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Ring attractors are a class of recurrent networks hypothesized to underlie the representation
of heading direction. Such network structures, schematized as a ring of neurons whose
connectivity depends on their heading preferences, can sustain a bump-like activity pattern
whose location can be updated by continuous shifts along either turn direction.We recently
reported that a population of fly neurons represents the animal’s heading via bump-like
activity dynamics.We combined two-photon calcium imaging in head-fixed flying flies with
optogenetics to overwrite the existing population representation with an artificial one,which
was then maintained by the circuit with naturalistic dynamics. A network with local
excitation and global inhibition enforces this unique and persistent heading representation.
Ring attractor networks have long been invoked in theoretical work; our study provides
physiological evidence of their existence and functional architecture.

S
tudies of neural circuits near the sensory
periphery have produced deep mechanistic
insights into circuit functions (1, 2). How-
ever, it has beenmore challenging to under-
stand circuit functions in central brain regions

dominated by recurrent networks, which often
produce complex neural activity patterns. These
dynamics play a major role in shaping cognitive
functions (3–7) , such as themaintenance of head-
ing information during navigation (8–10). A head-
ing representation must be unique (because an
animal can face only one direction at a given
time) and persistent (to allow an animal to keep
its bearings in darkness), yet must allow updating
thatmatches themagnitude and speed of heading
changes expected from the animal’s movements.
Theoretically, this can be accomplished by ring
attractor networks (11–14), wherein the posi-
tion of a localized subset of active neurons in a
topological ring represents the animal’s heading
direction. However, whether the brain uses these
hypothesized networks is still unknown (8, 15).
A recent study reported that a population of
neurons, called E-PG neurons (Fig. 1, C and D;
see supplementarymaterials for nomenclature),
in the Drosophila melanogaster ellipsoid body
(EB) appears to use bump-like neural activity dy-
namics to represent the animal’s heading in
visual environments and in darkness (16, 17). Here,
we establish essential properties of the network
that enables this representation.
We first determined whether the E-PG popu-

lation activity bump tracks the fly’s heading direc-
tion relative to its visual surroundings during
tethered flight (Fig. 1 and fig. S1). We used two-
photon imaging with the genetically encoded cal-
cium indicator GCaMP6f (18) to record dendritic
calcium activity of the entire E-PG population in
the EB while the fly was flying in a virtual-reality
LED arena. The azimuthal velocity of the visual

scene was proportional to the fly’s yaw velocity
(Fig. 1, A and B). As with walking flies (16), E-PG
population activity during flight was organized
into a single bump, whether the visual scene con-
tained a single bar (fig. S1B) or a more complex
pattern (Fig. 1G). The activity bump closely tracked
the fly’s heading in flight (Fig. 1K) and persisted
in darkness (Fig. 1H). However, unlike in walking,
the activity bump seldom tracked the fly’s motor
actions in darkness (Fig. 1, H and K, and fig. S1C),
potentially because tethering deprives the fly of nor-
mal sensory feedback about its rotational move-
ments from its halteres (19). Although the location
of the activity bump eventually drifted in some
flies, the bump’s movement was, on average,
uncorrelated to the animal’s turning move-
ments in darkness (Fig. 1K). These findings
suggest that the representation of heading in
the E-PG population has intact, visually driven
dynamics as well as persistence, but is largely
uncoupled from updating by self-motion cues
during tethered flight.
To test whether the fly’s compass network

enforces a unique bumpwithin the EB, we took
advantage of the relative persistence of the visually
evokedactivity bump indarkness, andaskedwheth-
er this bump could coexistwith an “artificial” bump
of activity. We used localized optogenetic stimula-
tion to create artificial activity bumps in different
locations within the E-PG population. Using a
transgenic fly line in which E-PG neurons co-
expressedCsChrimson (20) andGCaMP6f,weused
alternating two-photon laser scan lines of excita-
tion (higher laser intensity) and imaging (normal
laser intensity) to monitor changes in E-PG pop-
ulation dynamics in response to an optogeneti-
cally created spot of local activity (Fig. 2, A and B,
and fig. S2, A and B). By varying the intensity of
stimulation light delivered to the target location,
we could create bumps of increased calcium ac-
tivity (Fig. 2, C toF, andmovie S1). As thenewbump
formed, activity at the previous location began
to decline and eventually disappeared (Fig. 2D)
without significantly perturbing the fly’s behavior
(but see fig. S2E).When the optogenetic excitation

was terminated, the amplitude of the artificially
created bump settled at levels typically evoked by
sensory stimuli and did not disappear; it either
stayed in the induced location for several sec-
onds (fig. S2F) or slowly drifted away (see below)
(Fig. 3).
The bump’s uniqueness may arise through ei-

ther recurrent mutual suppression or an indirect
mechanism whereby strong bump activity in the
EB functionally inhibits feedforward sensory in-
puts to other E-PG neurons. To discriminate be-
tween these alternatives, we simultaneously excited
two locations on the EB ring. A reference location
was excited at a fixed laser power, and a second,
spatially offset location was excited at increasing
levels of laser power (fig. S2G and movies S3 to
S5). We could always suppress the reference
bump by increasing laser power at the second
location above a certain threshold, consistent
with mutual suppression.
Recurrent suppression can ensure a unique

activity bump through a simple winner-take-all
(WTA) circuit (fig. S3A). However, an animal’s
representation of its angular orientation should
favormore continuous updates based on turning
actions. Such gradual, ordered drift to nearby
locations would be more consistent with contin-
uous, or ring, attractor models (fig. S3, B to D).
We therefore examined changes in the location
of an artificially created bump after the stabili-
zation of its peak activity at the “natural” level.
The experiments were performed in darkness to
untether the bump from any potentially lingering
visual input (Fig. 3). If EB dynamics were driven
by a WTA network, bumps would be expected
to disappear at times and to jump to random
distant locations (fig. S3E). In contrast, the bump
drifted gradually around the EB (Fig. 3, B and
D, andmovie S6); this finding suggests that the
fly’s heading representation is updated through
functionally excitatory interactions between neigh-
boring E-PG neurons, consistent with a ring
attractor model. These observations together
rule out the possibility that network dynamics
in darkness result purely from cell-intrinsic me-
chanisms (21, 22) or slowly decaying visual input.
Most important, direct manipulation of E-PG
neuron activity changed the network state, which
implies that E-PG neurons do not merely mirror
dynamics occurring in a different circuit, but are
themselves an important component of the ring
attractor (23).
We next aimed to dissect the effective con-

nectivity pattern underlying ring attractor dy-
namics in the E-PG population. A wide range of
network structures can, in principle, implement
ring attractors (11, 13, 14, 24, 25). We focused our
efforts to a model space between two extreme net-
work architectures that are analytically solvable:
(i) a “globalmodel” based on global cosine-shaped
interactions (fig. S3B) (11, 13, 26) and (ii) a “local
model” based on relatively local excitatory inter-
actions (fig. S3D and supplementary text) (24, 27) .
Under constraints of a fixed bump width of 90°
to match physiological observations (Fig. 1J) and
an assumption of effectively excitatory visual in-
put without any negative bias, bothmodels could
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explain the basic properties of bump dynamics,
including its uniqueness and its persistence in
darkness. We therefore probed the network’s re-
sponse to more artificial conditions, such as
abrupt visual stimulus shifts.
We first examined experimentally how the E-PG

population responded to unnatural, abrupt visual
shifts. Depending on the distance of the shift, the
E-PG bump either “flowed” continuously (shorter
shift distances; Fig. 4, A and C, andmovies S7 and
S8) or “jumped” to the new location (longer shift
distances; Fig. 4, B and C, and movie S9) (16). In
simulations, both models predicted a mixture
of jump and flow responses, depending on the
strength andwidth of the abruptly shifting visual
input (Fig. 4D, fig. S4A, and supplementary text).
For example, weakwide input induced flows and
strongnarrow input evoked jumps (Fig. 4D).How-
ever, the jump-flow balance predicted by the two

models differed and was more consistent with
the local model in several aspects (Fig. 4D and
fig. S4A). First, the visual input strength we in-
ferred fromnormal conditions wasmuchweaker
than requiredby the globalmodel for bump jumps
(fig. S1D). Second, the global model required a
much-wider-than-normal range of visual input
strengths to explain jumps at multiple distances
(Fig. 4D, fig. S1D, and fig. S4A). Third, using pa-
rameters consistent with the rest of our findings,
we could reproduce the jump-flow ratio observed
in Fig. 4C with the local model but not with the
global model (fig. S4B).
To obtainmore concrete evidence, we compared

model predictions to experimentally observed
bump dynamics, under conditions in which input
strength, polarity, and shift distance were control-
led through optogenetic stimulation. To simulate
moderate and large input shift distances, we se-

quentially stimulated two small regions in the EB—
each with an angular width of 22.5°—separated
by either 90° or 180° (Fig. 4, E to G,movie S10, and
fig. S4, C to E). We then varied the stimulation
laser power to detect the threshold required for the
bump to jump (Fig. 4E). The laser power required
to elicit a jump was not significantly different be-
tween the two different shift distances, favoring
the local model (Fig. 4F). We then inferred the
strength of input to the network by comparing the
amplitude of the optogenetically evoked bump to
natural bump amplitudes in darkness. The opto-
genetic input strength required to induce jumps
was smaller than the global model’s prediction
but matched that of the local model (Fig. 4G)
and the range of the inferred visual input strength
under normal conditions (fig. S1D, fig. S4, D and
E, and movie S11). Finally, when we tested inter-
mediate models that lie between the extremes of
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Fig. 1. E-PG neurons encode body orientation relative to the visual world
during tethered closed-loop flight. (A) Setup schematic. (B) Close-up of
tethered flying fly. (C) Central complex. (D) Dendrites of each E-PG neuron
innervate wedge-shaped segment of EB; axons project to corresponding
glomeruli in PB and Gall. (E) Averaged calcium image of dendritic processes of
entire E-PG population segmented into 16 regions of interest (ROIs).
(F) Position (PVAdirection) and strength (PVA amplitude) of bumpobtained by
summation of 16 vectors whose lengths represent magnitude of fluorescence
transients (DF/F0). (G) GCaMP6f fluorescence transients in E-PG dendrites
during tethered flight in complex visual scene.Top: Visual pattern at sample

time points. Second row: Sample frames of calcium imaging.Third row: DF/F0
of 16 ROIs. Grayscale band denotes PVA amplitude; red line is PVA estimate.
Fourth row: PVA estimate and heading (blue). Bottom: Same as fourth row, but
unwrapped. (H) Fluorescence transients in darkness. (I) Number of activity
bumps in E-PG population across flies (n = 10) for three visual conditions.
Each dot with vertical line indicates mean ± SEM for each fly. Population mean
± SEM is shown at left of each scatterplot. (J) Bump width measured by full
width at half maximum. (K) Correlation between estimated bump position and
heading. (L) Angular offset between PVA estimate and scene orientation.
Whisker plots, mean ± circular SD.
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Fig. 2. E-PG neurons compete by mutually suppressing each other
through recurrent connections. (A) Schematic of simultaneous calcium
imaging and localized optogenetic stimulation. (B) Analysis procedure for
collected images. (C) Top: Temporal profile of two-photon optogenetic
stimulation. Bottom: Three sample frames (smoothed with Gaussian
filter). Yellow rectangle with arrow, stimulus OFF; red rectangle with arrow,
stimulus ON. (D) Time course of calcium dynamics from example fly (left)
and population (right). Gray background, optogenetic stimulation period;
gray lines, individual trials (left) or flies (right). Top: Mean F of stimulated

ROIs. Bottom: Mean of the four most active ROIs outside optogenetically
stimulated area before stimulation. Thick colored lines and colored shaded
area denote mean and SEM, respectively. (See fig. S2C for control
experiment.) (E) Distribution of fluorescence ratio during and before
stimulation. P < 0.001, Wilcoxon rank sum test between stimulated (red)
and outside stimulation (blue) areas. (See fig. S2D for control experiment.)
(F) Suppression by optogenetic stimulation. The x axis indicates distance
from stimulation position to existing bump; P < 0.001, t test for each distance.
Limited sample size prevented a statistical test for p/8.

Fig. 3. Drift of the ac-
tivity bump. (A) Sample
frames. Same convention
as Fig. 2C. (See movie S6.)
(B) Temporal evolution
of bump position
(PVA) over time. Gray
background denotes
stimulation period. Top:
Original bump positions of
individual trials (colored
thin lines are PVA
estimates). Second row: Distance between bump and stimulation position.
Red line and shade denote mean ± SEM. Bottom: Population mean ± SEM
(red) across flies (gray lines). (C) Same as (B), without CsChrimson. (D)
Distribution of bump drift distances after the end of optogenetic stimulation.
Colored lines represent different conditions. P = 0.324 between gray and

blue, P < 0.0001 between blue and red, P < 0.0001 between gray and
red; two-sample Kolmogorov-Smirnov tests without multiple-comparisons
correction. Distributions are skewed toward short drift distances. Inset
shows fraction of trials with drifting bump in each fly (P = 0.0008, t test
compared to 0.5).
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the local and global models (fig. S4, H and I,
and supplementary text), we found that anymodel
that exhibited the observed jumps in response to
aweak 22.5°-wide input had narrow connectivity
profiles (fig. S4I). All these observationswere once
again consistent with the local model.
Inmammals, heading representations are thought

tobedistributedacrossmultiple neural populations
and multiple brain areas (8). In Drosophila as
well, the compass system likely involves multiple
cell types, including neurons in the protocerebral
bridge (PB) (17, 23). Further, occasional changes
observed in the dynamics suggest network modu-
lation by other factors not yet known. For exam-
ple, we sometimes observed sudden changes in
E-PG dynamics, as when the amplitude of the
sensory-evoked activity bump changeddepending
onwhether or not the tethered fly was flying (see
supplementarymaterials) and, occasionally, during
flight [population vector average (PVA) amplitude
plots in Fig. 1, G and H, Fig. 4, A and B, and fig.
S1B]. Nonetheless, the E-PGpopulation provides a

powerful physiological handle on the internal
representation of heading (16): a single activity
bump moving through topographically arranged
neurons. The experimental approach this enabled
provides one avenue for investigating which of
multiple populations are key circuit components
of a computation and which simply read out the
results of that computation. We found that the
artificial bump created by directly manipulating
E-PG population activity displays natural dynam-
ics, which indicates that these neurons are a key
component of the heading circuit.
Our finding that the uniqueness of the E-PG

activity bump is ensured via global competition
strengthens the conclusion that this population
encodes an abstract internal representation of the
fly’s heading direction (16). Such abstract repre-
sentations permit an animal to untether its actions
from the grasp of its immediate sensory environ-
ment and thereby confer flexibility in both time
and behavioral use. Combining an analysis of arti-
ficially induced bump dynamics with theoretical

modeling allowed us to interrogate this recurrent
circuit architecture. We found that the effective
network connectivity profile was consistent with
ring attractor models characterized by narrow
local excitation and flat long-range inhibition.
This neural circuit motif of local excitation and
long-range inhibition is ubiquitous across many
brain areas and across animal taxa (28–31). Such
observations support the idea that common circuit
motifsmight be evolutionarily adapted to serve as
crucial building blocks of cognitive function.
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Representing direction in the fly
A population of cells called compass neurons represents a fruitfly's heading direction. Kim et al. used imaging and
optogenetics in behaving flies to elucidate the functional architecture of the underlying neuronal network. They
observed local excitation and global inhibition between the compass neurons. The features of the network were
best explained by a ring attractor network model. Until now, this hypothesized network structure has been difficult to
demonstrate in a real brain.
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