The authors investigated a possible association of supplemental folic acid and multivitamin use with placental abruption by using data on 280,127 singleton deliveries recorded in 1999–2004 in the population-based Medical Birth Registry of Norway. Odds ratios, adjusted for maternal age, marital status, parity, smoking, pregestational diabetes, and chronic hypertension, were estimated with generalized estimating equations for logistic regression models. Use of folic acid and/or multivitamin supplements before or any time during pregnancy was reported for 36.4% of the abruptions (0.38% of deliveries) and 44.4% of the nonabruptions. Compared with no use, any supplement use was associated with a 26% risk reduction of placental abruption (adjusted odds ratio $= 0.74$, 95% confidence interval: 0.65, 0.84). Women who had taken folic acid alone had an adjusted odds ratio of 0.81 (95% confidence interval: 0.68, 0.98) for abruption, whereas multivitamin users had an adjusted odds ratio of 0.72 (95% confidence interval: 0.57, 0.91), relative to supplement nonusers. The strongest risk reduction was found for those who had taken both folic acid and multivitamin supplements (adjusted odds ratio $= 0.68$, 95% confidence interval: 0.56, 0.83). These data suggest that folic acid and other vitamin supplementation during pregnancy may be associated with reduced risk of placental abruption.

abruptio placentae; dietary supplements; folic acid; Norway; pregnancy; risk factors; vitamins

Abbreviations: CI, confidence interval; OR, odds ratio.
independent risk factor for premature vascular disease (21, 22). Homocysteine levels can be lowered by folic acid and vitamin B12 supplementation (23). However, we know of no available evidence as to whether homocysteine-lowering therapy can result in a reduced risk of placental abruption or any other homocysteine-related adverse pregnancy outcome.

Despite the proposed role of folate in placental abruption, few epidemiologic studies have addressed whether supplemental folic acid or multivitamin use during pregnancy can reduce occurrence of the complication. In the present study, we tested this hypothesis by using data from a large population-based registry in Norway, where both folic acid and multivitamin use before and during pregnancy, as well as placental abruption, have been recorded since December 1998.

MATERIALS AND METHODS

Study population

This study was based on all livebirths and stillbirths recorded in the Medical Birth Registry of Norway from 1999 through 2004. It was approved by the Norwegian Data Inspectorate.

The Medical Birth Registry of Norway is a large perinatal database in which registration of all births in Norway has been compulsory since 1967 (24). It comprises extensive medical information on the mother’s health before and during pregnancy, on delivery, and on the newborn (since 1998, from gestational week 12). In brief, medical data are collected by using a standardized notification form for each birth. The form is completed at the time of birth (during hospitalization) by the attending health personnel and is sent to the registry within a few weeks postpartum. In December 1998, a revised version of the notification form was introduced to include new variables, such as maternal dietary supplement intake and smoking. The present study was based on data from only the revised form during the period 1999–2004.

Initially, our study comprised a total of 349,043 births. We excluded 12,944 (3.7 percent) multiple births, because they might involve complex confounding mechanisms that differ from those in singleton gestations (25), and an additional 55,972 (16.0 percent) deliveries for which information on vitamin use was missing, leaving data on 280,127 singleton deliveries (representing 226,724 women) for analyses.

Vitamin supplementation

Information on dietary supplement intake (collected during hospitalization) was recorded on the notification form by using check boxes and included questions on regular use of folic acid supplements before or during pregnancy and regular use of multivitamin supplements before or during pregnancy. Information on dose, frequency, or exact duration of folic acid use was not recorded. However, prenatal folic acid tablets used in Norway during the study period contained 0.4 mg of folic acid, while most multivitamin supplements contained 0.1–0.4 mg of folic acid. Furthermore, official 1998 guidelines state that all women who may become pregnant should take a daily folic acid supplement of 0.4 mg from 1 month before pregnancy through the first 2–3 months of pregnancy to reduce the risk of neural tube defects (26).

In this study, vitamin supplement use was classified as use of folic acid and/or multivitamin supplements before or any time during pregnancy. We also categorized the women by time period of vitamin use (i.e., both before and during pregnancy, during pregnancy only, and before pregnancy only) and by supplement type (i.e., multivitamin alone, folic acid alone, and both folic acid and multivitamin).

Placental abruption

Placental abruption was defined as the premature separation of a normally situated placenta and was recorded by a check box or open text coded according to the *International Statistical Classification of Diseases and Related Health Problems*, Tenth Revision. Placental abruption is usually a clinical diagnosis based on prenatal signs and symptoms, such as antepartum hemorrhage, uterine pain or tenderness, or fetal distress. However, according to current practice in Norwegian hospitals, the diagnostic criteria are extended to include retro-placental impression or blood clot behind the placenta. Because delivery nearly always takes place on the same day as abruption, we used gestational age at delivery as an approximation of the time of the abruption. If a woman experienced an abruption and delivered before gestational week 37, we defined her abruption as preterm abruption.

Other variables

Gestational age, in weeks, was based on second-trimester ultrasound measurements (96.5 percent). If the ultrasound measurement was missing, gestational age was estimated on the basis of the last reported menstrual period (2.8 percent). Gestational age information was missing for 1,984 (0.7 percent) of the deliveries. We also abstracted data on maternal age (<25, 25–34, >34 years), marital status (married, cohabiting, single, or other), parity (0, 1, 2, >2 births), smoking habits (nonsmoker, smoker), pregestational diabetes (no/yes), chronic hypertension (no/yes), and preeclampsia (no/yes). Maternal smoking was recorded by check boxes for daily and occasionally smoking at the beginning of and at the end of pregnancy. Maternal diseases and preeclampsia were recorded by check boxes or open text coded according to *International Statistical Classification of Diseases and Related Health Problems*, Tenth Revision codes.

Statistical analyses

All statistical analyses were carried out by using SAS (Statistical Analysis System) version 9.1 software for Windows (SAS Institute, Inc., Cary, North Carolina). All p values were two sided, and values below 0.05 were considered statistically significant. The associations between vitamin supplement use and placental abruption were examined by using logistic regression models. Supplement use was incorporated in the models as a binary variable (no vitamin...
use/vitamin use), or as a categorical variable (i.e., no vitamin use, use both before and during pregnancy, use during pregnancy only, use before pregnancy only), or as an ordered categorical variable according to four increasing folic acid doses (i.e., no vitamin use, multivitamin use alone, folic acid use alone, both folic acid and multivitamin use), with no use of folic acid or multivitamin supplements as the reference category. We calculated both crude and adjusted odds ratios with 95 percent confidence intervals. Adjustment variables were maternal age, marital status, parity, smoking, pregestational diabetes, and chronic hypertension. In addition, correlation between pregnancy outcomes for the same woman was taken into account by using generalized estimating equations methodology, assuming an exchangeable working correlation structure (27).

A test for trend over folic acid intake was obtained by including the ordered categorical variable with combinations of folic acid and multivitamin use as a continuous variable, using the chi-square test in simple models and the z test in generalized estimating equations models. A test for effect modification of the vitamin-abruption association by smoking and preeclampsia was obtained by including product

TABLE 1. Vitamin supplement use by mothers delivering 280,127 singletons recorded in the Medical Birth Registry of Norway, 1999–2004, according to maternal characteristics

<table>
<thead>
<tr>
<th>Maternal characteristic</th>
<th>No.</th>
<th>Vitamin supplement use (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Any</td>
</tr>
<tr>
<td>All mothers</td>
<td>280,127</td>
<td>44.4</td>
</tr>
<tr>
<td>Age at delivery (years)†</td>
<td></td>
<td></td>
</tr>
<tr>
<td><25</td>
<td>49,920</td>
<td>36.9</td>
</tr>
<tr>
<td>25–34</td>
<td>188,468</td>
<td>45.9</td>
</tr>
<tr>
<td>>34</td>
<td>41,738</td>
<td>46.6</td>
</tr>
<tr>
<td>Marital status‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>17,873</td>
<td>34.3</td>
</tr>
<tr>
<td>Cohabiting</td>
<td>121,453</td>
<td>44.5</td>
</tr>
<tr>
<td>Married</td>
<td>136,957</td>
<td>45.7</td>
</tr>
<tr>
<td>Parity§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>112,251</td>
<td>49.8</td>
</tr>
<tr>
<td>1</td>
<td>100,880</td>
<td>43.3</td>
</tr>
<tr>
<td>2</td>
<td>47,434</td>
<td>38.5</td>
</tr>
<tr>
<td>>2</td>
<td>19,473</td>
<td>33.2</td>
</tr>
<tr>
<td>Smoking¶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>194,318</td>
<td>47.6</td>
</tr>
<tr>
<td>Yes</td>
<td>58,029</td>
<td>40.1</td>
</tr>
<tr>
<td>Pregestational diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>278,389</td>
<td>44.4</td>
</tr>
<tr>
<td>Yes</td>
<td>1,738</td>
<td>40.7</td>
</tr>
<tr>
<td>Chronic hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>278,310</td>
<td>44.4</td>
</tr>
<tr>
<td>Yes</td>
<td>1,817</td>
<td>38.3</td>
</tr>
<tr>
<td>Preeclampsia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>269,217</td>
<td>44.5</td>
</tr>
<tr>
<td>Yes</td>
<td>10,910</td>
<td>42.6</td>
</tr>
<tr>
<td>Placental abruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>279,057</td>
<td>44.4</td>
</tr>
<tr>
<td>Yes</td>
<td>1,070</td>
<td>36.4</td>
</tr>
</tbody>
</table>

* Refers to folic acid and/or multivitamin supplement use.
† Information on maternal age was missing for 1 delivery.
‡ Information on marital status was missing for 3,844 deliveries.
§ Information on parity was missing for 89 deliveries.
¶ Information on smoking was missing for 27,780 deliveries.
terms for vitamin use and the two variables in adjusted
generalized estimating equations models, using the Wald
test. Preterm abruption (<37 weeks of gestation) was ana-
lyzed as a separate outcome in addition to the overall
analysis. We used Cox regression analysis with a binary
time-varying covariate (<37, ≥37 weeks) to test whether
risk ratios for vitamin use were significantly stronger for
preterm than for term abruption.

RESULTS

Maternal characteristics among the 280,127 singleton
deliveries recorded from 1999 through 2004 are shown in
table 1. Mean maternal age at delivery was 29.2 (standard
deviation, 5.0) years (range: 13–53 years). Almost 95 per-
cent of the mothers were married or cohabiting, and 40
percent delivered for the first time. Twenty-three percent
of the pregnant women smoked daily or occasionally during
the pregnancy. About 1 percent of the women had pregesta-
tional diabetes or chronic hypertension, and almost 4 per-
cent developed preeclampsia.

The overall reported use of folic acid and/or multivitamin
supplements was 44.4 percent; 15.9 percent of the women
used the vitamin supplements both before and during preg-
nancy, 27.3 percent used the supplements during pregnancy
only, and 1.3 percent used them before pregnancy only
(table 1). Supplement use was generally more frequent
among older women and among mothers who were married
or cohabiting, had lower parity, did not smoke, and did
not have pregestational diabetes or chronic hypertension
(table 1).

Placental abruption was reported for 0.38 percent of the
deliveries (n = 1,070; table 1). About one half of the abrup-
tions were preterm (<37 weeks of gestation, n = 501). A crude
comparison of gestation-specific abruption rates showed that
placental abruption was less common among women report-
ing folic acid and/or multivitamin use than among nonusers,
especially when the abruption occurred before 37 weeks of
gestation (figure 1).

Multiple logistic regression analyses showed that those
who had taken folic acid and/or multivitamin supplements
before or any time during the pregnancy had a 26 percent
reduction in the risk of overall placental abruption (adjusted
odds ratio (OR) = 0.74, 95 percent confidence interval
(CI): 0.65, 0.84) and a 40 percent reduction in the risk of
preterm abruption (adjusted OR = 0.60, 95 percent CI: 0.49,
0.73), after adjustment for maternal age, marital status,
parity, smoking, pregestational diabetes, and chronic hyper-
tension (table 2). Exclusion of women who developed
preeclampsia did not alter the overall effect estimates
(OR = 0.75, 95 percent CI: 0.65, 0.86). Further analyses
showed that the association between vitamin use and pla-
cental abruption was slightly stronger for women who
smoked during pregnancy (OR = 0.67, 95 percent CI:
0.53, 0.85) than for those who did not (OR = 0.78, 95
percent CI: 0.67, 0.92). Tests for effect modification of the
vitamin-abruption association by smoking and preeclampsia
were not statistically significant (p = 0.17 and p = 0.69,
respectively).

Examining effects of potential confounders revealed that
smoking was a strong determinant of placental abruption
(OR = 1.82, 95 percent CI: 1.58, 2.09). However, in the
present study, smoking or other adjustment variables had
little or no impact on the association between vitamin sup-
plement use and placental abruption.

We also investigated placental abruption in relation to
time period of folic acid and/or multivitamin supplement
intake: before and during pregnancy, during pregnancy only,
and before pregnancy only (table 2). The odds ratios did not
change by time period of use for either placental abruption
overall or preterm abruption.

The relation of combinations of folic acid and multiva-
timin supplement use with placental abruption are presented
in table 3. Because the strength of the associations did not
change markedly by time period of supplement use and the
number of cases in subgroups was limited, results for overall
use are presented for each of the vitamin combinations.
Adjusted regression analyses showed that the risk of overall
placental abruption was reduced with the use of multivita-
min and folic acid supplements (adjusted OR = 0.72 and
adjusted OR = 0.81, respectively). The strongest risk re-
duction was found for women using both multivitamin
and folic acid supplements (adjusted OR = 0.68, 95 percent
CI: 0.56, 0.83), although confidence intervals overlapped
across the subgroups.

Finally, we examined whether any use of folic acid and/or
multivitamin supplements was more protective against pre-
term abruption than against term abruption. We found that
both crude and adjusted relative risks of vitamin use for
preterm and term abruption were significantly different (test
for nonproportional hazards: p = 0.009 and p = 0.015,
respectively).
DISCUSSION

We examined the effects of vitamin supplement use on placental abruption among 280,127 singleton deliveries in Norway during a 6-year period. Our data showed that women who had used folic acid or multivitamin supplements during pregnancy had a significantly lower risk of developing placental abruption than women who had not used such supplements. Our data also showed that this association was stronger when the abruption was preterm (<37 weeks of gestation).

The present study was based on data from a population-based registry and comprised separate information on folic acid and multivitamin supplement intake. The large sample size and the standardized collection of data allowed precise effect estimates overall as well as in subgroups. Furthermore, there was no mandatory fortification of foods with folic acid in Norway at the time of this study that could have affected our results. Nevertheless, findings from the present study should be interpreted with some caution. Information on vitamin supplement use for women with and without abruption was collected during hospitalization at the time of birth and not during the earlier stages of pregnancy. In addition, some hospitals may have underreported or provided incorrect information on the supplement type or on the timing of supplement use. Furthermore, our study did

<table>
<thead>
<tr>
<th>Vitamin supplement use*</th>
<th>No.</th>
<th>%</th>
<th>Crude OR†,§</th>
<th>95% CI†</th>
<th>Adjusted OR¶</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No use#</td>
<td>155,728</td>
<td>681</td>
<td>0.44</td>
<td>1</td>
<td>1</td>
<td>340</td>
</tr>
<tr>
<td>Any use</td>
<td>124,399</td>
<td>389</td>
<td>0.31</td>
<td>0.71</td>
<td>0.63, 0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>Use before and during pregnancy</td>
<td>44,523</td>
<td>141</td>
<td>0.32</td>
<td>0.72</td>
<td>0.60, 0.87</td>
<td>0.76</td>
</tr>
<tr>
<td>Use during pregnancy only</td>
<td>76,350</td>
<td>236</td>
<td>0.31</td>
<td>0.71</td>
<td>0.61, 0.82</td>
<td>0.73</td>
</tr>
<tr>
<td>Use before pregnancy only</td>
<td>3,526</td>
<td>12</td>
<td>0.34</td>
<td>0.78</td>
<td>0.44, 1.38</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* Refers to folic acid and/or multivitamin supplement use.
† Excluded were 1,984 births (1,968 nonabruptions and 16 abruptions) because data on gestational age were missing.
‡ OR, odds ratio; CI, confidence interval.
§ Calculated by using simple logistic regression models.
¶ Calculated by using generalized estimating equations for logistic regression models, adjusted for maternal age, marital status, parity, smoking, pregestational diabetes, and chronic hypertension.
Reference category.

<table>
<thead>
<tr>
<th>Vitamin supplement use*</th>
<th>No.</th>
<th>%</th>
<th>Crude OR†,§</th>
<th>95% CI†</th>
<th>Adjusted OR¶</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No use#</td>
<td>155,728</td>
<td>681</td>
<td>0.44</td>
<td>1</td>
<td>1</td>
<td>340</td>
</tr>
<tr>
<td>Any use</td>
<td>124,399</td>
<td>389</td>
<td>0.31</td>
<td>0.71</td>
<td>0.63, 0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>Use before and during pregnancy</td>
<td>44,523</td>
<td>141</td>
<td>0.32</td>
<td>0.72</td>
<td>0.60, 0.87</td>
<td>0.76</td>
</tr>
<tr>
<td>Use during pregnancy only</td>
<td>76,350</td>
<td>236</td>
<td>0.31</td>
<td>0.71</td>
<td>0.61, 0.82</td>
<td>0.73</td>
</tr>
<tr>
<td>Use before pregnancy only</td>
<td>3,526</td>
<td>12</td>
<td>0.34</td>
<td>0.78</td>
<td>0.44, 1.38</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* Refers to folic acid and/or multivitamin supplement use.
† Excluded were 1,984 births (1,968 nonabruptions and 16 abruptions) because data on gestational age were missing.
‡ OR, odds ratio; CI, confidence interval.
§ Calculated by using simple logistic regression models.
¶ Calculated by using generalized estimating equations for logistic regression models, adjusted for maternal age, marital status, parity, smoking, pregestational diabetes, and chronic hypertension.
Reference category.

<table>
<thead>
<tr>
<th>Vitamin supplement use*</th>
<th>No.</th>
<th>%</th>
<th>Crude OR†,§</th>
<th>95% CI†</th>
<th>Adjusted OR¶</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No use#</td>
<td>155,728</td>
<td>681</td>
<td>0.44</td>
<td>1</td>
<td>1</td>
<td>340</td>
</tr>
<tr>
<td>Any use</td>
<td>124,399</td>
<td>389</td>
<td>0.31</td>
<td>0.71</td>
<td>0.63, 0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>Use before and during pregnancy</td>
<td>44,523</td>
<td>141</td>
<td>0.32</td>
<td>0.72</td>
<td>0.60, 0.87</td>
<td>0.76</td>
</tr>
<tr>
<td>Use during pregnancy only</td>
<td>76,350</td>
<td>236</td>
<td>0.31</td>
<td>0.71</td>
<td>0.61, 0.82</td>
<td>0.73</td>
</tr>
<tr>
<td>Use before pregnancy only</td>
<td>3,526</td>
<td>12</td>
<td>0.34</td>
<td>0.78</td>
<td>0.44, 1.38</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* Refers to use before or any time during pregnancy.
† Excluded were 1,984 births (1,968 nonabruptions and 16 abruptions) because data on gestational age were missing.
‡ OR, odds ratio; CI, confidence interval.
§ Calculated by using simple logistic regression models.
¶ Calculated by using generalized estimating equations for logistic regression models, adjusted for maternal age, marital status, parity, smoking, pregestational diabetes, and chronic hypertension.
Reference category.

** p for trend (chi-square test in simple models and z test in generalized estimating equations models).

Am J Epidemiol 2008;167:867–874
not include information on dose, frequency, or exact duration of folic acid and multivitamin use. Such data would have led to more complete analysis and added value to the interpretation of the results.

The prevalence of placental abruption in our study (0.38 percent) is lower than that reported in the United States and Canada (28, 29) but is similar to that found in Sweden and Finland (30–32). A lower abruption rate found in the Nordic countries compared with that observed in North America could reflect a variation in the diagnostic criteria used, characteristics of the study population, or variation in the coding of placental abruption. Unfortunately, information on placental abruption in the Medical Birth Registry of Norway was not validated against clinical charts at the time of this study. Thus, we do not know whether the report of placental abruption was subject to some underreporting or other misclassification. In any case, we do not suspect that such misclassification differed between vitamin groups.

Deliveries for which vitamin use information was missing were excluded from our study. This exclusion may be a problem, because subjects who were included may differ in some systematic way from those who were not. We evaluated the possibility of bias due to missing data by comparing distributions of maternal age, marital status, parity, smoking, pregestational diabetes, chronic hypertension, and preeclampsia for women with and without abruption (table 4). We found essentially no differences between the subjects included and excluded regarding either the abruption or nonabruption group, suggesting that a systematic difference was not present.

Another concern in observational studies is unmeasured confounding. Although we adjusted for several potential

| TABLE 4. Characteristics of women with and without data on vitamin use for those with or without abruption for singleton births recorded in the Medical Birth Registry of Norway, 1999–2004 |
|---------------------------------|----------------|----------------|----------------|----------------|
| Characteristic | Nonabruption | Abruption |
| | Vitamin data missing | Vitamin data provided | Vitamin data missing | Vitamin data provided |
| No. | % | No. | % | No. | % | No. | % |
| Total | 55,569 100.0 | 279,057 100.0 | 403 100.0 | 1,070 100.0 |
| Age at delivery (years)* | 9,412 16.9 | 49,758 17.8 | 63 15.6 | 162 15.1 |
| <$25 | 36,828 66.3 | 187,755 67.3 | 271 67.2 | 713 66.6 |
| >34 | 9,327 16.8 | 41,543 14.9 | 69 17.1 | 195 18.2 |
| Marital status† | Single 3,579 6.8 | 17,795 6.5 | 44 11.5 | 78 7.4 |
| Cohabiting | 20,505 39.0 | 120,978 44.0 | 144 37.8 | 475 44.8 |
| Married | 28,534 54.2 | 136,449 49.6 | 193 50.7 | 508 47.9 |
| Parity‡ | 0 23,123 41.6 | 111,842 40.1 | 160 39.8 | 409 38.3 |
| | 1 18,604 33.5 | 100,535 36.0 | 136 33.8 | 345 32.3 |
| | 2 9,220 16.6 | 47,241 16.9 | 64 15.9 | 193 18.1 |
| | >2 4,590 8.3 | 19,352 6.9 | 42 10.4 | 121 11.3 |
| Smoking§ | No 29,366 79.2 | 193,697 77.1 | 184 72.2 | 621 64.6 |
| | Yes 7,697 20.8 | 57,689 22.9 | 71 27.8 | 340 35.4 |
| Pregestational diabetes | No 55,177 99.3 | 277,334 99.4 | 396 98.3 | 1,055 98.6 |
| | Yes 392 0.7 | 1,723 0.6 | 7 1.7 | 15 1.4 |
| Chronic hypertension | No 55,395 99.7 | 277,256 99.4 | 398 98.8 | 1,054 98.5 |
| | Yes 174 0.3 | 1,801 0.6 | 5 1.2 | 16 1.5 |
| Preeclampsia | No 53,113 95.6 | 268,263 96.1 | 364 90.3 | 954 89.2 |
| | Yes 2,456 4.4 | 10,794 3.9 | 39 9.7 | 116 10.8 |

* Information on maternal age was missing for 3 nonabruptions.
† Information on marital status was missing for 6,786 nonabruptions and 31 abruptions.
‡ Information on parity was missing for 119 nonabruptions and 3 abruptions.
§ Information on smoking habits was missing for 46,177 nonabruptions and 257 abruptions.
confounders, including smoking, the observed associations could be partially explained by intake of other dietary micronutrients, socioeconomic factors, or other health behaviors related to supplement use. However, adjustment had little impact on the association between vitamin supplement use and placental abruption, suggesting that unknown or unmeasured confounding factors would have to be strongly related to both vitamin use and placental abruption to produce the observed results.

Body mass index has been shown to be an important effect modifier of the association between periconceptional multivitamin use and preeclampsia (6). Unfortunately, we did not have information on maternal prepregnancy weight or body mass index to examine this possibility with respect to abruption.

To our knowledge, ours is the first large study to assess the association between supplemental vitamin intake and placental abruption. Although some intervention trials involving folic acid or other micronutrients have been conducted for placental abruption, they were small and provided no conclusive evidence (15, 33, 34). Nevertheless, our finding of a risk reduction with folic acid supplement use is consistent with results from a meta-analysis (35) and other reports (17–20) showing that maternal folate deficiency and elevated plasma homocysteine are associated with increased risk of placental abruption. Our results, however, disagree with those from a recent report from Canada, which showed that food fortification with folic acid had no impact on the prevalence of placental abruption (29). Some (van der Molen et al. (36), Nurk et al. 37)), but not all (Jaaskelainen et al. (38)), studies have also reported an association between decidual vasculopathy, including placental abruption, and a C-to-T substitution (677C→T polymorphism) in the methylenetetrahydrofolate reductase gene. A relation with the 677C→T polymorphism may support our findings, because TT carriers tend to have lower serum folate and higher homocysteine concentrations than those with the CT or CC genotype (39).

In our study, associations between vitamin supplement use and placental abruption were strongest for women using both folic acid and multivitamin supplements (OR = 0.68), followed by multivitamins alone (OR = 0.72) and folic acid alone (OR = 0.81). Because confidence intervals were overlapping, we could not draw any firm conclusion from these estimates, although they suggest that vitamins other than folic acid may provide additional benefit. Earlier findings of significantly lower concentrations of vitamins A, B₆, B₁₂, and E in women with abruption support this possibility (12, 17, 18).

Surprisingly, effect estimates were similar for women who reported vitamin use both before and during pregnancy, during pregnancy only, or before pregnancy only. An explanation for this finding may be that the time categories of vitamin supplement use largely overlapped. The analysis of use before pregnancy only was based on a limited number of abruption events (n = 12), however, and results from this subgroup analysis should therefore not be emphasized.

Effects of vitamin use on placental abruption appeared to be stronger for preterm abruption than for overall abruption. One could argue that women who delivered early did not have the opportunity to take vitamins in time, thus resulting in an artificially larger reduction in the risk of preterm abruption compared with that of term abruption (40). However, in Norway, nearly all users of folic-acid-containing supplements start supplementation during the first 4 months of pregnancy (26), which is before any abruption was recognized in our study. In addition, we found that women who started use even before pregnancy and continued use during pregnancy had the same risk of preterm abruption as those who started supplementation during pregnancy. Our results of a stronger association of vitamin use with preterm abruption may therefore suggest a different etiology and a different pathogenesis of abruptions before term in comparison with those at term.

In conclusion, this is the first large study known to examine an association of supplemental folic acid and multivitamin use with placental abruption, comprising 1,070 abruptions among 280,127 singleton deliveries. Our study suggests that women who use folic acid and multivitamins during pregnancy are significantly less likely than nonusers to develop placental abruption. Our findings also suggest that vitamins other than folic acid may have a role in the etiology of abruption.

ACKNOWLEDGMENTS

The study was funded by the University of Bergen, Norway, and the Norwegian Research Council (grant 166148/V50).

The authors are indebted to Ane Johannessen, Mette Christophersen Tollanes, and Astanand Jugessur for their valuable comments on previous versions of this manuscript. Conflict of interest: none declared.

REFERENCES