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Abstract—This article reviews and consolidates different treat-
ments of modularity, redundancy and degeneracy across different
disciplines and different system types (spanning both Systems
Science and Systems Engineering). This is done with two main ob-
jectives. The first is to draw out and compare the perspectives and
classifications that are available for these important concepts. The
second is to point to areas where there has been a lack of precision
or where more rigorous distinctions would help make discourse on
these concepts more productive. For modularity and redundancy,
we first consider the definitions and variants associated with
these concepts. We then identify some key classificatory principles
which might be used to distinguish between variants so as to
illustrate the diversity across domains and contexts. Degeneracy is
addressed by explicitly relating it to redundancy and modularity.
We identify two key areas where lack of explicit treatment often
results in confusion for the concepts of modularity, redundancy
and degeneracy: (i) the level (or ‘granularity’) of analysis; (ii)
whether it is types or instances that are being referred to. We
hope that by making readers aware of the confusions that can
arise, it will also encourage more serious dialogue to take place
between practitioners and researchers in different domains so
that existing bodies of knowledge can be usefully shared.

I. INTRODUCTION

Modularity and redundancy are concepts that prevail in
both Systems Engineering and Systems Science domains. For
those looking to create or understand systems that perform
well in changing circumstances, these two general concepts
relate to useful design principles or explanatory frameworks.
Modularity and redundancy can be observed in a diverse
range of application domains, from Manufacturing, to Software
Engineering, to Systems Biology,1 yet there is little useful
dialogue between domains on how these concepts are defined,
how their variants can be classified and how their associated
costs and benefits can be balanced. Within any single disci-
pline, modularity and redundancy are also typically discussed
independently of each other even though they can be seen as
related and even though consideration of one concept is aided
by consideration of the other. Another concept that is related
to both modularity and redundancy is degeneracy, which has
been much-cited as a characteristic of biological systems which

1Concepts of modularity and redundancy have also been applied to a wide
range of other systems, including organisations [9], economies [9], cognitive
systems and the mind [31], natural language [57] and various cultural artifacts,
such as educational curricula, literature, music, sports and law [12].

perform well in changing circumstances. Within Biology, de-
generacy is often discussed with respect to redundancy but
those interested in redundancy in other domains seldom refer
to degeneracy, despite its relevance and potential application.

There may of course be good reasons for the separate
consideration of modularity, redundancy and degeneracy, and
good reasons for the separate treatment how each can be
identified or applied in different domains. Each of these three
terms can be interpreted as referring to quite different things as
we move from one domain to another or at the very least, and
the domains differ in the focus they give to different aspects of
these terms. For example, in Systems Engineering, the focus
is often on constructing systems with modular or redundant
architectures so as to attain desirable system properties such
as reliability, robustness and scalability (sometimes collectively
known as the -ilities), e.g. [47], [53]. Systems Sciences, on the
other hand, tend to focus on the emergence of modularity and
redundancy from the interacting base level entities that make
up the system, e.g. [36], [37]. For example, in society, indepen-
dent functional units can be observed to form spontaneously
from the interactions of autonomous individuals.

Despite differences between disciplines, there are also sub-
stantial, and growing, similarities in the systems they consider
and the ways in which they consider them. Emerging and
converging technologies blur the boundaries between previ-
ously distinct types of system and the concepts, principles
and practices associated with them. There are many examples
of this: modern computational systems and the internet are
studied as natural ecologies [35], [40]; evolutionary program-
ming and evolutionary electronics study the way selection and
diversification (inheritance) mechanisms in different environ-
mental conditions (fitness landscapes) give rise to differences
in the space of design solutions [11], [25]; complex socio-
technical systems are viewed as partially designed and partially
evolving [26]; bioengineering seeks to design artificial systems
from biological substrates [29]. At the same time, systems-
based approaches to solving problems require novel practices
for ‘engineering’ systems with large degrees of freedom [9]
by intervening at the level of base components. To this end,
engineering practices can make significant contributions to
the Systems Sciences by providing disciplined methods for
analysing systems [34], [2]. As previously distinct areas of
theory and practice converge, the key concepts and terms that
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they share form important connections between the relevant
communities of interest. As such, understanding how modular-
ity, redundancy and degeneracy are conceptualised across these
different applications can help us identify the opportunities for
cross-domain knowledge exchange.

To promote exchange of knowledge across domains, this
paper reviews and relates the concepts of modularity, redun-
dancy and degeneracy across different system types. For both
modularity (Section II-A) and redundancy (Section II-B), we
first consider the definitions and variants (e.g. types of modu-
larity) associated with these concepts. We then identify some
key classificatory principles which might be used to distinguish
between variants so as to illustrate the diversity across domains
and contexts. Section II-C addresses degeneracy by explicitly
relating it to redundancy and modularity, revealing the need
for more precise consideration of concepts such as ‘function’,
‘system’ and ‘level’. These ideas are relevant to a broad range
of application areas but for brevity, we primarily draw our
examples from only a subset of these, emphasising digital,
mechanical and biological systems. Making statements across
these and other domains sometimes requires the use of abstract
language. However, the examples offered and the diagrams pre-
sented are intended to permit translation to specific domains.
From our survey and synthesis we identify key distinctions
that should be made with respect to the three concepts so as
to permit more productive discussions between and amongst
practitioners, designers and scientists.

II. MODULARITY, REDUNDANCY AND DEGENERACY

Modularity, redundancy and degeneracy can each be de-
fined in terms of how systems are composed and how they
behave. The composition of a system can defined by how
functions are assigned to components and how those compo-
nents relate to each other. The behaviour of a system can be
defined by the way in which the system permits or tolerates
change. This talk of systems and their functions highlights an
important feature of modularity, redundancy and degeneracy:
they are determined by perspective and purpose. Firstly, what
defines a system, its boundary and therefore its components
and environment is at the discretion of the observer. Systems
can be viewed at different levels of abstraction and whether
something is viewed as a component of a system or as a system
itself varies from observer to observer [17], [43]. Secondly,
unlike system properties and behaviours, which are observed,
functions are assigned to systems by people. Systems do lots
of different things and defining which of these things are
functions is a matter of perspective [23].

The perspective-dependent nature of system boundaries
(i.e. what counts as component, system, and environment) and
functions makes concepts that rely on them (like modularity,
redundancy and degeneracy) perspective-dependent. It is im-
portant to remember this when considering these concepts,
especially when comparing work from different authors or
different fields as we do below. It should also be stressed
that when we use terms like ’components’ (or ’systems’ or
’environments’), we do not make any particular assumptions
about the substrate or media from which those entities are com-
posed. While it is most intuitive for some people to think of
components as physical entities, we might also treat data, time
or processes as components of a system (and those components

might make that system more or less modular, redundant or
degenerate). For example, we might have a software system
with time redundancy (reprocessing when there is available
time) or a barcode with information redundancy (using more
space to duplicate a section of the code). Similarly, when we
use the term ‘structure’, we include the organisation of non-
physical entities such as processes and data.

A. Modularity

The concept of modularity relates to the independence
of components, which are thus called modules, and the in-
terchangeability of modules that this independence permits.
Independence and interchangeability can be achieved in dif-
ferent ways and there are consequently different ways to
define modules and modularity. Some definitions emphasise
interactions, with weak interactions between modules and
strong interactions within modules [7]. 2 Some definitions
emphasise interfaces, with well-defined interfaces between
modules, and between modules and other parts of the system
[65], [54]. Still other definitions emphasise functions, with
individual modules performing distinct functions rather than
functions being shared across multiple components [66].

Over the years, scholars and practitioners have identified
different types of modularity and a number of classifications
have been suggested. Gathering such classifications reveals
that these are often domain-specific taxonomies of observed
practice rather than formally constructed typologies that might
apply across domains.3 In particular, the basis upon which
the different types of modularity have been distinguished
are seldom stated and are sometimes mixed (see Table I).4
Nevertheless, these classifications or some combination of
them, are frequently cited in the modularity literature (e.g.
[54]) and are a useful way of illustrating the various ways
in which modularity can be manifested.

Terms such as ‘encapsulation’, ‘information-hiding’ and
‘blackboxing’ are used to refer to the fact that the internal
structure of a module can be decoupled from the way it
interfaces with other components and hence how it relates
to the system as a whole. The term ‘component family’ or
‘module type’ can be used to refer to the set of components that
can be substituted for one another due to the fact that they share
a common interface (compatibility with other components).

Standardisation of component interfaces has different im-
plications for how components can be combined. On the one

2This definition of modular systems is similar to some definitions of systems
themselves, where system boundaries are often chosen to maximise the ratio
of within-boundary interactions to across-boundary interactions [55], [59]. It
is also the assumption underlying quantitative modularity measures based on
correlation, covariance or information entropy (e.g. [63], [68]).

3Classification theory distinguishes between conceptually-derived and
empirically-derived classifications, referred to respectively as typologies and
taxonomies in [6], but terminology varies between authors. Along with other
classification theorists [14], [44], Bailey proposes two rules of classification:
(1) that the classes formed should be both exhaustive (i.e. everything is
classified); and (2) that the classes should be mutually exclusive (things only
appear in one class).

4Although the typologies in Table I tend to originate from a specific Systems
Engineering domain, e.g. Manufacturing, we are also aware of various attempts
to generalise these to other domains. For example, the typology defined in [65]
was initially formulated with the manufacture of products in mind, but has
more recently been applied to services [15], also exemplifying the application
of the term ‘components’ to non-physical entities.
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Fig. 1. General representation of modularity. Module M1 (with the
hexagon and star components) and module M ′

1 (with the square and triangle
components) are variants of the same component family (module type) and
may satisfy different functional requirements F1 and F ′

1 respectively. M1

and M ′
1 have the same interface, which allows them to connect with module

M2 (which performs function F2) but the constituents or internal structure of
module M1 and M ′

1 might differ from each other and to M2. M2 only has
one variant, which means that it is common to all system variants and can be
seen as a standard component which can connect to either M1 or M ′

1.

hand, standardisation permits a given component to be used
in different systems (sharing components between systems).
On the other hand, with respect to a particular system, dif-
ferent components of the same component family might be
substituted for each other (swapping components in and out of
the same system). This substitution can either permit different
functional requirements to be fulfilled through the manifesta-
tion of different properties and behaviours, or it can permit the
same functional requirements to be fulfilled through different
means which can be substituted for one another. 5 In designing
a system with modularity, architectural decisions therefore
have to be made about which components are variable and
which are common to different system variants.

Throughout a system’s lifetime, controlling components’
interactions, interfaces and functions generally allows for the
standardisation of components and the potential for variations
in the system through combining those components in different
ways. This allows the system to exhibit desirable lifecycle
properties such as flexibility, extensibility and interoperability
[66], [7], [33]. A modular system architecture also influences,
in a similar way, the other processes and structures that are
associated with it, including the design process, the supply
chain and their associated economies [7], [66], [56]. These
benefits of system modularity can come at a cost however, and
systems that are designed only for technical performance will
generally exhibit more integral (less modular) architectures
[38], [10], most likely because components are not fully
optimised for the system in which they operate. There can
also be wider implications for innovation due to resistance to
architectural change [16].

When analysing a system’s modularity, how we choose to
decompose the system is important. This is because different
decompositions result in different ‘levels’,6 which treat dif-
ferent sets or groups of constituents as components, which

5The existence of these alternative components in the same system might
also be a means of realising redundancy, as discussed in Section II-B.

6These levels are sometimes also referred to as ‘granularity’ [21], [4].

can result in very different architectures (and hence modules)
[21], [54]. With respect to modularity in Systems Engineer-
ing, various attempts have been made to more systematically
describe different levels [52], [48]. For example, in [48], the
authors identify four levels of modularity: the component level,
the module level, the sub-system level, and the system level.
Decomposing a system thus requires decisions to be made over
which constituents should be grouped together to form the
lowest level ‘components’ (the use of this term by the authors
is different from our own), which lowest level ‘components’
should be grouped together into modules, and so on. In Figure
1, for example, we might see M1 and M ′

1 as representing
the modular level with respect to their ‘components’ (e.g.
the hexagon and the star), but with another decomposition,
these ‘components’ might themselves be considered modules
or subsystems.

Explicit recognition of different levels of analysis is also
crucial in the Systems Sciences, where the issue is often
how to decompose the system into modules with respect to
particular functions (e.g. in Network Analysis [49], Systems
Biology [50], Ecology [37], [32], Neuroscience [18]). Inferring
modular models of a system that account for its observed
properties or behaviour often involves detecting or modelling
the emergence of higher level structures7 and asking how, given
the interactions going on between lower level components in
the system (be they cells, animals, people or organisations),
we get higher level structures, which in turn can be treated as
encapsulated units and related to each other.

Another important application of ‘level’ is that it can be
used to specify temporal as well as physical boundaries. A
given set of constituents may be labelled a module at a given
point in time or through a time range, but be seen as a transient
state or subsystem at another. Temporal scope and resolution
are also crucial in discussions of redundancy and degeneracy.

B. Redundancy

The concept of redundancy relates to the provision of
additional capacity in a system so that system performance
is maintained despite partial system failure. Just as with mod-
ularity, redundancy can be defined in different ways depending
on how the additional capacity is considered. Some definitions
emphasise duplication, with additional identical components
included in the system to provide spare capacity. Some def-
initions emphasise substitution, with systems incorporating
additional and different different means to achieve the same
function.

Redundancy, like modularity, can be defined in terms of
how functions are mapped to components and how the system
behaves in the event of change. In the design and engineering
literature, the changes of interest are typically component
failures, and redundancy is thus discussed in terms of safety,
reliability and robustness. If a component is assigned a function
and if that component fails then some additional component
will be required to perform the function (e.g. extra engines on
an aircraft). Providing that additional component in the design
of the system at the outset is an implementation of redundancy;
the additional component is redundant until a failure occurs.

7Again, the term ‘structure’ is meant in the most abstract sense and can
relate units that are physical or behavioural.
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Classification criterion Types

Component role in the system Basic and auxiliary modules implement functions that are common throughout the product family (i.e. all systems of a given
type) [51].
Special modules implement complementary and task-specific functions that do not need to appear in all the product variants.
Adaptive modules implement functions related to the adaptation to other systems and to marginal conditions [51].
Non-modules are designed specifically for specific tasks [51].

Modules in Biology can differ in their specificity and hence might be characterised as more or less ‘adaptive’ or in the extreme
case ‘non-modules’. They can also differ in terms of their necessity for the organism.

Component assembly and interface compati-
bility

Component swapping modularity: product variants are obtained by swapping one or more components on the common product
body [65].
Component sharing modularity: the same basic component can be used in different products [65].
Fabricate-to-fit modularity: product variants are obtained by combining one or more standard components with one or more
components that can be produced with a continuously variable feature, such as length [65].
Bus modularity: product variants are obtained by providing a continuous common interface that can accept any selection of
components from a set of component types with a compatible interface [65], [66].
Sectional modularity: product variants are obtained by mixing and matching in an arbitrary way a set of components as long as
they are connected to each other at their common interfaces [65], [66].
Slot modularity: interfaces between different types of components are different [66].
Combinatorial modularity: product variants are obtained by differently combining the components of different component families.
[54] adds combinatorial modularity to the above six variants distinguished in [65], [66].

In Biology, developmental modules corresponding to physical structures or signalling networks in the organism are subunits that
can be found in the embryo which develop into distinct functional elements of adult morphology [13]. These might be found
across different but related species and exhibit the same behaviour [13] (analogous to ‘component-sharing’) or they can exhibit
different behaviours in different species [24] (analogous to ‘combinatorial modularity’). In Molecular Biology, domains of protein
molecules can be seen as interfaces and hence determine the interactions and ‘compatibilities’ between molecules to perform
some function [2].

Lifecycle stage or interaction with the system
environment

Assembly modules are components, or groups of components, that are assembled in clearly distinct stages to ease production
[45]. (In [5], a product-oriented view of modularity distinguishes different types of modularity according to the capabilities they
afford at different points of the product lifecycle.
Manufacturing modularity: permitting a variety of products to be assembled from a limited number of standardised parts [45].
Product use modularity: permitting customisation during product use [5].
Limited life modularity: permitting expired (worn out or depleted) components to be replaced [5].
Data access modularity: permitting storage and transfer of information separate from the rest of the system [5]. Similarly, in [39],
a distinction is drawn between function-oriented modules (which include basic, auxiliary and adaptive modules), and production-
oriented modules, where design is based on production considerations alone, and in [7], the authors distinguish between modularity
in design, production and use respectively.)

In Systems Biology, we can distinguish between Variational modules: features that vary together but are relatively independent of
other such sets of features [68]; Developmental modules: parts of an embryo that are quasi-autonomous with respect to pattern
formation and differentiation, or an autonomous signalling cascade [68] and Functional modules: features that act together in
performing some discrete physiological function that is semi-autonomous in relation to other functional modules [68].

TABLE I. TYPES OF MODULARITY IN SYSTEMS ENGINEERING BASED ON DIFFERENT CLASSIFICATION CRITERIA WITH ANALOGOUS DISTINCTIONS IN
SYSTEMS BIOLOGY TO ILLUSTRATE THE PARALLELS THAT CAN BE DRAWN.

F F

Fig. 2. Generic representation of redundancy. Left: The function F can
be realised by two (or possibly more) components which either share the
load synchronously (as shown here), or realise the function independently and
asynchronously (with one being used whilst the other is spare). Right: When
one of the components fails (as indicated by the X), the function is realised
by the other component (as shown here), or the function ‘switches’ from one
of the components to the other.

Many implementations of redundancy reduce the modularity
of the system because the mapping between functions and
components becomes more complex (when considered through
time rather than at a given time).

In the Systems Sciences, discussions of redundancy tend
to focus more on understanding how functions can be realised
in different ways by the same system. In this context, the
assumption is that at least some of the functions are distributed
across several components. These components might be from
the same ‘component family’ (e.g. cells in a tissue) or from

different ‘component families’ (e.g. cells in an organ).8

Again, as with modularity, scholars and practitioners have
identified different kinds of redundancy and various tax-
onomies have been proposed. In Systems Engineering, redun-
dancy discussions tend to centre around which components to
make redundant, how much redundancy there should be, and
what form the redundancy should take so as to optimise for
factors such as reliability, cost and performance [17], [46].
TableII shows several typologies based on different (often
implicit) classificatory criteria.

In addition to the redundancy classification criteria in Table
II, we can distinguish between different system behaviours
during and after component failure. These behaviours range
from instant recovery so that the impact on performance
is negligible (e.g. load balancing, hot spare) to noticeable
degradation in performance while remaining within the bounds

8Of course, as with modularity, the level at which one defines both
components and functions determines the component family. For example,
the functioning of an organ is distributed amongst cells of different types,
with the population of cells of each type playing a different role in realising
the function (and therefore having different compatibilities with the rest of
the system), while a tissue’s function is distributed amongst cells of the same
cell type.
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Classification criterion Types

Execution mechanism for fulfilling required
function

Principle redundancy: multiple non-identical components operating on different principles (possibly arranged in parallel) are
capable of fulfilling the required function but do so by different means. Systematic failure of all components is less likely
because each component is susceptible to different failure mechanisms [51]. (A parallel can be drawn between this and N-version
programming [20].)
Selective redundancy: the outputs of multiple active components are selected from [51] (possibly selecting any component that
is operational).
Comparative redundancy: the outputs of multiple active components are compared (possibly taking any variation in outputs to
be negative) [51].
Combinations of the above (e.g. principle-comparative redundancy [51].

In biological systems, it is more difficult to distinguish between cases where different components are realising a function at the
same time with one component or set of components ‘winning’ (as in selective redundancy) and cases where a component or set
of components realises the function by default but others can be substituted for it (as in principle redundancy).

Role of redundant modules during normal
operation and during failure

Active redundancy, Load balancing: multiple components (possibly identical) actively share a function during normal operation.
Failure (e.g. of a single component) increases load on the remaining components [30], [51] (in [58], this is ‘parallel’ redundancy,
which is distinct from ‘parallel’ redundancy in [51])
Partial active redundancy: all components are normally working but the system will continue to function satisfactorily provided
that a certain number of components of the system continue work [62].
Passive redundancy: spare components (possibly identical) are inactive during normal operation and only implemented in case
of active component failure. Failure may result in a change of performance (if the spare components are not identical) and may
lead to system down-time (if the spare component is not immediately available - see hot and cold spares below) [51] (in [58],
this is ‘serial’ redundancy, which is distinct from ‘series’ redundancy in [51]).

Recovery time and availability of extra com-
ponents (for passive redundancy)

Cold spare/standby: redundant component needs to be switched on or initialised when there is failure (in the case of computer
clusters, this might require installing and configuring an extra node) [67].
Hot spare/standby: redundant component ready to operate in failure (but does not participate in the operation of the system
when it is functioning normally, in contrast to load balancing.) [67]
Warm spare/standby: redundant component is in some intermediary state of readiness (in the case of computer clusters, this
might entail starting software on the extra node and ensuring data is up to date) [67].

TABLE II. TYPES OF REDUNDANCY IN SYSTEMS ENGINEERING BASED ON DIFFERENT CLASSIFICATION CRITERIA WITH ANALOGOUS DISTINCTIONS
IN SYSTEMS BIOLOGY (IF APPLICABLE) TO ILLUSTRATE THE PARALLELS THAT CAN BE DRAWN.

of acceptability (e.g. warm spare, cold spare). In [37], the term
‘soft redundancy’ is also introduced to describe systems in
which different components or mechanisms provide a function
over different levels of demand but where these components
or mechanisms overlap for a given level of demand. For
example, Holling cites the example of temperature regulation
in endotherms, which can be realised via five distinct mecha-
nisms, from evaporative cooling to metabolic heat generation
and where more than one of these mechanisms can provide
temperature regulation for a particular set of conditions. Soft
redundancy is observed in natural, self-organising systems in
which the system itself adapts.

Error reporting can be seen as an auxiliary behaviour which
can have implications for how the rest of the system responds
to the failure, e.g. error handling behaviour can adapt to the
type of error detected [22]. However, some authors also use
the error-reporting behaviour (or absence of such behaviour) as
a basis for classification (e.g. In [41], the authors distinguish
between ‘active’ hardware redundancy, where errors are de-
tected and reported and ‘passive’ hardware redundancy where
they are masked). In this paper, we regard error handling
behaviour as an issue that is separate to redundancy even
though different redundant architectures may be more or less
amenable to different types of error response.

C. Degeneracy

Although modularity and redundancy are near-ubiquitous
concepts in Systems Engineering and Systems Science, the
related concept of degeneracy is much less well known. Degen-
eracy refers to the ability of structurally different components
to perform the same function so that the failure (or absence) of
a critical component is compensated for through widespread
compensatory adjustments elsewhere in the system [64], [28],

[69]. This has two aspects to it. One is that components
which are degenerate with respect to each other will appear
functionally equivalent in one set of conditions (and hence give
rise to redundancy since they both map to the same function in
this set of conditions). The other is that these same components
will be functionally distinct under another set of conditions
thus masking any potential redundancy in the system. Note
that whether degeneracy is a type of redundancy or distinct
from redundancy depends on whether redundancy is defined
only in terms of duplication. Biologists typically conceive
of redundancy as an engineering concept requiring the of
duplication of identical components and they thus distinguish
degeneracy from redundancy on that basis.

In [69], the authors note two main benefits that degeneracy
can confer on a system, both arising from the increased
complexity it gives to the system. Firstly, it can be a source of
robustness, since functions can be fulfilled in multiple ways.
As noted in [51], this renders systemic failure less probable.
Secondly, degeneracy can lead to increased evolvability since
different realisations of a function are likely to have different
sensitivities to different selection pressures. Although robust-
ness and evolvability are considered in Systems Engineering,
to date, references to degeneracy are most commonly found
in discussions of self-organising, complex adaptive systems
(typically biological). The concept has received less attention
in discussions of designed systems, where duplication of
components is the standard approach to providing robustness
against component failure [60]. However, architectures with
principle redundancy or selective redundancy [51] (see Table
II) can also be said to be degenerate since the same function
can be fulfilled by components of different types. However,
a distinction can be drawn between systems that have com-
ponents that are dedicated to performing a function even if
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they are spare (i.e. redundant systems) and systems that have
components that are dedicated to other functions but that can
be ’repurposed’ as required (i.e. degenerate systems).

Degeneracy is related in intricate ways to both modularity
and redundancy. With respect to modularity, degeneracy can
reduce module integrity or purity (i.e. simple component-
function mapping) if component-function mapping is not re-
tained through the system’s lifetime (see Figure 3). In this
case, the mapping between functions and components so that
components perform different functions at different times.
However, at a given point in time or within a given time range,
degeneracy in a system need not reduce system modularity
because within this temporal scope, the mapping between
functions and components may not change. With respect to
redundancy, degeneracy is a mechanism for realising a function
in multiple ways, and these multiple ‘routes’ or ‘paths’ pro-
vide surplus capacity in the system and/or robustness against
component failure. The ways in which degeneracy is imple-
mented could mean that different variants of redundancy are
instantiated by a degenerate system (rather than in a modular
fashion). For example, degeneracy might be active or passive,
serial or parallel, hot or cold, etc. (see Table II). Therefore,
although no classifications of degeneracy have been proposed
(or found in preparing this paper), classifications of degeneracy
might be derived by considering the existing classifications of
modularity and redundancy. 9

At the component level, we can see degeneracy as a means
of defining a ‘family’ of structurally different variants which
perform the same function. If these variants co-exist in the
same system, then degeneracy provides redundancy since there
are extra (structurally different) component instances which
can take over from each other to fulfill the function. While
in the biological context it is natural to assume that multiple
instances of different variants co-exist in the system, the
level of redundancy they provide with respect to the system’s
function depends on how many of the instances are ‘available’
at any given time (see Figure 3). On its own therefore, the
fact that a function can be realised by different types of
components does not imply redundancy when the system is
in operation. Rather, redundancy is a function of the degrees
of freedom available to the system given the distribution of
different component types (i.e. the number of instances of each
type) and the set of functions that need to be performed.

In natural, self-organising systems, having functions re-
alised by components with different structures also usu-
ally implies that components are potentially multi-functional.
Structural differences allow components to perform differ-
ent functions in different contexts so that “while degenerate
components contribute to stability under conditions where
they are functionally compensatory, their distinct responses
outside those conditions provide access to unique functional
effects, some of which may be selectively relevant in certain
environments” [69]. This introduces another dimension to the

9Even in biological systems, the discussions of degeneracy are relatively
recent (most work in which it is explicitly mentioned was published after the
year 2000, although this may be simply a terminological rather than conceptual
shift), because biological robustness was presumed to originate in (duplication)
redundancy. This in turn was based on a technological analogy [60] and can be
seen as an example of where cross-domain typologies of key design principles
would be productive.

F2

F1 F3F4

F2

F1 F3F4

Fig. 3. General representation of degeneracy. Top: F4 can be fulfilled by
a single component of a given type (represented by the star). Bottom: in the
event of component failure, F4 can be shared by instances of three other
types of components (represented by the triangle, square and hexagon) that
are normally fulfilling other functions (here, F1, F2 and F3)

relationship between degeneracy and redundancy in that the
degree of redundancy might itself be context-dependent or
incomplete under certain conditions (e.g. with degradation in
performance, resulting in Holling’s ‘soft’ redundancy). In other
words, a given component can perform a particular function
(or perform a particular function to a certain degree) under one
set of conditions but perform a different function (or perform
the same function to a lesser degree) under a different set
of conditions. This also implies that the component can be
characterised as a different module in different contexts and
that if it exists in a system which realises these different
contexts, it can no longer be treated as a ‘pure’ module
but as a multi-functional component. Although it is most
intuitive to associate the multi-functionality of components
with real differences in their properties or behaviour under
different conditions. However, this is not the only way in
which components can be multi-functional. Instead, it may be
that a component simultaneously performs different functions
because of the different perspectives from which it can be
viewed. For example, a traffic light has a signalling role at the
level of individual drivers and a flow-control role at the level
of the traffic system [23].

III. CONCLUSIONS AND FURTHER WORK

From the discussions above, we identify two key areas that
should be explicitly attended to to avoid confusion with the
concepts of modularity, redundancy and degeneracy: (i) the
level or ‘granularity’ of analysis, both for components and for
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functions; and (ii) whether it is types or instances that are
being referred to, both for systems and their components. As
already discussed in Section II-A, different decompositions of
the system treat different sets of constituents as components. A
system with a modular, redundant or degenerate architecture at
one level of decomposition may not have such an architecture
at another level. In Systems Engineering, the notion of ‘level’
tends to be formulated in terms of components, functions and
systems (see Section II-A). In the Systems Sciences, partly due
to the influence of Physics, the notion of level is closely linked
to observation. This leads to more generalised formulations
which are typically based on ‘scope’ (the boundary of the
system being considered) and ‘resolution’ (the distinctions
that can be made within that boundary) [8].10 Specifying the
scope and resolution we are considering gives us a means of
formally specifying the level or ‘granularity’ of analysis and
tells us which entities we can treat as components and which
we should treat as (sub-)systems.

Perhaps more subtle is the distinction between types and
instances. A type, whether of a component or a system, defines
a set of possible states, properties and behaviours that can be
realised by its instances. However, any given instance of a
type (at a particular time) will only realise a subset of these.
For example, a system of a given type might be designed
with redundancy, but this property may not persist through its
complete lifespan; indeed, when considering such a system
instance after there has been failure, there will no longer
be redundancy until the redundant component(s) have been
replaced. During the system’s lifetime, modularity or redun-
dancy in its architecture can confer different costs and benefits.
For example, a redundant architecture may make a system’s
operation more costly (or less efficient) in a stable environment
but allow the system to adapt at lower cost (and hence operate
more efficiently) in a more dynamic environment. Similarly,
when we make statements about naturally occurring ‘types’
or species (e.g. the degeneracy in human lymphocytes confers
redundancy with respect to a given function), they may not
hold for specific instances (i.e. degeneracy may not result in
redundancy in a given human lymphocyte in a particular state
at some point in time if all components are fully ‘occupied’
in different processes).

The possible conflations and confusions discussed above
reveal the need for taking a more formal approach to defining
modularity, redundancy and degeneracy. As well as permitting
the exchange of knowledge across domains and applications,
such a common formal framework would also allow us to
quantify modularity, redundancy and degeneracy using ex-
isting measures (e.g. [64], [21]) and exploit more general
optimisation frameworks to analyse the costs and benefits of
different architectures (e.g. with respect to cost [54], flexibility
[56], quality [3]). Equally important however, is the ability
to map existing domain-specific classifications and typologies
onto such a formal framework. It is hoped that the current

10In [42], scope is also equivalent to α-composition, which refers to a
set of components that are structurally related or integrated with each other,
while resolution is equivalent to β-composition, which refers to a set of
components that belong to a common category. With respect to the earlier
modularity terminology, a ‘component’ can be seen to ‘α-compose’ and define
a scope for its constituents (which might themselves be physical entities or
even subsystems), while a ‘component family’ or ‘module type’ ‘β-composes’
its different variants.

article serves as a stimulus for cross-domain collaboration in
establishing such a framework and mapping. Such a mapping
would permit more efficient exploitation of existing bodies
of knowledge across domains. This would, in turn, promote
more effective approaches to understanding, maintaining and
designing the many different types of systems that Systems
Engineering and the Systems Sciences are concerned with.
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