A Pick function related to the sequence of volumes of the unit ball in n-space\

Christian Berg \(^{†} \) and Henrik L. Pedersen \(^‡ \)

\(^† \) Institute of Mathematical Sciences, University of Copenhagen
Universitetsparken 5; DK-2100 København Ø, Denmark
E-mail berg@math.ku.dk

\(^‡ \) Department of Basic Sciences and Environment
Faculty of Life Sciences, University of Copenhagen
Thorvaldsensvej 40, DK-1871 Frederiksberg C
E-mail henrikp@dina.kvl.dk

December 10, 2009

Abstract

We show that

\[
F_a(x) = \frac{\ln \Gamma(x + 1)}{x \ln(ax)}
\]

is a Pick function for $a \geq 1$ and find its integral representation. We also consider the function

\[
f(x) = \left(\frac{\pi^{x/2}}{\Gamma(1 + x/2)} \right)^{1/(x \ln x)}
\]

and show that $\ln f(x + 1)$ is a Stieltjes function and that $f(x + 1)$ is completely monotonic on $[0, \infty]$. In particular $f(n) = \Omega_n^{1/(n \ln n)}$, $n \geq 2$ is a Hausdorff moment sequence. Here Ω_n is the volume of the unit ball in Euclidean n-space.

2010 Mathematics Subject Classification: primary 33B15; secondary 30E20, 30E15.
Keywords: gamma function, completely monotone function.

\(^* \)Both authors acknowledge support by grant 272-07-0321 from the Danish Research Council for Nature and Universe.
1 Introduction and results

Since the appearance of the paper [3], monotonicity properties of the functions

\[F_a(x) = \frac{\ln \Gamma(x + 1)}{x \ln(ax)}, \quad x > 0, a > 0 \]

have attracted the attention of several authors in connection with monotonicity properties of the volume \(\Omega_n \) of the unit ball in Euclidean \(n \)-space. A recent paper about inequalities involving \(\Omega_n \) is [2].

Let us first consider the case \(a = 1 \). In [9] the authors proved that \(F_1 \) is a Bernstein function, which means that it is positive and has a completely monotonic derivative, i.e.,

\[(-1)^{n-1} F_1^{(n)}(x) \geq 0, \quad x > 0, n \geq 1. \]

This extended monotonicity and concavity proved in [4] and [12] respectively.

We actually proved a stronger statement than (2), namely that the reciprocal function \(x \ln x / \ln \Gamma(x + 1) \) is a Stieltjes transform, i.e. belongs to the Stieltjes cone \(S \) of functions of the form

\[g(x) = c + \int_0^\infty \frac{d\mu(t)}{x + t}, \quad x > 0, \]

where \(c \geq 0 \) and \(\mu \) is a non-negative measure on \([0, \infty[\) satisfying

\[\int_0^\infty \frac{d\mu(t)}{1 + t} < \infty. \]

The result was obtained using the holomorphic extension of the function \(F_1 \) to the cut plane \(\mathcal{A} = \mathbb{C} \setminus (-\infty, 0] \), leading to an explicit formula for the measure \(\mu \) in (3). Our derivation used the fact that the holomorphic function \(\log \Gamma(z) \) only vanishes in \(\mathcal{A} \) at the points \(z = 1 \) and \(z = 2 \), a result interesting in itself and included as an appendix in [9]. A simpler proof of the non-vanishing of \(\log \Gamma(z) \) appeared in [10].

In a subsequent paper [10] we proved an almost equivalent result, namely that \(F_1 \) is a Pick function, and obtained the following representation formula

\[F_1(z) = 1 - \int_0^\infty \frac{d_1(t)}{z + t} dt, \quad z \in \mathcal{A} \]

where

\[d_1(t) = \frac{\ln |\Gamma(1 - t)| + (k - 1) \ln t}{t((\ln t)^2 + \pi^2)} \quad \text{for} \quad t \in]k - 1, k[, \quad k = 1, 2, \ldots \]

and \(d_1(t) \) tends to infinity when \(t \) approaches 1, 2, \ldots. Since \(d_1(t) > 0 \) for \(t > 0 \), (2) is an immediate consequence of (4).
We recall that a Pick function is holomorphic function φ in the upper half-plane $\mathbb{H} = \{ z = x + iy \in \mathbb{C} \mid y > 0 \}$ satisfying $\Im \varphi(z) \geq 0$ for $z \in \mathbb{H}$, cf. [11].

For $a = 2$ Anderson and Qiu proved in [4] that F_2 is strictly increasing on $[1, \infty[$, thereby proving a conjecture from [3]. Alzer proved in [2] that F_2 is concave on $[4, \infty[$. In [14] the concavity was extended to the optimal interval $\left[\frac{1}{2}, \infty \right]$.

We will now describe the main results of the present paper.

We also denote by F_a the holomorphic extension of (1) to \mathcal{A} with an isolated singularity at $z = 1/a$, which is a simple pole with residue $\ln \Gamma(1 + 1/a)$ assuming $a \neq 1$, while $z = 1$ is a removable singularity for F_1. For details about this extension see the beginning of section 2. Using the residue theorem we obtain:

Theorem 1.1 For $a > 0$ the function F_a has the integral representation

$$F_a(z) = 1 + \ln \Gamma(1 + 1/a) - \int_0^\infty \frac{d_a(t)}{z + t} \, dt, \quad z \in \mathcal{A} \setminus \{ 1/a \},$$

where

$$d_a(t) = \frac{\ln |\Gamma(1-t)| + (k-1) \ln (at)}{t((\ln(at))^2 + \pi^2)} \quad \text{for} \quad t \in [k-1,k[, \quad k = 1,2,\ldots, \quad (7)$$

and $d_a(0) = 0, d_a(k) = \infty, k = 1,2,\ldots$. We have $d_a(t) \geq 0$ for $t \geq 0, a \geq 1/2$ and F_a is a Pick function for $a \geq 1$ but not for $0 < a < 1$.

From this follows the monotonicity property conjectured in [14]:

Corollary 1.2 Assume $a \geq 1$. Then

$$(-1)^{n-1} F_a^{(n)}(x) > 0, \quad x > 1/a, n = 1,2,\ldots, \quad (8)$$

In particular, F_a is strictly increasing and strictly concave on the interval $[1/a, \infty[$.

The function

$$f(x) = \left(\frac{\pi^{x/2}}{\Gamma(1 + x/2)} \right)^{1/(x \ln x)}$$

has been studied because the volume Ω_n of the unit ball in \mathbb{R}^n is

$$\Omega_n = \frac{\pi^{n/2}}{\Gamma(1 + n/2)}, n = 1,2,\ldots.$$

We prove the following integral representation of the extension of $\ln f(x + 1)$ to the cut plane \mathcal{A}.

\footnote{This is slightly improved in Remark 2.6 below.}
Theorem 1.3 For $z \in \mathcal{A}$ we have

$$\log f(z+1) = -\frac{1}{2} + \frac{\ln(2/\sqrt{\pi})}{z} + \ln(\sqrt{\pi}) + \frac{1}{2} \int_{1}^{\infty} \frac{d_2((t-1)/2)}{z+t} \, dt. \quad (10)$$

In particular $1/2 + \log f(x+1)$ is a Stieltjes function and $f(x+1)$ is completely monotonic.

We recall that completely monotonic functions $\varphi :]0, \infty[\to \mathbb{R}$ are characterized by Bernstein’s theorem as

$$\varphi(x) = \int_{0}^{\infty} e^{-xt} \, d\mu(t), \quad (11)$$

where μ is a positive measure on $]0, \infty[$ such that the integrals above make sense for all $x > 0$.

We also recall that a sequence $\{a_n\}_{n \geq 0}$ of positive numbers is a Hausdorff moment sequence if it has the form

$$a_n = \int_{0}^{1} x^n \, d\sigma(x), \quad n \geq 0, \quad (12)$$

where σ is a positive measure on the unit interval. Note that $\lim_{n \to \infty} a_n = \sigma\{1\}$.

For a discussion of these concepts see [7] or [17]. It is clear that if φ is completely monotonic with the integral representation (11), then $a_n = \varphi(n+1), n \geq 0$ is a Hausdorff moment sequence, because

$$a_n = \int_{0}^{\infty} e^{-(n+1)t} \, d\mu(t) = \int_{0}^{1} x^n \, d\sigma(x),$$

where σ is the image measure of $e^{-t} \, d\mu(t)$ under e^{-t}. Since $\lim_{x \to \infty} f(x+1) = e^{-1/2}$ we get

Corollary 1.4 The sequence

$$f(n+2) = \Omega_{n+2}^{1/(n+2)\ln(n+2))}, n = 0, 1, \ldots \quad (13)$$

is a Hausdorff moment sequence tending to $e^{-1/2}$.

A Hausdorff moment sequence is clearly decreasing and convex and by the Cauchy-Schwarz inequality is even logarithmically convex, meaning that $a_n^2 \leq a_{n-1} a_{n+1}, n \geq 1$. The latter property was obtained in [14] in a different way.
2 Properties of the function F_a

In this section we will study the holomorphic extension of the function F_a defined in (1). First a few words about notation. We use \ln for the natural logarithm but only applied to positive numbers. The holomorphic extension of \ln from the open half-line $]0, \infty[$ to the cut plane $\mathcal{A} = \mathbb{C} \setminus [-\infty, 0]$ is denoted $\log z = \ln |z| + i \arg z$, where $-\pi < \arg z < \pi$ is the principal argument. The holomorphic branch of the logarithm of $\Gamma(z)$ for z in the simply connected domain \mathcal{A} which equals $\ln \Gamma(x)$ for $x > 0$ is denoted $\log \Gamma(z)$. The imaginary part of $\log \Gamma(z)$ is a continuous branch of argument of $\Gamma(z)$ which we denote $\arg \Gamma(z)$, i.e.,

$$\log \Gamma(z) = \ln |\Gamma(z)| + i \arg \Gamma(z), \quad z \in \mathcal{A}.$$

We shall use the following property of $\log \Gamma(z)$, cf. [9, Lemma 2.1]

Lemma 2.1 We have, for any $k \geq 1$,

$$\lim_{z \to t, 3z > 0} \log \Gamma(z) = \ln |\Gamma(t)| - i\pi k$$

for $t \in]-k, -k+1[$ and

$$\lim_{z \to t, 3z > 0} |\log \Gamma(z)| = \infty$$

for $t = 0, -1, -2, \ldots$.

The expression

$$F_a(z) = \frac{\log (z + 1)}{z \log(az)}$$

clearly defines a holomorphic function in $\mathcal{A} \setminus \{1/a\}$, and $z = 1/a$ is a simple pole unless $a = 1$, where the residue $\ln \Gamma(1 + 1/a)$ vanishes.

Lemma 2.2 For $a > 0$ and $t \leq 0$ we have

$$\lim_{y \to 0^+} \Im F_a(t + iy) = \pi d_a(-t), \quad (14)$$

where d_a is given by (7).

Proof. For $-1 < t < 0$ we get

$$\lim_{y \to 0^+} F_a(t + iy) = \frac{\ln \Gamma(1 + t)}{t(\ln|a|t| + i\pi)},$$

hence $\lim_{y \to 0^+} \Im F_a(t + iy) = \pi d_a(-t)$. For $-k < t < -k+1$, $k = 2, 3, \ldots$ we find using Lemma 2.1

$$\lim_{y \to 0^+} F_a(t + iy) = \frac{\ln |\Gamma(1 + t)| - i(k - 1)\pi}{t(\ln|a|t| + i\pi)},$$
hence \(\lim_{y \to 0^+} \Im F_a(t + iy) = \pi d_a(-t) \) also in this case.

For \(t = -k, \ k = 1, 2, \ldots \) we have

\[
|F_a(-k + iy)| \geq \frac{|\ln|\Gamma(-k + 1 + iy)||}{|k + iy||\log(a(-k + iy))|} \to \infty
\]

for \(y \to 0^+ \) because \(\Gamma(z) \) has poles at \(z = 0, -1, \ldots \). Finally, for \(t = 0 \) we get (14) from the next Lemma.

\[\Box \]

Lemma 2.3 For \(a > 0 \) we have

\[
\lim_{z \to 0, z \in A} |F_a(z)| = 0.
\]

Proof. Since \(\log \Gamma(z + 1)/z \) has a removable singularity for \(z = 0 \) the result follows because \(|\log(az)| \geq |\ln|a||z|| \to \infty \) for \(|z| \to 0, z \in A \). \[\Box \]

Lemma 2.4 For \(a > 0 \) we have the radial behaviour

\[
\lim_{r \to \infty} F_a(re^{i\theta}) = 1 \text{ for } -\pi < \theta < \pi,
\]

and there exists a constant \(C_a > 0 \) such that for \(k = 1, 2, \ldots \) and \(-\pi < \theta < \pi \)

\[
|F_a((k + \frac{1}{2})e^{i\theta})| \leq C_a.
\]

Proof. We first note that

\[
F_a(z) = F_1(z) \frac{\log(z)}{\log(az)},
\]

and since

\[
\lim_{|z| \to \infty, z \in A} \frac{\log(z)}{\log(az)} = 1
\]

it is enough to prove the results for \(a = 1 \). We do this by using a method introduced in [9, Prop. 2.4].

Define

\[
R_k = \{ z = x + iy \in \mathbb{C} \mid -k \leq x < -k + 1, 0 < y \leq 1 \} \text{ for } k \in \mathbb{Z}
\]

and

\[
R = \bigcup_{k=0}^{\infty} R_k, \quad S = \{ z = x + iy \in \mathbb{C} \mid x \leq 1, |y| \leq 1 \}.
\]

By Lemma 2.1 it is clear that

\[
M_k = \sup_{|\theta| < \pi} |F_1((k + \frac{1}{2})e^{i\theta})| < \infty
\]

for each \(k = 1, 2, \ldots \), so it is enough to prove that \(M_k \) is bounded for \(k \to \infty \).
Stieltjes ([16, formula 20]) found the following formula for \(\log \Gamma(z)\) for \(z\) in the cut plane \(\mathcal{A}\)

\[
\log \Gamma(z + 1) = \ln \sqrt{2\pi} + (z + 1/2) \log z - z + \mu(z). \tag{19}
\]

Here

\[
\mu(z) = \sum_{n=0}^{\infty} h(z + n) = \int_{0}^{\infty} \frac{P(t)}{z + t} dt,
\]

where \(h(z) = (z + 1/2) \log(1 + 1/z) - 1\) and \(P\) is periodic with period 1 and \(P(t) = 1/2 - t\) for \(t \in [0, 1]\). A derivation of these formulas can also be found in [5]. The integral above is improper, and integration by parts yields

\[
\mu(z) = \frac{1}{2} \int_{0}^{\infty} \frac{Q(t)}{(z + t)^2} dt, \tag{20}
\]

where \(Q\) is periodic with period 1 and \(Q(t) = t - t^2\) for \(t \in [0, 1]\). Note that by (20) \(\mu\) is a completely monotonic function. For further properties of Binet’s function \(\mu\) see [13].

We claim that

\[|\mu(z)| \leq \frac{\pi}{8} \text{ for } z \in \mathcal{A} \setminus S.\]

In fact, since \(0 \leq Q(t) \leq 1/4\), we get for \(z = x + iy \in \mathcal{A}\)

\[|\mu(z)| \leq \frac{1}{8} \int_{0}^{\infty} \frac{dt}{(t + x)^2 + y^2}.\]

For \(x > 1\) we have

\[\int_{0}^{\infty} \frac{dt}{(t + x)^2 + y^2} \leq \int_{0}^{\infty} \frac{dt}{(t + 1)^2} = 1,
\]

and for \(x \leq 1, |y| \geq 1\) we have

\[\int_{0}^{\infty} \frac{dt}{(t + x)^2 + y^2} = \int_{1}^{\infty} \frac{dt}{t^2 + y^2} < \int_{1}^{\infty} \frac{dt}{t^2 + 1} = \pi.
\]

Since

\[F_1(z) = 1 + \frac{\ln \sqrt{2\pi} + 1/2 \log z - z + \mu(z)}{z \log z},\]

for \(z \in \mathcal{A}\), we immediately get (15) and

\[|F_1(z)| \leq 2 \tag{21}\]

for all \(z \in \mathcal{A} \setminus S\) for which \(|z|\) is sufficiently large. In particular, there exists \(N_0 \in \mathbb{N}\) such that

\[|F_1((k + \frac{1}{2})e^{i\theta})| \leq 2 \text{ for } k \geq N_0, \ (k + \frac{1}{2})e^{i\theta} \in \mathcal{A} \setminus S. \tag{22}\]
By continuity the quantity
\[c = \sup \{ |\log \Gamma(z)| \mid z = x + iy, \frac{1}{2} \leq x \leq 1, 0 \leq y \leq 1 \} \] (23)
is finite.

We will now estimate the quantity \(|F_1((k + \frac{1}{2})e^{i\theta})|\) when \((k + \frac{1}{2})e^{i\theta} \in S\), and since \(F_1(z) = F_1(z)\), it is enough to consider the case when \((k + \frac{1}{2})e^{i\theta} \in R_{k+1}\). To do this we use the relation

\[\log \Gamma(z + 1) = \log \Gamma(z + k + 1) - \sum_{l=1}^{k} \log(z + l) \] (24)

for \(z \in A\) and \(k \in \mathbb{N}\). Equation (24) follows from the fact that the functions on both sides of the equality sign are holomorphic functions in \(A\), and they agree on the positive half-line by repeated applications of the functional equation for the Gamma function.

For \(z = (k + \frac{1}{2})e^{i\theta} \in R_{k+1}\) we get \(|\log \Gamma(z + 1)| \leq c\) by (23), and hence by (24)

\[|\log \Gamma(z + 1)| \leq c + \sum_{l=1}^{k} |\log(z + l)| \leq c + k\pi + \sum_{l=1}^{k} |\ln |z + l||. \]

For \(l = 1, \ldots, k - 1\) we have \(k - l < |z + l| < k + 2 - l\), hence \(0 < \ln |z + l| < \ln(k+2-l)\). Furthermore, \(1/2 \leq |z+k| \leq \sqrt{2}\), hence \(-\ln 2 < \ln |z+k| \leq (\ln 2)/2\). Inserting this we get

\[|\log \Gamma(z + 1)| \leq c + k\pi + \sum_{j=2}^{k+1} \ln j < c + k\pi + k \ln(k + 1). \]

From this we get for \(z = (k + \frac{1}{2})e^{i\theta} \in R_{k+1}\)

\[|F_1(z)| \leq \frac{c + k\pi + k \ln(k + 1)}{(k + \frac{1}{2}) \ln(k + \frac{1}{2})} \] (25)

which tends to 1 for \(k \to \infty\). Combined with (22) we see that there exists \(N_1 \in \mathbb{N}\) such that

\[|F_1((k + \frac{1}{2})e^{i\theta})| \leq 2 \text{ for } k \geq N_1, -\pi < \theta < \pi, \]

which shows that \(M_k\) from (18) is a bounded sequence. \(\square\)

Lemma 2.5 Let \(a > 0\). For \(k = 1, 2, \ldots\) there exists an integrable function \(f_{k,a} : [-k, -k + 1[\to [0, \infty]\) such that

\[|F_a(x + iy)| \leq f_{k,a}(x) \text{ for } -k < x < -k + 1, 0 < y \leq 1. \] (26)
Proof. For $z = x + iy$ as above we get using (24)

$$|\log \Gamma(z + 1)| \leq |\log \Gamma(z + k + 1)| + \sum_{l=1}^{k} |\log(z + l)| \leq L + k\pi + \sum_{l=1}^{k} |\ln|z + l||,$$

where L is the maximum of $|\log \Gamma(z)|$ for $z \in \mathbb{R}$. We only treat the case $k \geq 2$ because the case $k = 1$ is a simple modification combined with Lemma 2.3.

For $l = 1, \ldots, k - 2$ we have $1 < |z + l| < 1 + k - l$, and for $l = k - 1, k$

$$|\log \Gamma(z + 1)| \leq (L + k\pi + \sum_{l=1}^{k-1} |\ln|z + l|| + |\ln|x + k||, \tag{27}$$

so as $f_{k,1}$ we can use the right-hand side of (27) divided by $(k - 1) \ln(k - 1)$.

Using (17) we next define

$$f_{k,a}(x) = f_{k,1}(x) \max_{z \in \mathbb{R}_k} |\log z| |\log(az)|.$$

Proof of Theorem 1.1

For fixed $w \in \mathcal{A} \setminus \{1/a\}$ we choose $\varepsilon > 0, k \in \mathbb{N}$ such that $\varepsilon < |w|, 1/a < k + \frac{1}{2}$ and consider the positively oriented contour $\gamma(k, \varepsilon)$ in \mathcal{A} consisting of the half-circle $z = \varepsilon e^{i\theta}, \theta \in [-\pi, \pi]$ and the half-lines $z = x \pm i\varepsilon, x \leq 0$ until they cut the circle $|z| = k + \frac{1}{2}$, which closes the contour. By the residue theorem we find

$$\frac{1}{2\pi i} \int_{\gamma(k, \varepsilon)} \frac{F_a(z)}{z - w} \, dz = F_a(w) + \frac{\ln \Gamma(1 + 1/a)}{1/a - w}.$$

We now let $\varepsilon \to 0$ in the contour integration. By Lemma 2.3 the contribution from the half-circle with radius ε will tend to zero, and by Lemma 2.2 and Lemma 2.5 we get

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{F_a((k + \frac{1}{2})e^{i\theta})}{(k + \frac{1}{2})e^{i\theta} - w} (k + \frac{1}{2})e^{i\theta} \, d\theta + \int_{-k-\frac{1}{2}}^{0} \frac{d_a(-t)}{t - w} \, dt = F_a(w) + \frac{\ln \Gamma(1 + 1/a)}{1/a - w}.$$

For $k \to \infty$ the integrand in the first integral converges to 1 for each $\theta \in [-\pi, \pi]$ and by Lemma 2.4 Lebesgue’s theorem on dominated convergence can be applied, so we finally get

$$F_a(w) = 1 + \frac{\ln \Gamma(1 + 1/a)}{w - 1/a} - \int_{0}^{\infty} \frac{d_a(t)}{t + w} \, dt.$$

The last integral above appears as an improper integral, but we shall see that the integrand is Lebesgue integrable. We show below that $d_a(t) \geq 0$ when
$a \geq 1/2$ and for these values of a the integrability is obvious. The function d_a tends to 0 for $t \to 0$ and has a logarithmic singularity at $t = 1$ so d_a is integrable over $[0,1]$. For $k - 1 < t < k$, $k \geq 2$ we have

$$d_a(t) = \frac{(\ln(t))^2 + \pi^2}{(\ln(at))^2 + \pi^2} d_1(t) + \frac{(k - 1) \ln a}{t ((\ln(at))^2 + \pi^2)},$$

and the factor in front of $d_1(t)$ is a bounded continuous function with limit 1 at 0 and at infinity. Therefore

$$\int_1^\infty \frac{|d_a(t)|}{t} dt < \infty$$

follows from the finiteness of the corresponding integral for $a = 1$ provided that we establish

$$S := \sum_{k=2}^\infty (k - 1) \int_{k-1}^k \frac{dt}{t^2 ((\ln(at))^2 + \pi^2)} < \infty.$$

Choosing $N \in \mathbb{N}$ such that $aN > 1$, we can estimate

$$S < \sum_{k=1}^\infty \int_{ka}^{(k+1)a} \frac{dt}{t(\ln^2(t) + \pi^2)} < \int_a^N \frac{dt}{t(\ln^2(t) + \pi^2)} + \sum_{k=N+1}^\infty \int_{ka}^{(k+1)a} \frac{dt}{t \ln^2(t)}$$

$$= \int_a^N \frac{dt}{t(\ln^2(t) + \pi^2)} + \frac{1}{\ln(aN)} < \infty.$$

We next examine positivity of d_a.

For $0 < t < 1$ we have

$$d_a(t) = \frac{\ln |\Gamma(1-t)|}{t((\ln(at))^2 + \pi^2)} > 0$$

because $\Gamma(s) > 1$ for $0 < s < 1$.

For $k \geq 2$ and $t \in]k-1,k[$ the numerator N_a in d_a can be written

$$N_a(t) = \ln \Gamma(k-t) + \sum_{l=1}^{k-1} \ln \frac{ta}{t-l},$$

where we have used the functional equation for Γ, hence

$$N_a(t) \geq \sum_{l=1}^{k-1} \ln \frac{k}{k-l} + (k - 1) \ln a = (k - 1) \ln k - \ln \Gamma(k) + (k - 1) \ln a,$$

because $\Gamma(k-t) > 1$ and $t/(t-l)$ is decreasing for $k - 1 < t < k$. From (19) we get

$$\ln \Gamma(k) = \ln \sqrt{2\pi} + (k - 1/2) \ln k + \mu(k)$$

(29)
and in particular for $k = 2$

$$\mu(2) = 2 - \frac{3}{2} \ln 2 - \ln \sqrt{2\pi}.$$

Using (29) we find

$$N_a(t) \geq k - \frac{1}{2} \ln k - \ln \sqrt{2\pi} - \mu(k) + (k - 1) \ln a \geq k - \frac{1}{2} \ln k - 2 + \frac{3}{2} \ln 2 + (k - 1) \ln a,$$

because μ is decreasing on $]0, \infty[$ as shown by (20).

For $a \geq 1/2$ and $k - 1 < t < k$ with $k \geq 2$ we then get

$$N_a(t) \geq k(1 - \ln 2) - \frac{1}{2} \ln k + \frac{5}{2} \ln 2 - 2 \geq 0,$$

because the sequence $c_k, k \geq 2$ on the right-hand side is increasing with $c_2 = 0$.

We also see that $d_a(t)$ tends to infinity for t approaching the end points of the interval $]k - 1, k[$. For $z = 1/a + iy, y > 0$ we get from (6)

$$\Im F_a(1/a + iy) = -\frac{\ln \Gamma(1 + 1/a)}{y} + \int_0^\infty \frac{yd_a(t)}{(1/a + t)^2 + y^2} dt.$$

The last term tends to 0 for $y \to 0$ while the first term tends to $-\infty$ when $0 < a < 1$. This shows that F_a is not a Pick function for these values of a. □

Remark 2.6 We proved in Theorem 1.1 that $d_a(t)$ is non-negative on $[0, \infty[$ for $a \geq 1/2$. This is not best possible, and we shall explain that the smallest value of a for which $d_a(t)$ is non-negative is $a_0 = 0.3681154742...$

Replacing k by $k + 1$ in the numerator N_a for d_a given by (7), we see that

$$N_a(t) = \ln |\Gamma(1 - t)| + k\ln(at) \text{ for } t \in]k, k + 1[, \ k = 1, 2, \ldots$$

is non-negative if and only if

$$\ln(1/a) \leq \ln(k + s) + \frac{1}{k} \ln |\Gamma(1 - k - s)| \text{ for } s \in]0, 1[, \ k = 1, 2, \ldots,$$

and using the reflection formula for Γ this is equivalent to $\ln(1/a) \leq \rho(k, s)$ for all $0 < s < 1$ and all $k = 1, 2, \ldots$, where

$$\rho(k, s) = \ln(k + s) - \frac{1}{k} \ln \left(\Gamma(k + s) \frac{\sin(\pi s)}{\pi} \right).$$ (30)

Using Stieltjes’ formula (19), we find that

$$\rho(k, s) = 1 + \frac{\ln(\pi/2)}{2k} - (1/k) [(s - 1/2) \ln(s + k) + \ln \sin(\pi s) - s + \mu(s + k)]$$ (31)
for all $s \in]0,1[$ and $k = 1, 2, \ldots$. For fixed $s \in]0,1[$ we see that $\rho(k,s) \to 1$ as $k \to \infty$, so $\ln(1/a) \leq 1$ is a necessary condition for non-negativity of $d_a(t)$. This condition is not sufficient, because for $\ln(1/a) = 1$ the inequality $1 \leq \rho(k,s)$ is equivalent to

$$0 \geq \frac{1}{2} \ln(2/\pi) + (s - 1/2) \ln(s + k) + \ln \sin(\pi s) - s + \mu(s + k)$$

which does not hold when k is sufficiently large and $1/2 < s < 1$.

For each $k = 1, 2, \ldots$ it is easy to verify that the function $\rho_k(s) = \rho(k,s)$ has a unique minimum m_k over $]0,1[$, and clearly

$$\ln(1/a_0) = \inf \{m_k, k \geq 1\} \quad (32)$$

determines the smallest value of a for which $d_a(t)$ is non-negative. Using Maple one obtains that m_k is decreasing for $k = 1, \ldots, 510$ and increasing for $k \geq 510$ with limit 1. Therefore $m_{510} = \inf m_k = 0.9993586013...$ corresponding to $a_0 = 0.3681154742...$ We add that $m_1 = 1.6477352344.., m_{178} = 1.0000028637.., m_{179} = 0.9999936630...$

3 Properties of the function f

Proof of Theorem 1.3 The function

$$\ln f(x) = \frac{(x/2) \ln \pi - \ln \Gamma(1 + x/2)}{x \ln x}$$

clearly has a meromorphic extension to $\mathcal{A} \setminus 1$ with a simple pole at $z = 1$ with residue $\ln 2$. We denote this meromorphic extension $\log f(z)$ and have

$$\log f(z + 1) = \frac{\ln \sqrt{\pi}}{\Log(z+1)} - \frac{1}{2} F_2 \left(\frac{z + 1}{2} \right).$$

Using the representation (6), we immediately get (10). It is well-known that $1/\Log(z+1)$ is a Stieltjes function, cf. [8, p.130], and the integral representation is

$$\frac{1}{\Log(z+1)} = \int_1^\infty \frac{dt}{(z + t)((\ln(t - 1))^2 + \pi^2)}. \quad (33)$$

It follows that $\ln(\sqrt{\pi}f(x + 1))$ is a Stieltjes function, in particular completely monotonic, showing that $\sqrt{\pi}f(x + 1)$ belongs to the class \mathcal{L} of logarithmically completely monotonic functions studied in [15] and in [6]. Therefore also $f(x + 1)$ is completely monotonic. □
4 Representation of $1/F_a$

For $a > 0$ we consider the function

$$G_a(z) = 1/F_a(z) = \frac{z \log(a)}{\log \Gamma(z + 1)}$$ (34)

which is holomorphic in \mathcal{A} with an isolated singularity at $z = 1$, which is a simple pole with residue $\ln a/\Psi(2) = \ln a/(1 - \gamma)$ if $a \neq 1$, while it is a removable singularity when $a = 1$. Here $\Psi(z) = \Gamma'(z)/\Gamma(z)$ and γ is Euler’s constant.

Theorem 4.1 For $a > 0$ the function G_a has the integral representation

$$G_a(z) = 1 + \frac{\ln a}{(1 - \gamma)(z - 1)} + \int_0^\infty \frac{\rho_a(t)}{z + t} \, dt, \quad z \in \mathcal{A} \setminus \{1\},$$ (35)

where

$$\rho_a(t) = t \frac{\ln |\Gamma(1 - t)| + (k - 1) \ln(at)}{(\ln |\Gamma(1 - t)|)^2 + ((k - 1)\pi)^2} \quad \text{for} \quad t \in]k - 1, k[, \quad k = 1, 2, \ldots, \quad (36)$$

and $\rho_a(0) = 1/\gamma, \rho_a(k) = 0, \ k = 1, 2, \ldots$, which makes ρ_a continuous on $[0, \infty[$. We have $\rho_a(t) \geq 0$ for $t \geq 0$, $a \geq a_0 = 0.3681154742\ldots$, cf. Remark 2.6, and $G_a(x + 1)$ is a Stieltjes function for $a \geq 1$ but not for $0 < a < 1$.

Proof. We notice that for $-k < t < -k + 1, k = 1, 2, \ldots$ we get using Lemma 2.1

$$\lim_{y \to 0^+} G_a(t + iy) = \frac{t(\ln(|t|) + i\pi)}{\ln |\Gamma(1 + t)| - i(k - 1)\pi},$$

and for $t = -k, k = 1, 2, \ldots$ we get

$$\lim_{y \to 0^+} |G_a(-k + iy)| = 0$$

because of the poles of Γ, hence $\lim_{y \to 0^+} \Re G_a(t + iy) = -\pi \rho_a(-t)$ for $t < 0$.

For fixed $w \in \mathcal{A} \setminus \{1\}$ we choose $\varepsilon > 0, k \in \mathbb{N}$ such that $\varepsilon < |w|, 1 < k + \frac{1}{2}$ and consider the positively oriented contour $\gamma(k, \varepsilon)$ in \mathcal{A} which was used in the proof of Theorem 1.1.

By the residue theorem we find

$$\frac{1}{2\pi i} \int_{\gamma(k, \varepsilon)} G_a(z) \, dz = G_a(w) + \frac{\ln a}{(1 - \gamma)(1 - w)}.$$

We now let $\varepsilon \to 0$ in the contour integration. The contribution from the ε-half circle tends to 0 and we get

$$\frac{1}{2\pi} \int_0^\pi G_a((k + \frac{1}{2})e^{i\theta}) \, d\theta - \int_{-k}^0 \rho_a(-t) \, dt = G_a(w) + \frac{\ln a}{(1 - \gamma)(1 - w)}.$$
Finally, letting $k \to \infty$ we get (35), leaving the details to the reader. Clearly, $\rho_a \geq 0$ if and only if d_α defined in (7) is non-negative. It follows that $G_a(x + 1)$ is a Stieltjes function for $a \geq 1$ but not for $0 < a < 1$, since in the latter case $\Re G_a(1 + iy) > 0$ for $y > 0$ sufficiently small. \hfill \Box

Remark 4.2 The integral representation in Theorem 4.1 was established in [9, (6)] in the case of $a = 1$. Since

$$G_a(z) = G_1(z) + \ln(a)\frac{z}{\log \Gamma(z + 1)},$$

the formula for G_a can be deduced from the formula for G_1 and the following formula

$$\frac{z}{\log \Gamma(z + 1)} = \frac{1}{(1 - \gamma)(z - 1)} + \int_0^\infty \frac{\tau(t) dt}{z + t}, \quad z \in \mathcal{A} \setminus \{1\}, \quad (37)$$

where

$$\tau(t) = \frac{(k - 1)t}{(\ln |\Gamma(1 - t)|)^2 + ((k - 1)\pi)^2} \quad \text{for} \quad t \in]k - 1, k[\setminus k \in \mathbb{Z}, \quad k = 1, 2, \ldots \quad (38)$$

References

