN as a test function, and then using the fact that K is bounded
and skew-symmetric on L2 gives

1
2

d
dt

‖h‖2
0 = (Kh, h) + 1

2 (K(u2), h) − 1
2 (K(u2

N ), h)

≤ 1
2‖K(u2) − K(u2

N )‖0‖h‖0

≤ 1
2‖u

2 − u2
N‖0‖h‖0.

Finally, using the a priori estimates (1.9) and (2.7), we obtain

d
dt

‖h‖0 ≤ 1
2 |u + uN |∞‖u − uN‖0

≤ 1
2‖u + uN‖m‖u − PNu + PNu − uN‖0

≤ κ‖u − PNu‖0 + κ‖PNu − uN‖0

≤ κ‖u − PNu‖0 + κ‖h‖0.

Using (1.5) and (1.9), it can be seen that

d
dt

‖h‖0 ≤ κCP N−mκ + κ‖h‖0.

Since h(·, 0) = 0, Gronwall’s inequality may be used to show that there is a
constant λ, depending on T and ‖u0‖m, such that

sup
t∈[0,T ]

‖h(·, t)‖0 ≤ λN−m.(2.8)

For a fixed t ∈ [0, T ], the error between u and uN can now be estimated using
the triangle inequality, (1.5) and (2.8) as follows.

‖u(·, t) − uN (·, t)‖0 ≤ ‖u(·, t) − PNu(·, t)‖0 + ‖PNu(·, t) − uN (·, t)‖0

≤ CP N−m‖u(·, t)‖m + ‖h(·, t)‖0

≤ CP κN−m + λN−m.

On taking the supremum in t and setting Λ = CP κ + λ, it follows that

sup
t∈[0,T ]

‖u(·, t) − uN (·, t)‖0 ≤ ΛN−m. �

It appears to be more convenient, to have a convergence result in the H1-
norm, as this will also yield convergence in L∞. Using the inverse inequality (1.7)
and (2.8), the following theorem can be proved.
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Theorem 2.5. Suppose u0 ∈ Hm
� (0, 2π) for m ≥ 2. Given T > 0 and

N ∈ Z+, there is a unique solution uN to the finite-dimensional problem (2.2).
Moreover, there exists a constant Λ̃, such that

sup
t∈[0,T ]

‖u(·, t) − uN (·, t)‖1 ≤ Λ̃N1−m.

This theorem concludes the section on the Fourier–Galerkin approximation.
Note that the order of convergence of the scheme depends on the regularity of the
initial data u0. In particular, for smooth data the scheme converges spectrally,
i.e. faster than any rational function of N . Although the preceding theorems
seem satisfactory, it turns out that the Fourier–Galerkin method is rarely used in
practice. Instead, the most widely used spectral projection is the pseudo-spectral
method, where nonlinear terms are evaluated in physical space. The advantage
of this approach is the utilization of the Fast Fourier Transform to evaluate
the nonlinear terms. Since this method is equivalent to the Fourier–collocation
method, it is imperative to have a convergence result for the Fourier–collocation
method. Such a theorem will be provided in the next section.

3 The Fourier–collocation method.

In order to obtain a collocation projection of Equation (1.1), one may first
define the interpolation operator IN . Let the collocation points be xj = 2πj/N
for j = 0, 1, . . . , N − 1. Then, given u ∈ C0

� (0, 2π), INu is the unique element
in SN , such that INu(xj) = u(xj) for j = 0, 1, . . . , N − 1. INu is also called
the N -th trigonometric interpolant of u. It has been proved in [5, 8] that when
u ∈ Hm

� (0, 2π) with m ≥ 1, there exists a constant CI , such that

‖u − INu‖0 ≤ CIN
−m|∂m

x u|2,(3.1)

and more generally

‖u − INu‖n ≤ CIN
n−m|∂m

x u|2.(3.2)

The discrete derivative in the collocation approximation is defined by

∂N = ∂xIN .

Note that the derivative ∂x does not commute with the interpolation operator.
The discrete form of the operator K is defined analogously by

KN = KIN .

Finally, the collocation approximation to (1.8) is given by a function vN from
[0, T ] to SN , such that

{ (
∂tvN + ∂NvN + 1

2∂N (v2
N ) + ∂N∂tHvN

)
(xj) = 0, t ∈ [0, T ],

vN (0) = INu0,
(3.3)
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for j = 0, 1, 2, . . . , N −1. Thus we assume that the solution is written as the sum

vN (x, t) =

N
2 −1∑

k=−N
2

ṽN (k, t)eikx,

where the ṽN (k, t) can be thought of as the discrete Fourier coefficients of
vN (x, t). Taking the discrete semi-inner product on the space C0(0, 2π) to be

(φ, ψ)N =
2π

N

N−1∑
j=0

φ(xj)ψ(xj),

we recall that for functions φ, ψ ∈ SN , this inner product is equal to the L2-inner
product

(φ, ψ)N = (φ, ψ).

Using the semi-inner product (·, ·)N , one may define an equivalent approximation
by requiring that

{
(∂tvN , φ)N = (KN (vN + 1

2v2
N ), φ)N , t ∈ [0, T ],

vN (0) = INu0 ∈ SN ,
(3.4)

for all φ ∈ SN . Finally note that for φ ∈ SN , we have Kφ = KNφ. It follows
that KN is skew-symmetric with respect to the inner product (·, ·)N .

The existence of a solution vN on a short time interval can be proved just as
for the Galerkin approximation. In fact, the resulting equations for the Fourier
coefficients of vN differ only in the nonlinear term. However, the time-span of
existence of the solution might depend on N as well as on the size of the initial
data. In the Galerkin approximation, the conservation of the H

1
2 -norm saved

the day. For the collocation approximation, only the average
∫

uN (x, t) dx is
conserved, but this fact is not useful to gain an a priori estimate. Neverthe-
less, one can prove the following lemma which guarantees the existence of the
approximate solution vN on a short time interval which is independent of N .

Lemma 3.1. For ‖v0,N‖1 < R, there exists t∗ only depending on R, such that
there is a solution to (3.4) on the time interval [0, t∗).

Proof. As was mentioned, a local solution can be obtained using the standard
theory of first-order systems of ordinary differential equations. We will prove an
estimate of the form

d
dt

‖vN‖2
1 ≤ c‖vN‖3

1.

This suffices to continue the solution on to the interval [0, t∗] for some t∗. By
choosing φ = vN in (3.3), the following equation is obtained.

(
d
dt

vN , vN

)
N

= (KNvN , vN )N + 1
2

(
KN (v2

N ), vN

)
N

= −1
2

(
IN (v2

N ), KvN

)
.
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Using the basic inequality

|f |∞ ≤ c0|f |1/2
2 |∂xf |1/2

2 ,(3.5)

it follows that we get the inequality

d
dt

‖vN‖2
0 ≤ ‖IN (v2

N )‖0 ‖KvN‖0

≤ ‖IN (v2
N ) − v2

N‖0 ‖KvN‖0 + ‖v2
N‖0‖KvN‖0

≤ CI ‖v2
N‖0 ‖vN‖0 + ‖v2

N‖0 ‖vN‖0

≤ |vN |∞ (CI + 1) ‖vN‖2
0

≤ c0 (CI + 1) ‖vN‖1/2
0 ‖∂xvN‖1/2

0 ‖vN‖2
0.

Next choose φ = ∂2
xvN to obtain the equation
(

d
dt

vN , ∂2
xvN

)
N

= −1
2

(
IN (v2

N ), K∂2
xvN

)

= 1
2

(
∂xIN (v2

N ), K∂xvN

)
.

It follows analogously that

d
dt

‖∂xvN‖2
0 ≤

∥∥∂x

(
IN (v2

N ) − v2
N

)∥∥
0
‖K∂xvN‖0 + ‖∂x(v2

N )‖0 ‖K∂xvN‖0

≤
∥∥IN (v2

N ) − v2
N

∥∥
1
‖vN‖1 + 2‖vN∂xvN‖0 ‖vN‖1

≤ CI

∥∥∂x(v2
N )

∥∥
0
‖vN‖1 + 2 |vN |∞ ‖vN‖1 ‖vN‖1

≤ 2c0(CI + 1)‖vN‖1/2
0 ‖vN‖1/2

1 ‖vN‖2
1.

These two estimates combine to give an inequality of the form

d
dt

‖vN‖2
1 ≤ c‖vN‖3

1.

Then a version of Gronwall’s inequality yields the existence of a time t∗ > 0 and
a constant β∗ > 0 depending on R, c0 and CI , such that

‖vN (·, t)‖1 ≤ β∗

t∗ − t
.

Using this estimate, it appears that the solution uN can be continued to the
interval [0, t∗) for each N ∈ Z+. �

Since the global solution will be pieced together from a number of local solu-
tions, it is convenient to define the following auxiliary problem, where the time t̃
will be defined in the next corollary.

{ (
∂tvN + ∂NvN + 1

2∂N (v2
N ) + ∂N∂tHvN

)
(xj) = 0, t ∈ [nt̃, (n + 1)t̃],

vN (nt̃) = vN,0,
(3.6)
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for j = 0, 1, 2, . . . , N − 1 and any integer n ≥ 0. Since c0 and CI are universal
constants, the following corollary appears.

Corollary 3.2. There exist t̃ < t∗ and β̃ > 0 only depending on R, such that
if ‖vN,0‖1 ≤ R, then a solution vN of (3.6) exists on the interval [nt̃, (n + 1)t̃],
and

sup
t∈[nt̃,(n+1)t̃]

‖vN (·, t)‖1 ≤ β̃.

The proof of this corollary is obvious. For instance, take t̃ = t∗/2 and β̃ = 2β∗/t∗.
Having in hand a local solution of the discrete problem, the next order of business
is to establish an error estimate.

Lemma 3.3. Suppose vN is a solution of (3.6) on the time interval
[nt̃, (n + 1)t̃ ], and

sup
t∈[nt̃,(n+1)t̃]

‖vN (·, t)‖1 ≤ β̃.

Then there are constants Λ and λ, depending on ‖u(·, nt̃ )‖m, t̃, β̃ and the final
time T , such that

sup
t∈[nt̃,(n+1)t̃]

‖u(·, t) − vN (·, t)‖0 ≤ ΛN−m + λ‖u(·, nt̃ ) − vN,0‖0.(3.7)

Proof. Set h = PN/2u − vN , where PN/2 is the Galerkin projection as de-
fined in the previous section. Applying PN/2 to Equation (1.8) and subtracting
from (3.4), we obtain the inequality

d
dt

‖h‖2
0 = (KPN/2u − KvN , h)N +

(
KNPN/2(u2) − KN (v2

N ), h
)
N

= (Kh, h)L2 −
(
PN/2(u2) − IN (v2

N ), Kh
)
N

=
(
IN (v2

N ) − PN/2(u2), Kh
)

≤
∥∥IN (v2

N ) − PN/2(u2)
∥∥

0
‖h‖0.

Now observe that (PN/2u)2 ∈ SN . It follows that
∥∥(PN

2
u)2 − IN (v2

N )
∥∥

0
=

∥∥IN

(
(PN

2
u)2 − v2

N

)∥∥
0

=
(
(PN

2
v)2 − v2

N , (PN
2
u)2 − v2

N

)1/2

N

≤ |PN
2
u + vN |∞‖PN

2
u − vN‖0.

Using the estimate (3.5) and the fact that ‖u(·, t)‖m ≤ κ, it appears that

2
d
dt

‖h‖0 ≤
∥∥PN/2(u2) − u2

∥∥
0

+
∥∥u2 − (PN/2u)2

∥∥
0

+
∥∥(PN/2u)2 − IN (v2

N )
∥∥

0

≤ CP 2mN−m‖u2‖m + |u + PN
2
u|∞‖u − PN

2
u‖0 +
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+ |PN
2
u + vN |∞‖PN

2
u − vN‖0

≤ CP 2mN−m‖u‖2
m +

(
c0‖u‖1 + c0‖PN

2
u‖1

)
CP 2mN−m‖u‖m +

+
(
c0‖PN

2
u‖1 + c0‖vN‖1

)
‖PN

2
u − vN‖0.

Hence,

d
dt

‖h‖0 ≤ CP 2m−1N−mκ2 + c0κCP 2mN−mκ + 1
2c0(κ + ‖vN‖1)‖h‖0

≤ CP 2m−1κ2(1 + 2c0)N−m + 1
2c0(κ + ‖vN‖1)‖h‖0.

Now remembering that ‖vN (·, t)‖1 ≤ β̃ for nt̃ ≤ t ≤ (n + 1)t̃, and using
Gronwall’s inequality, the estimate

‖h(·, t)‖0 ≤ ‖h(·, nt̃)‖0eTc0(κ+β̃) + CP 2m−1κ2(1 + 2c0)N−mT eTc0(κ+β̃)

can be obtained. Next use the triangle inequality to conclude that

‖u(·, t) − vN (·, t)‖0 ≤
∥∥u(·, t) − PN

2
u(·, t)

∥∥
0

+
∥∥PN

2
u(·, t) − vN (·, t)

∥∥
0

≤ CP 2mN−m‖u(·, t)‖m + ‖h(·, t)‖0

≤ CP 2mN−mκ + ‖h(·, nt̃ )‖0eTc0(κ+β̃) +

+ CP 2m−1κ2(1 + 2c0)N−mT eTc0(κ+β̃)

≤ (CP 2mκ + CP 2m−1κ2(1 + 2c0)T eTc0(κ+β̃))N−m +

+
∥∥PN/2u(·, nt̃ ) − u(·, nt̃ )

∥∥
0
eTc0(κ+β̃) +

+
∥∥u(·, nt̃ ) − vN,0

∥∥
0
eTc0(κ+β̃).

Therefore, we have

sup
t∈[nt̃,(n+1)t̃ ]

‖u(·, t) − vN (·, t)‖0

≤
(
CP 2mκ + CP 2m−1κ2(1 + 2c0)T eTc0(κ+β̃)

)
N−m +

+ CP 2mN−m
∥∥u(·, nt̃ )

∥∥
m

eTc0(κ+β̃) +
∥∥u(·, nt̃ ) − vN,0

∥∥
0
eTc0(κ+β̃).

Thus choosing Λ = CP 2mκ + CP 2m−1κ2(1 + 2c0)T eTc0(κ+β̃) + CP 2mκeTc0(κ+β̃)

and λ = eTc0(κ+β̃), the lemma is proved. �
Corollary 3.4. With the same assumptions as in the previous lemma, there

are constants Λ̃m and λ̃m, such that the following estimate holds.

sup
t∈[nt̃,(n+1)t̃]

‖u(·, t) − vN (·, t)‖1 ≤ Λ̃N1−m + λ̃N‖u(·, nt̃ ) − vN,0‖0.(3.8)
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Proof. The proof follows from the triangle inequality and the inverse inequal-
ity (1.7).∥∥u(·, t) − vN (·, t)

∥∥
1

≤
∥∥u(·, t) − PN/2u(·, t)

∥∥
1

+
∥∥PN/2u(·, t) − vN (·, t)

∥∥
1

≤ CP 2m−1N1−m
∥∥u(·, t)

∥∥
m

+ N
∥∥PN/2u(·, t) − vN (·, t)

∥∥
0

≤ CP 2m−1N1−mκ + N
∥∥h(·, t)

∥∥
0

≤ CP 2m−1N1−mκ + N
∥∥h(·, nt̃ )

∥∥
0
eTc0(κ+β̃) +

+ CP 2m−1κ2(1 + 2c0)N1−mT eTc0(κ+β̃)

≤ CP 2m−1N1−mκ + N
∥∥vN,0 − u(·, nt̃ )

∥∥
0
eTc0(κ+β̃) +

+ N
∥∥u(·, nt̃ ) − PN/2u(·, nt̃ )

∥∥
0
eTc0(κ+β̃) +

+ CP 2m−1κ2(1 + 2c0)N1−mT eTc0(κ+β̃).

Choosing the constants Λ̃ and λ̃ appropriately, the result follows. �
In order to keep the exposition as tidy as possible, we take Λ to be the

maximum of Λ and Λ̃, and λ to be the maximum of λ and λ̃. The results obtained
so far are now put together to prove the following theorem.

Theorem 3.5. Suppose u ∈ C([0, T ], Hm
# ) is a solution of (1.8) with initial

data u0 ∈ Hm
# (0, 2π), where m ≥ 2. Then for N large enough, there exist

solutions vN ∈ C([0, T ], SN ) of (3.3) with initial data INu0. Moreover, there
exists a constant C∗ depending on ‖u0‖m and T , such that

sup
t∈[0,T ]

∥∥u(·, t) − vN (·, t)
∥∥

1
≤ C∗N1−m.(3.9)

Proof. The strategy of the proof is to apply the local error analysis q times,
thereby piecing together a solution on the interval [0, T ]. Given ‖u0‖m and the
final time T , Theorem 2.1 provides the constant κ, so that ‖u(·, t)‖m ≤ κ, for
0 ≤ t ≤ T . Choose R = 2κ; then Corollary 3.2 yields a time t̃, such that the
approximate equation can be solved on the interval [nt̃, (n + 1)t̃ ]. Let q be an
integer larger than T/t̃. The convergence will hold for N so large that

N1−mΛ
q−1∑
l=0

λl + N1−mλqCI‖u0‖m < κ.(3.10)

To obtain an approximation on the interval [0, t̃ ], we solve (3.6) with n = 0 and
initial data vN,0 = INu0. It follows from the preceding results that we have the
error estimates

sup
t∈[0,t̃ ]

∥∥u(·, t) − vN (·, t)
∥∥

0
≤ ΛN−m + λ‖u0 − INu0‖0

and
sup

t∈[0,t̃]

∥∥u(·, t) − vN (·, t)
∥∥

1
≤ ΛN1−m + λN‖u0 − INu0‖0.
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Moreover, we obtain the following inequality
∥∥vN (·, t)

∥∥
1

≤
∥∥vN (·, t) − u(·, t)

∥∥
1

+
∥∥u(·, t)

∥∥
1

≤ ΛN1−m + λN‖u0 − INu0‖0 + κ

≤ ΛN1−m + λN1−mCI‖u0‖m + κ,

for t ∈ [0, t̃].
By (3.10), it follows that ‖vN (·, t̃ )‖1 ≤ 2κ = R, so that the foregoing reasoning

can be reapplied, and the solution be continued to the interval [t̃, 2t̃ ]. In other
words, Equation (3.6) can be posed with n = 1 and initial data v0,N = vN (·, t̃ ),
and compared with the solution of Equation (1.8) on the interval [t̃, 2t̃ ]. Since
‖vN (·, t̃ )‖1 ≤ R, the time of existence t̃ and the bound β̃ are the same as during
the first step, and the constants Λ and λ are the same as before. Accordingly,
the following error estimates hold.

sup
t∈[t̃,2t̃]

∥∥u(·, t) − vN (·, t)
∥∥

0
≤ ΛN−m + λΛ

∥∥u(·, t̃ ) − vN (·, t̃ )
∥∥

0

≤ ΛN−m + λΛN−m + λ2
mN−mCI‖u0‖m,

sup
t∈[t̃,2t̃]

∥∥u(·, t) − vN (·, t)
∥∥

1
≤ ΛN1−m + λΛN

∥∥u(·, t̃ − vN (·, t̃ )
∥∥

0

≤ ΛN1−m + λΛN1−m + λ2
mN1−mCI‖u0‖m.

Moreover we have the estimate

sup
t∈[t̃,2t̃]

∥∥vN (·, t)
∥∥

1
≤

∥∥vN (·, 2t) − u(·, 2t)
∥∥

1
+

∥∥u(·, 2t)
∥∥

1

≤ ΛN1−m + λΛN1−m + λ2
mN1−mCI‖u0‖m + κ

≤ R.

To continue the solution to the interval [0, T ], remember that t̃ only depends
on R, which fact assures that the local analysis can be applied q times on an
interval of length t̃ to yield a solution vN on the interval [0, T ]. The requirement
(3.10) assures that the solution can be continued further each time. At the n-th
stage, we have the estimates

sup
t∈[nt̃,(n+1)t̃]

∥∥u(·, t) − vN (·, t)
∥∥

0
≤ N−mΛ

n−1∑
l=0

λl + N−mλnCI‖u0‖m,

sup
t∈[nt̃,(n+1)t̃]

∥∥u(·, t) − vN (·, t)
∥∥

1
≤ N1−mΛ

n−1∑
l=0

λl + N1−mλnCI‖u0‖m,

and

sup
t∈[nt̃,(n+1)t̃]

∥∥vN (·, t)
∥∥

1
≤ N1−mΛ

n−1∑
l=0

λl + N1−mλnCI‖u0‖m + κ

≤ R.
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Since the local error estimate holds on each subinterval, it also holds on the
interval [0, T ] with the constant C∗ = Λ

∑q−1
l=0 λl + λqCI‖u0‖m. �

4 Numerical implementation.

In this section, an implementation of the discretization procedure described
above is used to confirm the convergence results experimentally. As an appli-
cation of the numerical method explained in this paper, the interaction of two
solitary waves for the regularized Benjamin–Ono equation on the real line is
investigated.

To reach a fully discrete approximation, the Fourier–collocation projection
is coupled with a 4-stage Runge–Kutta time-stepping algorithm. The 4-stage
Runge–Kutta method is a natural choice for this problem, because the resulting
system of ordinary differential equations is not stiff. Moreover, since the spectral
method is rapidly convergent, it is natural to use a time discretization of fairly
high order.

For the periodic regularized Benjamin–Ono equation, there are exact solutions
in the form of a traveling waves. To find such a solution, assume that a solution
of (1.3) has the form

u(x, t) = ψ(x − ct),

where the function ψ is 2π-periodic. Substituting this expression into (1.3) and
integrating, there appears the equation

−cψ + ψ + 1
2ψ2 − cHψ′.(4.1)

A 2π-periodic solution of this integro-differential equation is given by the formula

u(x, t) =
c sinh(p)

cosh2(p
2 ) − cos2(x−ct

2 )
,(4.2)

with the speed

c =
tanh(p)

tanh(p) − 1
.

A plot of a typical periodic traveling wave is provided in Figure 4.1. These solu-
tions can be used to test the numerical algorithm, because their time evolution
is simply given by translation. If uN (·, ti) is the result of a numerical compu-
tation with initial data ψ(x), it can be compared with the translated function
ψ(x−cti). In this way, the error produced by the discretization can be calculated.
In particular, the convergence rate of the scheme can be found. In Table 4.1, a
traveling wave with p = 0.5 was used, so that the wave speed c was approxi-
mately −0.85914. Table 4.1 shows the error due to the time discretization when
N = 8192. It appears that the formal 4-th order convergence is approximately
achieved. Table 4.1 also shows the error due to the space discretization with
the time step δ = 0.0002. It is apparent that the error goes down exponentially
until it approaches machine precision, confirming the spectral convergence of the
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Figure 4.1: Periodic traveling wave with p = 0.5.

Table 4.1: Discretization error for the traveling wave in (4.2) with p = 0.5
over the time domain [0, 1.6]. In the left table, the number of grid points is
N = 8192. In the right table, the time step is δ = 0.0002.

δ L2-Error Ratio N L2-Error Ratio

0.4000 3.1362e-02

0.2000 3.7388e-03 8.39

0.1000 2.0942e-04 17.85

0.0500 1.1072e-05 18.92 8 8.0646e-01 0

0.0250 6.1732e-07 17.94 16 3.8072e-02 21.18

0.0125 3.6156e-08 17.08 32 6.3915e-04 59.57

0.0063 2.1833e-09 16.56 64 2.1651e-07 2,952.00

0.0031 1.3407e-10 16.29 128 2.4899e-14 8,696,000.00

0.0016 8.3043e-12 16.14 256 1.7745e-15 14.03

0.0008 5.1674e-13 16.07

collocation scheme. Similar results hold for other values of the parameter p, and
it can be said in conclusion that the Runge–Kutta method provides an excellent
companion to the spectral method.

To conclude our study, we simulate the interaction of two solitary waves.
Solitary waves are solutions of Equation (4.1) posed on the real line which have
decay at infinity. These solutions are given by the expression

u(x, t) =
4d

1 + ( d
d+1 )2

(
x − (d + 1)t

)2 ,(4.3)
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Table 4.2: Discretization error for the solitary wave
in (4.3) with d = 0.75. In the left table, the error
at T = 1000 is shown. In the right table, the error
at T = 2000 is shown. The number of gridpoints is
N = 16384.

T = 1000 T = 2000

δ L∞-Error Ratio L∞-Error Ratio

0.1000 2.9786e-02 1.1682e-01

0.0500 9.7420e-04 30.6 3.7770e-03 30.9

0.0250 3.3149e-05 29.4 1.2832e-04 29.4

0.0125 1.9109e-06 17.3 1.0481e-05 12.2

0.0063 9.9190e-07 1.9 8.9896e-06 1.2

Figure 4.2: Solitary-wave solution of the regularized Benjamin–Ono equation with d = 0.75.

where the speed of translation of the solitary wave is d + 1. Since the Fourier–
collocation scheme approximates the problem with periodic boundary conditions,
the quadratic decay of this function can be a problem if not a sufficiently large
spatial domain is used. In the calculations shown here the size of the domain
[0, L] was at least L = 6400.

The evolution of a single solitary wave of height 3 is shown in Figure 4.2. As
it appears, the scheme produces a small error even if integrating over a rather
large time interval. It can be seen from Table 4.2 that for a integration up to
T = 2000, with N = 16384 gridpoints, a time step of δ = 0.0125 is appropriate.

To initiate the interaction, a solitary wave of height 3 and a solitary wave of
height 6 were superimposed. The larger solitary wave was placed to the left of
the smaller wave. They were arranged so that they were initially separated by
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Figure 4.3: Interaction of two solitary waves for the regularized Benjamin–Ono equation.

Figure 4.4: Interaction of two solitary waves: close-up.

about 1600, which was enough to bring the overlap down to about 10−5. The
domain was chosen large enough, so that the tails of the solitary waves were
of magnitude 10−5 at the boundary, and that the evolution could be followed
without one of the waves wrapping around and reentering at the other end.
The two solitary waves coalesced at about t = 1450, and the larger wave then
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Figure 4.5: Interaction of two solitary waves: dispersive tail.

passed the smaller one. It can be seen in Figure 4.5 that after the waves pulled
apart, a small trailing wave train appeared. Since the tail is on the order of
10−3, and the L∞-Error for the evolution of a single solitary wave was on the
order of 10−5 at T = 2000, the dispersive tail does not appear to be a numerical
artifact. To be sure, the experiments were conducted with varying domain sizes,
and varying initial separation of the solitary waves. This did not have an effect
on the interaction. In particular, the height of the dispersive tail that appeared
after the interaction did not change significantly. Varying spatial and temporal
grid sizes did not affect the results either.
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