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The rationality principle postulates that decision-makers always choose the
best action available to them. It underlies most modern theories of decision-
making. The principle does not take into account the difficulty of finding the
best option. Here, we propose that computational complexity theory (CCT)
provides a framework for defining and quantifying the difficulty of decisions.We
review evidence showing that human decision-making is affected by compu-
tational complexity. Building on this evidence, we argue that most models of
decision-making, and metacognition, are intractable from a computational
perspective. To be plausible, future theories of decision-making will need to
take into account both the resources required for implementing the computa-
tions implied by the theory, and the resource constraints imposed on the
decision-maker by biology.

The Rationality Principle
Most modern theories of decision-making, including rational choice theory [1–4], game theory
[5], prospect theory [6], as well as many learning models [7], are based on the rationality
principle (see Glossary): decision-makers are assumed to always choose the best action
available to them [8]. Even theories of bounded rationality [9–14] assume that decision-makers
optimise, albeit within constraints. These theories do not take into account the difficulty of
identifying the best action. A decision situation in which the decision-maker must choose from
two available options is not distinguished from one with 2100 options. Some approaches have
proposed that, when faced with difficult decisions, humans use heuristics to make a choice
[10,15,16]. However, these approaches treat difficulty only informally. More recent theories,
such as bounded optimality [17,18], resource-rational analysis [19], and computational ratio-
nality [20,21], address the issue of decision difficulty by considering the computational costs of
decisions. These theories also commit to the rationality principle (optimality), assuming that
decision-makers optimise at the level of computation, or at least approximate optimality.
However, many key issues remain unaddressed. Specifically, it is an open question which
dimensions of decision difficulty (computational costs) are relevant to human decision-making,
how to quantify these dimensions, or how the brain allocates resources to the decision-making
process.

In this article, we suggest that CCT [22–24] provides a theoretical framework to render precise
what it means for a decision to be difficult. Applying concepts from CCT to decision theory, we
show that many existingmodels of decision-making are implausible; the computations required
to implement those models are intractable in the sense that they would require computational
resources beyond those available to decision-makers. We propose that future theories of
decision-making will need to take into account both the resources required for implementing
the computations implied by a theory, and the resource constraints imposed on the decision-
maker by biology. Such theories will not only be necessary to develop amore plausible account
of human decision-making, but also enable more powerful artificial intelligence.

Trends
New research showing that the quality
of human decision-making decreases
with the computational complexity of
decision problems challenges the core
assumption of most models of deci-
sion-making: that decision-makers
always optimise.

CCT can help explain behavioural
biases, such as choice overload and
negative elasticity of labour supply.

Integrating CCT with decision theory
and neurobiology promises to lay the
foundations of a more realistic theory
of decision-making and
metacognition.
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Are Current Theories of Decision-Making Feasible?
Consider the example of grocery shopping, a decision task that many people encounter
regularly in their every-day life. Theories of choice based on the rationality principle would
assume that, from among all goods available in the supermarket, the decision-maker chooses
the basket of goods with the highest total utility to them subject to a budget constraint. Let us
assume that the decision-maker goes shopping in a supermarket that only stocks 100 different
goods. The number of combinations of goods that the decision-maker can form from those 100
goods is approximately 1030. To choose the combination with the highest total utility, the
decision-maker would have to check the budget constraint for all of those combinations and
find the combination with the highest utility from within those sets within the budget constraint.
This computation is intractable even for the world’s fastest supercomputer: it would quickly run
out of memory (and, if it did have enough memory, the computation would take millions of
years). If the supermarket stocked 1000 different goods, the number of possible combinations
would be approximately 10301, approximately 10220 times more than the estimated number of
atoms in the Universe. The number of different goods stocked by an average US supermarket is
approximately 40 000, which means that the number of choice sets available to the decision-
maker is effectively infinite.

This thought experiment demonstrates in an informal way that current theories of decision-
making based on the rationality principle, or optimisation, are infeasible for most decision
situations. One may object that this is not the way people shop, but that only addresses the
criticism that the theory does not explain what people literally do. Our objection is deeper:
people cannot possibly optimise in this example: identifying the best option in most situations is
not feasible even in principle. It is not sufficient to argue that people enter a grocery store with a
predetermined shopping list: for this list to be consistent with the rationality principle, an
intractable optimisation problem would have to be solved in the first place. Of course, how
to best formalize feasibility remains an open question. In the next section, we suggest that CCT
can provide the foundations for a quantitative framework to make the notion of decision
difficulty and feasibility more precise [22–24].

Computational Complexity
CCT is concernedwithcomputable problems [25,26]. A problem is considered computable if it
can be solved in principle by a computing device, that is, a device that takes as input any precise
mathematical statement and, after executing a finite number of steps (algorithm), decides
whether the statement is true or false. CCT is concerned with the computational resources
required to solve computational problems. The computational complexity of a problem (that
is, an input–output mapping) is defined in terms of the growth of computational resources as a
function of the size of the input (number and length of variables) to any algorithm computing a
solution [24]. Knowing how computational resource requirements increase provides insights into
the inherent complexity of the problem. The resourcesmost commonly studied are time (number
of computational operations), referred to as time complexity, and space (memory), referred to
as space complexity. Here, we are primarily concerned with the former.

Four classes of problem relating to time complexity have been of particular interest to computer
scientists. The first class is referred to as P and contains all (decision) problems that can be
solved in an amount of time that grows as a polynomial of the input size, using a deterministic,
sequential computer, such as a Turingmachine [24]. This means that, for these problems, there
exist algorithms whose running time can be upper-bounded by any polynomial function of its
input size. Such algorithms are called efficient. In practical terms, this means that these
problems can typically be solved within a reasonable amount of time. Examples of class P
include sorting of arrays, and basic mathematical operations, such as multiplication and (non-
integer) linear programming.

Glossary
3-SAT problem: similar to the
satisfiability problem but with the
number of literals in each clause
limited to three at the most.
Algorithm: a well-defined
computational procedure (sequence
of computational steps) that takes a
set of values as input and produces
some set of values as output.
Approximation algorithm: an
inexact algorithm with an
approximation guarantee.
Complexity class: a set of
computational problems with similar
computational complexity (e.g., P,
NP, or NP-complete).
Computable problem: a problem is
considered computable if it can be
solved in principle by a computing
device.
Computational complexity: the
(worst-case) growth of computational
resources (e.g., time or memory)
required for solving a computational
problem as a function of the size of
the input of the problem.
Computational complexity theory:
mathematical framework for
classifying computational problems
according to their inherent difficulty.
Efficient: an algorithm is called
efficient if its running time can be
upper-bounded by any polynomial
function of its input size.
Heuristic: an inexact algorithm that
does not have an approximation
guarantee.
Instance complexity: the
computational resources required for
solving particular instances of a
computational problem.
Knapsack problem: a problem to
find from a set of items with given
values and weights, the subset that
maximises total value subject to a
total weight constraint.
NP: the class of all (decision)
problems for which a given solution
can be verified in polynomial time
(but for which no polynomial-time
algorithm is known to find the
solution).
NP-complete: the class of all
(decision) problems within NP that
are at least as hard as all other
problems in NP.
NP-hard: the class of all problems
that are at least as hard as the
hardest problems in NP.
P: the class of all (decision) problems
that can be solved in an amount of
time that grows as a polynomial of
the input size.
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Rationality principle: the principle
that decision-makers are assumed to
always choose the best action
available to them.
Sahni-k: a measure of instance
complexity for the 0–1 knapsack
problem (optimisation version).
Sahni-k measures the number of
items (k) that already have to be put
in the solution before the greedy
algorithm can be used on the
remaining items to obtain the
optimum. It is proportional to
computational time and memory
required to compute the solution of
an instance.
Space complexity: the (worst-case)
growth of memory required for
solving a computational problem as a
function of the size of the input of
the problem.
Time complexity: the (worst-case)
growth of time required for solving a
computational problem as a function
of the size of the input of the
problem.
Tractable: a computational problem
is called tractable if it can be solved
by an efficient algorithm.

The second class,NP, comprises all those problems for which a given solution can be verified in
polynomial time but for which no polynomial-time algorithm is known to find the solution. For
this class, no efficient algorithms are known [27]. In practical terms, this means that, while a
given solution can be verified quickly, finding this solution might be intractable. Most practical
computational problems belong to this class [28]. Problems in class P are often referred to as
tractable problems, while problems in class NP are called intractable, which means that the
computational resources required (e.g., time) to solve these problems are often beyond those
available [28]. The class containing the hardest problems in NP is called NP-complete
[27,29,30]. Examples of this class include the knapsack problem, the travelling salesman
problem, and the satisfiability problem. There are thousands of other problems of practical
relevance that have been shown to be NP-complete [28].

Finally, the class NP-hard contains all problems that are at least as hard as the hardest
problems in class NP but that are not necessarily contained in class NP [31]. That is, many
problems in this class are harder than the hardest problems in NP. For these problems, the time
required to solve instances of the problem often increases exponentially in instance size. The
shopping problem in the thought experiment above is NP-hard [technically, it is an instance of
the 0–1 knapsack (optimisation) problem [32]]. Many models of cognition are also based on
computational problems that are NP-hard [33].

To illustrate the distinction between polynomial (which applies to problems in class P) and
exponential growth of resources (which applies to some problems in class NP-hard), we
consider the following example. Suppose we have two problems whose solutions are
deterministic functions of a set of numbers (input). For one of those problems, there exists
an algorithm whose resources (e.g., compute time) grow no worse than a quadratic function of
the size of the input. If we increased the size of input tenfold from two to 20, the resource
requirement would grow from 22 to 202, that is, a hundredfold increase (102). For the other
problem, suppose the resources of the best-known algorithm grow as an exponential function
of the size of input. In this case, an increase in the size of the set from two to 20 would increase
resource requirements from 22 to 220, a factor of 262,144 (106). This example makes apparent
that, although the distinction between polynomial and exponential growth of resources might
appear artificial for small inputs, the difference quickly becomes material.

Empirically, the quantitative differences in computational resources between the classes P [331_TD$DIFF]and
NP are so vast that they can also be considered qualitative differences. It is widely agreed that
there are deep structural differences between problems of those classes. Yet, at this stage, it is
still an open question whether the classes P and NP are indeed different or the same (Box 1). If
the latter turned out to be the case, then we could expect to find efficient algorithms for NP
problems, including for tasks such as breaking modern encryption algorithms. However, most
computer scientists believe that P does not equal NP; that is, they believe that there are
qualitative differences between those classes of problem, which are associated with significant
quantitative differences in computational resource requirements [34,35].

Although complexity classes are defined in terms of asymptotic worst-case behaviour [28],
there are enormous differences in computational requirements between instances of the same
problem. For example, sorting an array of one million integers that are completely out of order
might take substantially longer than sorting an array that is already in the desired order. More
recently, therefore, interest has focused on understanding the complexity of individual instan-
ces of problems, particularly, how instance complexity is related to particular properties of
instances (Box 1). It has been shown for some computational problems that instance com-
plexity is related to a small number (two–three) of observable instance properties. In the [332_TD$DIFF]3-SAT
problem, for example, instance complexity has been associated with the ratio of clauses

Trends in Cognitive Sciences, December 2017, Vol. 21, No. 12 919



(statements) to variables (blanks in the statements) of an instance [36]. The study of instance
complexity may provemore important for the understanding of human behaviour than the study
of complexity classes, although the two are intricately related (Box 1). To summarise, CCT
shows that computational problems differ substantially in their computational resource require-
ments and provides a useful framework to classify these problems according to their resource
requirements.

Computational Complexity and Decision Theory
What are the implications of CCT for the decision sciences? Most modern theories of
decision-making, implicitly or explicitly, take a computational approach [33,37]. They repre-
sent behaviour as the outcome of computational problems. Rational choice theory, for
example, interprets behaviour as the outcome of an optimisation problem (maximisation
relative to a set of preferences or utilities) [1,4,8]. However, these theories do not explain how
decision-makers implement the optimisation problem or, indeed, whether finding the optimal
solution is feasible even in principle [33]. As our thought experiment above shows, optimisa-
tion is often computationally intractable in the sense that the computational resources
required to compute the optimum by far exceed the resources available to decision-makers
[38]. This means that expected utility maximisation may be intractable from a computational
perspective in some, and possibly many, cases [39]. The same is true for Bayesian belief
updating, which is NP-hard in many cases [40]. Satisficing, where decision-makers do not
compute the highest-utility solution but keep looking for an option until they have found one
that achieves at least a given utility level, was proposed as a heuristic in response to cognitive
limitations of decision-makers [41]. It can be regarded as a sequence of instances of the
knapsack (decision) problem, which is NP-complete. Indeed, many models of human deci-
sion-making require computational resources, as identified by CCT, that are well beyond
those available to decision-makers, thus rendering these models implausible from a compu-
tational point of view [33]. The same has been shown for models at lower levels of cognition,
particularly visual perception [42,43].

Box 1. Does P Equal NP?

It has been shown that the quantitative gaps between computational resource requirements of problems in classes P
and NP are so vast that they can also be considered qualitative gaps [74]. These gaps are exploited in many areas of
everyday life. While multiplication of two integers is in class P, the reverse operation (factoring an integer into primes) is in
class NP. This gap between the resource requirements of multiplication and factoring is the basis for most modern
cryptography. While it is the case that P is a subset of [328_TD$DIFF]NP, by definition, it is still an open question whether P is a proper
subset of NP (i.e., is strict or not), which is referred to as the ‘Does P equal NP?’ problem [27]. While most computer
scientists believe that the inclusion is strict, that is, P 6¼NP, nobody has been able to prove it [34,35]. If P does not equal
NP, then there is no hope that we will ever be able to find efficient algorithms for NP problems.

Recently, several complexity classes, including NP, have been characterised independently of the notions of comput-
ing, algorithm or Turingmachine, purely in terms of the type of logic needed to describe them. This new branch of CCT is
referred to as ‘descriptive complexity’ and draws heavily on finite model theory [75–79]. Its results provide additional
support to the conjecture that there are inherent structural differences between the different complexity classes.

One criticism oftenmounted against complexity classes P and NP is that they are defined in terms of how computational
resources grow as a function of input size in the worst case. A configuration of a problem with the same input size can
have many different values of inputs, referred to as an instance of the problem. The computational resource require-
ments can vary dramatically across instances, even if they all have the same input size. For example, sorting an array of n
integers that is already sorted will typically require fewer resources than sorting an array of the same length but that has
maximum entropy (i.e., is perfectly random). Thus, computational resource requirements for particular instances of NP
problems can be lower than those for particular instances of P problems. A branch of computational complexity theory
examines how resource requirements behave as a function of basic properties of instances. The latter is referred to as
‘instance complexity’ [36,78,79]. It provides a finer-grained measure of complexity than do complexity classes and
might be more useful for the study of human decision-making than are complexity classes.
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Several challengesmight be raised in response to this claim. First, many decision scientists take
the stance that models of decision-making describe observed behaviour but have no ambition
to explain it [44,45]. In this view, the rationality principle, on which many of these models are
based, is an assumption through which behaviour is interpreted and not a mechanistic
description of the decision-making process. Decision-makers are merely assumed to behave
‘as if’ they solved an optimisation problem [45] (Box 2).

This includes many psychological models of choice. Prospect theory is a prominent example
[6]. It summarises, through maximisation of a single-dimensional value function, several
properties of choice under uncertainty including the tendency to frame choices in terms of
a manipulable reference point, the creation of the perception of gains (outcomes above the
reference point) and losses (outcomes below the reference point), and the overweighing of
small probabilities of large losses. The theory expresses features of observed human choices
under uncertainty in terms of optimisation of a value function that exhibits all these features.
Prospect theory is also an ‘as if’model: it does not claim that decision-makers literally compute
the optimisation function it postulates.

Such models can have a valuable role in characterising the computations involved in decision-
making, often referred to as ‘computational models’ in the tradition of Marr [46]. However, while
‘as if’ models do not make any explicit assumptions about the computations underlying
observed behaviour, and indeed want to be agnostic about them, these models have implicit
computational requirements. If a decision-maker’s choice is interpreted as the best option
available, according to the model, then the decision-maker must have been able to identify this
option as the best option, at least in principle (Box 2). This means that the decision-maker must
have had the computational resources available to find the best option. However, many ‘as if’
models are NP-hard [38–40]. By assuming that decision-makers behaved ‘as if’ they solved an
NP-hard problem every time they make a choice, the proponents of these models effectively
assume that decision-makers can efficiently solve these problems. This is equivalent to
assuming that P equals NP, at least for those decision-makers, which, based on the current
state of knowledge, is not plausible [35] (Box 3). Thus, such models should always be

Box 2. ‘As If’ Models

Many models of human decision-making, including almost all economic models, are defined at the level of behaviour.
They map observable properties of a decision situation into choices between available decision options. The restriction
of those models to observable behaviour has been justified by the fact that the mechanism by which a decision-maker
arrives at the action, such as the underlying mental or computational process, is typically not observable [80].

Themost representative example of this class of models is revealed preference theory [1,2,81] and its close cousin utility
theory (including prospect theory) [6]. Both characterise actions (choices) purely in terms of latent preferences or utilities.
In this theory, preferences and utilities are ‘observationally equivalent’with choices. Importantly, no causation of choices
by utility or preferences is assumed or implied by the theory. To infer preferences or utilities from observed behaviour, the
latter is assumed to be the outcome of an optimisation process. Specifically, observed choices are assumed to
represent the highest-utility option available to the decision-maker in a given decision frame. Optimisation follows from
the fundamental assumptions (axioms) of the theory, such as that choices satisfy transitivity and completeness. The
assumptions are justified either with a psychological or an economic argument. In the psychological argument,
decision-makers are assumed to be intentional agents whose aim it is to achieve the best outcome available to them
[52]. In the economic argument, the assumptions are justified with the claim that in a competitive economy, agents who
violate them would not survive [80].

What is missing is a justification of these assumptions from the perspective of computational complexity theory. Here,
the question is whether it is plausible to assume that decision-makers will always be able to identify themost preferred or
highest-utility option. At present, the theories assume that decision-makers can somehow do this, without specifying
how they do it. This ignores the computational resources required for the task. A realistic theory of decision-making
needs to explain under which conditions a decision-maker can be expected to behave in a way consistent with the
assumptions and, therefore, needs to take into account the computational complexity of the decision task.
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supplemented bymodels that take computation into account explicitly, which are often referred
to as ‘algorithmic models’ [46].

Another challenge could be levelled based on studies of the neural signals associated with
decision-making. Many studies have documented the existence of so-called ‘value’ (or utility)
signals. These studies have been interpreted as prima facie evidence that the brain does
compute the variables required for optimisationmodels of choice, which in turn is interpreted as
evidence that the brain literally performs optimisation [47,48]. This inference is not valid,
however, at least not universally. Almost all studies of value signals used decision situations
with a small number of simple decision options (typically two), with each option having only a
few decision-relevant properties (typically one or two). The computational requirements to
choose the best option from two available options might well be within the computational
resources of the brain. However, few naturalistic decision situations feature only two options
with two decision-relevant properties, such as value and risk. It is not clear whether these same
signals, and the underlying neural processes, would also occur in computationally more
complex decision scenarios. It is conceivable that different computational processes are used
in more complex scenarios. Indeed, there is evidence that human decision-makers switch
computational processes when the computational complexity of the decision scenario
increases (e.g., through an increase in the number of states to consider) [49].

Another, possibly more likely, explanation of the discovery of value signals in the brain is that
most of these signals are in fact neural correlates of other variables related to the decision
process, such as attention, salience, or subthreshold premotor activation. These variables are
highly correlated with value signals [37]. In fact, a recent neuroimaging study of a decision task
demonstrated that neural signals in 30% of the brain appeared to be value signals [50]. Some of
these signals were abstract in the sense that they were not correlated with particular stimulus
properties or motor response, and were unlikely to be indirect consequences of reward, such
as increased arousal or attention [50]. This could be interpreted as evidence that the brain
implements something like ‘parallel computing’, but does not imply that expected utility
maximisation is computationally tractable for the brain in general.

A third challenge is deeper and concerns the relevance of CCT for human cognition and
behaviour. CCT is based on a mathematical model of computation. It is an open question: (i)
whether this model applies to the human brain; and (ii) whether it is useful for our understanding
of human behaviour [33,51]. These questions have occupied computer scientists, philoso-
phers, psychologists, and neuroscientists since the initial work of Turing [26] and Church [25]
during the 1930s (Box 3) [51–54]. They remain unresolved empirical questions [51], to which we
now turn.

Box 3. The Church–Turing Thesis

The use of concepts from computer science in the description of the human brain and behaviour is justified by the
Church–Turing thesis (CTT) [25,26,82]. The latter is concerned with the notion of ‘effective’ or mechanical procedures
(algorithms) in logic and mathematics. Intuitively, the thesis states that a computational task is (Turing) computable if it is
possible to specify a sequence of basic mechanical instructions that will result in the completion of the task once the
instructions have been carried out by a (Turing) machine, a general model of computation. It implies that a Turing
machine can compute any Turing computable task, that is, any (Turing) computable task can be simulated by a Turing
machine. An extended version of CTT (complexity-theoretic CTT) conjectures that any effectively computable math-
ematical function that is ‘hard’ to compute for a Turing machine (in the sense of requiring a large amount of
computational resources), is also hard for any other model of computation [83]. The CTT is a deep and perhaps
unsolvable fundamental question. Today, it is widely believed to hold, whereas the extended version of it is contentious
[84]. However, it should be pointed out that it is possible that certain human tasks, such as creativity, are incomparable
with the type of mathematical functions to which CTT applies (Turing-computable functions) [74]. Similarly, it is
conceivable that there are certain tasks that the brain can compute faster than a Turing machine, which would be
a violation of the extended CTT [74]. By contrast, it has also been suggested that CTT is too liberal to be of practical use
for the explanation of human cognition [33].
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Does Computational Complexity Theory Apply to Human Decision-Making?
The effects of computational complexity on human decision-making can be tested empirically.
In the following, we report results from several studies that investigated the relation between
computational complexity and human behaviour in a canonical computational problem, the 0–1
knapsack problem (KP). In this problem, the decision-maker is given a set of items with different
weights and values and has to find the subset of items with the highest total value, subject to a
weight constraint (capacity). The problem is a constrained optimisation problem and is similar to
many models of human decision-making [32,38,55]. In the studies, participants were asked to
solve several different instances. These instances differed in the properties of the items (values
and weights) as well as the weight constraint. While the instances contained a similar number of
items, they varied in their computational complexity, that is, the amount of time and memory
required by computer algorithms to solve them. The KP is NP-hard: while it is easy, from a
computational perspective, to verify that a given subset of items has a given total value and total
weight, it is hard to determine whether this subset is the optimum.

The studies found that participants’ ability to find the optimal subset of items decreased rapidly
as the computational complexity of instances increased [38,55]. Behaviour was particularly well
described by one measure of difficulty, Sahni-k (Figure 1A). This metric is proportional to the
amount of time and the amount of memory a computer algorithm requires to solve an instance.
The finding shows that CCT, based on an abstract model of computation, also applies to
humans. The fact that both humans and electronic computers are sensitive to the same metric
of instance complexity corroborates the conjecture that the theory of computation may be
universal (Box 3). At a minimum, it means that constraints identified by CCT also apply to
biological organisms, such as humans.

In these studies, humans were rewarded according to their performance, which was measured
by the proximity of their solution to the optimal solution. It was found that humans spent more
effort and, in consequence, earned more money on average on more difficult instances
(Figure 1B). This behaviour is hard to reconcile with models of optimisation: economic theory
would predict that participants would spend less effort on hard instances and, hence, earn less.
The observed increase in effort with difficulty may be consistent with satisficing if humans set a
fixed value target to be attained irrespective of the effort it required [41]. For more difficult KP
instances, more effort is required to reach the target.

Interestingly, novice taxi drivers in New York City evidently exhibit the same counter-intuitive
effort–difficulty relationship, a paradox in economics. Taxi drivers work longer on days when it is
harder to spot potential passengers, despite never reaching the payoffs achieved on dayswhen
the marginal return to effort is much higher [56]. Psychological reasons have been given for this
phenomenon, such as trying to meet performance targets [57]. However, we would suggest
that these taxi drivers are merely trying to solve an NP-hard computational problem (a variant of
the travelling salesman problem: they need to find the shortest route from one potential
passenger to another). In their solution attempts, taxi drivers spend more effort on days when
the problem is tougher. One would expect the effect to disappear as taxi drivers learn to
navigate their surroundings better and, indeed, experienced taxi drivers work less on days with
fewer potential passengers [58]. Unfortunately, the data of this study do not allow a clean
analysis of the effect of computational complexity on effort because confounding factors might
have been at work (e.g., slower days might have been associated with lower driver opportunity
costs). By contrast, in other studies of the KP, researchers used controlled experimentation,
which allowed the effect of computational complexity to be isolated.

There is one distinctly puzzling aspect of this finding: by choosing to spend more effort on
instances with higher Sahni-k (higher difficulty), the participants revealed that they sensed
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whether a particular instance was more difficult. This is paradoxical because all known
computer algorithms need to solve an instance to compute the complexity of an instance.
By contrast, many of the participants, never solved the instances and, if they did, they were
generally not able to tell that they did (this may reflect the very nature of NP-hard problems) [38].
It is an open question how participants were able to detect instance complexity and subse-
quently adjust effort. This may be an example of a computational task that the human brain can
do but for which no computer algorithm is currently known.

Participants exhibited a striking diversity in how they approached solving the KP instances
(Figure 1C,D). They appeared to use different search strategies (algorithms) for different

Figure 1. The Relation between Instance Complexity and Human Behaviour. Several studies have investigated the relation between instance complexity and
human behaviour in the 0–1 knapsack problem, a canonical computational problem closely related to many models of human decision-making. In the task, participants
need to find, from a set of items with different values and weights, the subset of items with the highest total value, given a total weight limit. The instances that the
participants were asked to solve varied in the degree of computational complexity, that is, in the amounts of computational steps andmemory that algorithms require to
solve them. (A) Participants’ ability to find the solution of an instance was negatively related with Sahni-k, a measure of instance complexity proportional with compute
time and memory required to solve the instance. (B) Participants earned more money on average on instances that were more difficult. (C) Mean proportion of search
space (considering only full knapsacks) explored by individual participants in different instances. (D) Proportion of search space explored by all participants across
different instances. Reproduced from [38].
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instances of the same problem. Moreover, there was little overlap in participants’ search paths
within instances (the sequence of candidate solutions considered) [38]. The latter would make
information sharing beneficial. Therefore, in another study, participants were incentivised to
share information during the search with other participants through amarket mechanism [55]. It
was found that, in this setting, more participants found the optimal solution compared with a
setting in which they had to work in isolation. This happened despite the fact that market prices
never provided enough information to infer the optimal solution (but prices in combination with
trading volume signalled valuable information to participants).

Market efficiency, a core concept in financial economics, states that prices will reflect all the
available information [59]. In the experiments described above, there were always participants
who were able to compute the optimal solution, so this information was available. Therefore
according to theprinciple ofmarket efficiency, prices shouldhave reflected the solution.However,
they did not, casting doubt on the principle [55]. This suggests that the computational complexity
affects decision-making at the level of not only the individual decision-maker, but also themarket[333_TD$DIFF].
Among others, this is highly relevant for the use of prediction markets as problem-solving tools:
these markets may only work for problems of low computational complexity.

Human Computational Resources and Metadecision [334_TD$DIFF]-Making
Assuming that human computational resources are limited, the capacity to make a decision
depends on both the resources required to make the decision and the resources available to
the decision-maker (Figure 2, Key Figure). Computational resource requirements can be
identified by CCT. However, it is equally important to understand resource availability.

Cognitive resources have not only intrinsic costs (e.g., in the form of metabolic cost of firing
spikes), but also opportunity costs [7,60,61]. The latter arise because most cognitive resources
are shared across domains and processes, both lower-level functions, such as the visual
system, and high-level, executive function, including working memory, attention, and the
central executive [62,63]. All of these processes are crucially involved in decision-making.
Given that many cognitive processes depend on these resources, their capacity and availability
are heavily dependent on context [61]. For example, it has been shown that acute stress
reduces working memory capacity, in turn weakening deliberative, model-based choice [64].
Different tasks involving executive function cross-influence each other and cross-predict
performance [65–67].

It is an open question how limited cognitive resources are allocated to tasks, a problem referred
to as ‘cognitive control’ or ‘metadecision[335_TD$DIFF]-making’ [7,61,68]. Most models of cognitive control
are framed in terms of optimisation: decision-makers optimally allocate resources to tasks,
trading off (expected) rewards and costs [69–72]. Here, too, the issue of computational
plausibility arises: many of those models are based on computational problems of high
computational complexity. Therefore, these models may also explicitly or implicitly require
enormous computational resources, even in cases of relatively low-level tasks. For example,
optimal allocation of attention is an NP-hard problem [38]. Thus, decision-makers face high
computational complexity at the level of not only single decision tasks, but also metacognition.

Cognitive control presents another problem. Existing models assume that cognitive resources
are allocated based on known (expected) rewards of tasks and costs of resources [7,61,68].
However, the computations of either (expected) rewards to be gained from engaging in a
particular task or (expected) costs incurred might be NP-hard computational problems them-
selves. For example, in the knapsack problem discussed above, all known computer algo-
rithms to compute the computational resources to solve a particular instance of the problem
need to solve the instance to do so, which is an NP-hard problem. The same is true for
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computing the maximum reward available in an instance. Yet, in the study described above, it
was found that participants appeared to be able to adjust not only effort spent, but also their
search strategies, based on instance complexity [38]. However, we do not know how partic-
ipants achieved this. In particular, we do not know whether participants knew instance
complexity before they started solving an instance and whether this determined their effort
level at that point (which is what would be required by existing cognitive control models), or
whether they adjusted effort dynamically while they were trying to solve the instance.

In addition, cognitive control itself requires energy and imposes a cost [68]. Thus, cognitive
control could easily end in an infinite regress [61]. Instead of one-off, static optimisation,

Key Figure

Computational Complexity Theory and Human Decision-Making

Figure 2. The decision sciences typically represent decision situations as computational problems (e.g., utility maximisation). Solving these computational problems
requires computational resources, which can be quantified using the framework of computational complexity theory. Thus, computational models can be categorised
according to complexity classes. Many optimisationmodels belong to the complexity class NP-hard, whichmeans that computing the solutions of these problemsmay
be intractable. When approaching a decision situation, the decision-maker needs to allocate (limited) computational resources (e.g., time or memory) to the decision
task to solve the computational problem. The set of computational problems that humans can solve at any time is constrained by the amount of computational
resources available. The problem of allocating resources to problems may itself be a difficult computational problem. It is an open question how organisms detect the
computational requirements (complexity) of a decision task and how they allocate resources to formulating a decision (cognitive control and metadecision-making).
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cognitive control, and indeed decision-making, might be based on dynamic, hierarchical,
recurrent processes that continuously update expected levels of reward and cost of tasks,
and that allocate resources dynamically based on those updates [37]. Cognitive control has
been related to an extensive network of brain regions, including dorsal cingulate and dorsolat-
eral prefrontal cortices, which in turn are connected with a network of regions intricately linked
to decision-making, such as medial prefrontal cortex [68]. However, details of the architecture
and functioning of this network are only beginning to emerge. CCT can provide amuch-needed
framework to characterise cognitive resources required for cognitive control, providing crucial
insights into not only decision-making, but also cognition more generally.

Concluding Remarks: Towards Computationally Plausible Models of Human
Decision-Making
Most modern theories of decision-making assume, implicitly or explicitly, that decision-makers
optimise [8]. Thesame is the case formanymodels ofmetadecision-makingandcognitive control
[61,68]. These models all assume, explicitly or implicitly, that decision-makers are always able to
find the best option available to them. We argue that these models are implausible for most
decision situations because they would require computational resources, in the form of time
(energy), memory, and others, that are beyond those available to decision-makers.

Existing work has shown that human decision quality is strongly affected by instance com-
plexity in canonical decision tasks [38,55]. These findings may explain many behavioural biases
documented in the literature, such as choice overload, present bias or the disposition effect
[38]. Indeed, heuristics, which are usually provided as an explanation of cognitive biases, could
be regarded as an effective response of an organism to cognitive resource constraints (Box 4).
Future work will need to identify the dimensions of instance complexity that affect human

Box 4. The Computational Complexity of Every-Day Life

What is the computational complexity of problems encountered in every-day life? It turns out that many every-day
problems, such as attention allocation, time management, and many financial problems, are in class NP [38] (see Box 1
in the main text).

However, it might be the case that most instances of the problems encountered in real life have low complexity. This idea
is captured by the notion of average case complexity [24,85]. Unfortunately, it has become known that even the average
instance of many problems is hard. The study of computational complexity of instances of naturally occurring problems
is an active area of research [86].

A related issue concerns the hardness of approximation algorithms. We refer to an algorithm that is guaranteed to
find the optimal solution of a problem [329_TD$DIFF]as an exact algorithm. While we may not be able to find efficient exact algorithms
for a problem, we might still be able to find efficient approximation algorithms, that is, algorithms that are inexact in the
sense that they are not guaranteed to find the optimal solutions but that are guaranteed to closely approximate
solutions. Obtaining an approximate solution to a problemmight bemuch easier than computing the exact solution, but
it might [330_TD$DIFF]be good enough for a particular application. If such approximation algorithms existed for all NP problems, then
the distinction of P versus NP would be less significant for practical purposes.

This is not the case, however. An important theorem in CCT, the PCP Theorem [87], shows that, in many cases,
computing approximate solutions is as hard as computing exact solutions [24]. For decision theory, this means that
bounded rationality may be no easier than full rationality.

In the decision sciences, it is often assumed that humans use heuristics to navigate the complexity of decisions [11,15].
To separate the notion of heuristic from that of approximation algorithm, we define the former as an inexact algorithm
that does not have an approximation guarantee, that is, it is not known how closely it will approximate the solution [33].

Little attention has been paid to the computational complexity of heuristics. There is no reason to believe, ex ante, that all
heuristics are easy from a computational perspective and, indeed, many heuristics may be computationally complex for
many instances. Worse, at present, we do not have any way to tell whether a given heuristic is easy for a given instance
(see ‘Does computational complexity theory apply to human decision-making?’ in the main text).
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decision-making capacity, which may overlap with those relevant for electronic computers.
Among others, this work will also contribute to a deeper understanding of the differences
between human computing and computing of electronic computers.

In addition to understanding computational resource requirements, a model of human deci-
sion-making will also need to take into account the resources available to the decision-maker in
various decision situations (Figure 2; see Outstanding Questions). The latter is complicated by
the fact that resource availability appears to be highly context [336_TD$DIFF]-dependent [68]. In such a
framework, decision-making is inseparable frommetacognition (cognitive control), because the
latter controls resource allocation, a crucial input in the decision-making process.

We hope that our argument has made clear the need for decision theorists, neurobiologists,
and computer scientists to join forces in the quest to decipher how humans choose. Their
insights will benefit not only the psychological and social sciences, but also the life sciences and
medicine (mental disorders), and ultimately computer science (artificial intelligence and human–
robot interactions) [73].
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