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1 Abstract12

Recent advances in molecular biology such as gene editing [Mahas et al., 2018],13

bioelectric recording and manipulation [Levin, 2012a] and live cell microscopy using14

fluorescent reporters [Mutoh et al., 2012], [V. Sekar et al., 2011] – especially with the15

advent of light-controlled protein activation through optogenetics [Bugaj et al., 2017] –16

have provided the tools to measure and manipulate molecular signaling pathways with17

unprecedented spatiotemporal precision. This has produced ever increasing detail about18

the molecular mechanisms underlying development and regeneration in biological19

organisms. However, an overarching concept – that can predict the emergence of form20

and the robust maintenance of complex anatomy – is largely missing in the field.21

Classic (i.e., dynamic systems and analytical mechanics) approaches such as least action22

principles are difficult to use when characterizing open, far-from equilibrium systems23

that predominate in Biology. Similar issues arise in neuroscience when trying to24

understand neuronal dynamics from first principles. In this (neurobiology) setting, a25

variational free energy principle has emerged based upon a formulation of26

self-organization in terms of (active) Bayesian inference. The free energy principle has27

recently been applied to biological self-organization beyond the neurosciences [Friston28

et al., 2015], [Friston, 2013]. For biological processes that underwrite development or29

regeneration, the Bayesian inference framework treats cells as information processing30

agents, where the driving force behind morphogenesis is the maximization of a cell’s31

model evidence. This is realized by the appropriate expression of receptors and other32

signals that correspond to the cell’s internal (i.e., generative) model of what type of33

receptors and other signals it should express. The emerging field of the free energy34

principle in pattern formation provides an essential quantitative formalism for35

understanding cellular decision-making in the context of embryogenesis, regeneration,36

and cancer suppression. In this paper, we derive the mathematics behind Bayesian37

inference – as understood in this framework – and use simulations to show that the38

formalism can reproduce experimental, top-down manipulations of complex39

morphogenesis. First, we illustrate this ’first principle’ approach to morphogenesis40

through simulated alterations of anterior-posterior axial polarity (i.e., the induction of41

two heads or two tails) as in planarian regeneration. Then, we consider aberrant42

signaling and functional behavior of a single cell within a cellular ensemble – as a first43

step in carcinogenesis as false ’beliefs’ about what a cell should ’sense’ and ’do’. We44

further show that simple modifications of the inference process can cause – and rescue –45

mis-patterning of developmental and regenerative events without changing the implicit46

generative model of a cell as specified, for example, by its DNA. This formalism offers a47

new road map for understanding developmental change in evolution and for designing48

new interventions in regenerative medicine settings.49
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2 An Introduction to Bayesian Inference50

Evolutionary change results from mutations in DNA and selection acting on51

functional bodies. Thus, it is essential to understand how the hardware encoded by the52

genome enables the behavioral plasticity of cells that can cooperate to build and repair53

complex anatomies. Indeed, most problems of biomedicine – repair of birth defects,54

regeneration of traumatic injury, tumor reprogramming, etc. – could be addressed if55

prediction and control could be gained over the processes by which cells implement56

dynamic pattern homeostasis. The fundamental knowledge gap and opportunity of the57

next decades in the biosciences is to complement bottom-up molecular understanding of58

mechanisms with a top-down computational theory of cellular decision-making and59

infotaxis. Relevant concepts have been developed in neuroscience and physics, but are60

generally not familiar to developmental or regenerative biologists [Friston et al.,61

2015], [Friston, 2013]. Here, we lay out the mathematical foundation of the type of62

Bayesian modeling employed by new approaches to understand metazoan cell63

cooperation to characterize – and simulate – pattern formation. We start by identifying64

a Lyapunov function that can be used to analyze and solve any dynamic system, using65

the fundamental theorem of vector calculus (i.e., the Helmholtz Decomposition). We use66

it to characterize the generalized flow of systemic states, in terms of convergence to a67

non-equilibrium steady-state. We then introduce the notion of a Markov blanket that68

separates the external and internal states of the system, where the Markov blanket is69

comprised of active and sensory states. Using this partition, we can then replace the70

Lyapunov function with a variational free energy to solve for the evolution of internal71

and active states and thereby characterize self-organization in far from equilibrium72

systems that can be partitioned into a cell (i.e., internal states and their Markov73

blanket) and the external milieu. Subsequent sections apply this formalism to illustrate74

morphogenesis and neoplasia using simulations. Bayesian inference is a statistical75

process, wherein Bayes theorem is used to update the probability of a hypothesis with76

respect to evidence obtained by measurement of the sensorium – or environment. In77

essence, any kind of information processing system infers unobservable (i.e., hidden)78

states of its environment by comparing sensory samples with predictions of sensory79

input and updating its expectations about the causes of that input. Bayes theorem rests80

on the three basic axioms of probability theory and is used to relate the conditional81

probability of an unobservable event A, given an observable quantity B, to the82

likelihood of B, given that A is true. This is written as:83

P (A | B) =
P (B | A)P (A)

P (B)
, (1)

where conditional probability P (A | B) is also called the posterior ; namely, the84

inferred probability of an event A, given an event B. Conversely, P (B | A) is the85

probability of B, given A, called the likelihood. The probability P(A) is called a prior86

belief and the probability of P(B), is called marginal likelihood or evidence. In Bayesian87

inference, the above relationship is used to accumulate information about an88

unobservable or hidden state by sampling measurable events. This is known as Bayesian89

belief updating, because it converts prior beliefs into posterior beliefs – based on a90

generative model. This is known as Bayesian belief updating that is used to update the91

agent’s prior beliefs based on its generative model, P (A | B) = P (B | A)P (A). In short,92

the likelihood assigned to the observation and prior beliefs are combined to form93

posterior beliefs.94

To describe the dynamics of an ensemble of information processing agents (as in95

cells, for example) as a process of Bayesian belief updating, we need to relate the96

stochastic differential equations governing Newtonian motion and biochemical activity97
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to the probabilistic quantities above. This is fairly straightforward to do, if we associate98

biophysical states with the parameters of a probability density – and ensure their99

dynamics perform a gradient flow on a quantity called variational free energy.100

Variational free energy is a quantity in Bayesian statistics that, when minimized,101

ensures the parameterized density converges to the posterior belief, as we will see below.102

In neuroscience, the minimization of variational free energy is referred to as active103

inference. This approach to neuronal dynamics has been successfully used to reproduce104

a variety of neuronal phenomena [Friston et al., 2017], [Ungerleider and Leslie,105

2000], [Adams et al., 2013], [Desimone and Duncan, 1995], [Barrett and Simmons,106

2015], [Corbetta and Shulman, 2002]. Crucially, exactly the same scheme has been107

shown recently – through computational proof-of-principle simulations – to produce and108

maintain the somatic patterning of self-organization [Friston, 2013], [Friston et al., 2015].109

We will see that when the basic condition for an inference type description of a system –110

namely, the existence of a Markov blanket separating external and internal states – is111

satisfied, agents such as biological cells form into organized conglomerations based on112

their generative models of how of their blanket states influence – and are influenced by –113

external states in the external milieu (i.e., the states of other cells) [Friston, 2013].114

In classical thermodynamic descriptions, this would be accompanied by an increase115

of thermodynamic entropy over the entire system, through localized increases in116

organization (i.e., decrease in entropy) of the states associated with each cell (i.e.,117

internal states and their Markov blanket). However, as biological systems, especially118

cells, are invariably open, far-from-equilibrium or non-equilibrium steady state systems,119

the dynamics of this process are almost impossible to compute. Instead, by focusing on120

a probabilistic account of self-organization, in terms of Bayesian belief updating, we can121

place an upper bound on the entropy of the system’s blanket states that is122

computationally tractable. In brief, we will see that the dynamics of system with a123

Markov blanket that self-organizes to non-equilibrium steady-state can be described as124

a gradient flow on this computable (variational) free energy bound. This approach has125

been shown to have a high predictive validity in neurobiology; both in terms of behavior126

and the neuronal correlates of action and perception. However, its application in the127

broader biosciences has not been explored, even though the basic assumptions behind it128

apply broadly.129

3 Mathematical Foundations130

In what follows, we introduce the mathematics that underwrites the Bayesian131

interpretation of non-equilibrium steady-state dynamics. We will start with a brief132

overview of the Helmholtz decomposition and Lyapunov functions in dynamical systems.133

We will see that one can formulate any dynamics in terms of a potential function that134

plays the role of a Lyapunov function. This is illustrated from the point of view of135

classical mechanics with dissipative aspects. We then derive the same result in terms of136

density dynamics using the Fokker Planck equation, in generalized coordinates of137

motion. This formulation shows that the potential or Lyapunov function is simply the138

negative log probability of a state being occupied at non-equilibrium steady-state.139

Crucially, this quantity is bounded from above by variational free energy. This means140

the flow of particular states at non-equilibrium steady-state can be cast as a gradient141

flow on the same quantity that is minimized by Bayesian belief updating.142
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3.1 Stability and Convergence in Coupled Dynamical Systems143

3.1.1 The Helmholtz decomposition144

The Helmholtz decomposition states that any sufficiently smooth (i.e., possessing145

continuous derivatives) vector field F can be decomposed into an irrotational (curl-free)146

and a solenoidal (divergence-free) vector field. Because an irrotational vector field has147

only a scalar potential and a solenoidal vector field has only a vector potential, we can148

express the vector field as149

F = −∇Φ +∇×A, (2)

where ∇Φ and ∇×A are the irrotational and solenoidal vector fields respectively.150

3.1.2 Lyapunov functions151

Lyapunov functions have been used extensively in dynamical systems theory and152

engineering to characterize the stability of fixed points of a dynamical153

system [Lyapunov, 1992], [Mawhin, 2015]. Lyapunov functions are generally defined for154

smooth systems through the following conditions:155

(a) L(x∗) = 0, andL(x) > 0 if x 6= x∗

(b) L̇(x) =
dL

dt

∣∣∣∣
x

≤ 0, for all x ∈ O ,
(3)

where O ⊆ R is an open set containing all states x.156

(a) requires the Lyapunov function L to be minimal for fixed points x∗ representing157

local minima, and (b) denotes convergence to these fixed points over time.158

Following [Yuan et al., 2014], we can generalize this local Lyapunov function of stability159

to a global Lyapunov function that plays the role of a potential function of any160

dynamical system. This follows by generalizing condition (a) to allow for saddle points:161

∇L(x∗) = 0 , (4)

Following [Yuan et al., 2014] we show how a Lyapunov function is equivalent to a162

potential function, when characterizing the stability of a dynamical system. In physics,163

a potential function ψ can be constructed to describe the flow of – or forces acting on –164

a particle through a potential energy gradient:165

Fpot = ∇ψ . (5)

These forces are conservative, where the total work done on the particle is166

independent of its trajectory (e.g., Gravitational force). However, there are also167

dissipative, or non-conservative forces, for which the total work done depends on the168

particle’s trajectory and is hence irreversible (e.g., frictional force). At steady-state,169

these components balance each other, so that the total Force Ftot is zero:170

Ftot = Fcon + Fdis = 0 , (6)

where Fcon and Fdis are the conservative and dissipative forces respectively. For171

example, in electromagnetics, the Lorentz force describes the forces acting on a moving172

charged particle:173

FLorentz = qE + ev ×B , (7)
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where q is its charge, v the velocity of the particle, and E and B are the electric and174

magnetic forces, respectively. We can therefore write Fcon as a combination of Lorentz175

force and potential energy induced force:176

Fcon = −∇ψ(x) + ev ×B , (8)

while the dissipative force can be expressed as a frictional force (due to dissipative177

random fluctuations):178

Fdis = −Sv . (9)

Here, S is a symmetric and semi-positive definite friction tensor.179

Combining these definitions, we can express the total force as a balance of the forces180

as defined above, resulting in:181

Sv + ev ×B = −∇ψ(x) , (10)

One can generalize this equation for arbitrary n-dimensional systems by replacing182

the vector-valued cross product v ×B = Tv, where T is an antisymmetric matrix to183

give the canonical form of (11):184

(S + T )v = −∇ψ(x) , (11)

Finally, following [Yuan et al., 2014] we can transform this expression into a standard185

form using a diffusion tensor Γ (defined as half the covariance of the dissipative random186

fluctuations) and a tensor Q (describing friction) satisfying ∇ ·Q∇ψ(x) = 0, by setting187

ψ(x) as the Lyapunov function L(x) as defined above so that we get:188

f(x) = v = (Q− Γ)∇ψ(x) , (12)

where f(x) describes the flow of states. This equation describes the evolution or flow189

of states resulting from (conservative and dissipative) forces at non-equilibrium190

steady-state.191

In summary, for any dynamical system at non-equilibrium steady-state, we can192

express the flow in terms of a scalar potential or Lyapunov function ψ(x) = L(x) ,193

where the flow can always be decomposed into a gradient flow, which minimizes the194

potential, and a solenoidal component, that flows on the iso-contours of the potential.195

The final move is to associate the Lyapunov function or potential with variational free196

energy as follows.197

3.2 Variational Free Energy198

Variational free energy is a function of internal states that allows one to associate199

the Lyapunov function from (17) with Bayesian model evidence and hence characterize200

systemic dynamics in terms of Bayesian inference and the implicit generative models.201

This device works by unpacking the non-equilibrium steady-state flow of external,202

internal and blanket states. Under this partition, instead of minimizing the Lyapunov203

function or (thermodynamic) potential, the internal and active states come to minimize204

variational free energy. Crucially, the variational free energy is defined in terms of a205

generative model and implicit posterior beliefs encoded by internal states. This206

minimization licenses an interpretation of self-organization in terms of belief updating207

according to Bayes rules above. In turn, this allows us to specify the resulting208

non-equilibrium steady-state in terms of a generative model – and ensuing inference – as209

we will see below. First, we will revisit the standard form for dynamics above, in the210

setting of generalized coordinates of motion and density dynamics as described by the211

Fokker Planck equation.212
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3.2.1 Generalized Flow213

We can describe dynamics in generalized coordinates of motion, denoted with a tilde,214

where x̃ is defined as:215

x̃ = (x, ẋ, ẍ, ...) , (13)

This augments a state with its velocity, acceleration and so on. Later, we will use216

generalized coordinates of motion to parameterize a posterior density over (the217

generalized motion of) external states (that are hidden behind the Markov blanket).218

Among other advantages, generalized coordinates of motion allow one to accommodate219

temporal correlations in random fluctuations. Assuming a smooth dynamical system,220

subject to random fluctuations, we can describe the motion of states with the Langevin221

equation:222

˙̃x = f(x̃) + ω̃, (14)

where f(x̃) is the generalized flow (or time evolution) of states due to forces acting223

on the states and ω̃ are random fluctuations, under the usual Wiener assumptions (the224

flow of states is made up of a process of independent, Gaussian increments that follow a225

continuous path).226

In statistical physics the ensuing dynamics is commonly described in terms of227

density or ensemble dynamics; namely, the evolution of the probability density p(x̃),228

through the Fokker-Planck equation. The Fokker Planck equation can be obtained for229

any Langevin equation, using the conservation of probability mass:230

ṗ(x̃) = ∇ · [ ˙̃xp(x̃)] = 0 , (15)

where ˙̃xp(x̃) describes the probability current. This turns the Fokker-Planck231

equation into a continuity equation, which reads:232

ṗ(x̃) = ∇ · Γ∇p−∇ · (f(x)p) . (16)

This is a partial differential equation that describes the time evolution of the233

probability density p(x̃) under dissipative (first term) and conservative (second term)234

forces. At non-equilibrium steady-state, the density dynamics is just the solution to the235

Fokker Planck equation:236

L(x̃) = −ln p(x̃) , (17)

such that ∇p = −p∇L and ṗ = 0.237

Using the Helmholtz decomposition from (2), we can now express steady-state flow238

in terms of a divergence-free component and a curl-free descent on a scalar Lyapunov239

function L(x̃) to obtain240

f(x̃) = (Q− Γ)∇L(x̃). (18)

This is the solution at non-equilibrium steady-state and is exactly the same solution241

for the flow of particles in the classical treatment above. Crucially, we can now see that242

the Lyapunov function is the negative log probability of finding the system in any243

(generalized) state L(x̃) = −lnp(x̃). This is also known as the self-information of a state244

in information theory (also known as surprisal, or more simply surprise). In Bayesian245

statistics it is known as the negative log evidence.246

In summary, any weakly mixing dynamical system that at non-equilibrium247

steady-state will evince a flow that can be decomposed into a gradient flow on surprise248

and an accompanying solenoidal flow. Because we can associate the Lyapunov function249
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in (18) with a free energy [Seifert, 2012], the system is effectively minimizing a free250

energy in its convergence to a set of attracting states (known as a random dynamical251

attractor), which have a high probability of being occupied [Crauel and Flandoli, 1994];252

namely a high marginal likelihood or evidence. This construction is used extensively in253

biophysical research fields, such as protein folding to solve for steady-state254

solutions [Dinner et al., 2000], [Lammert et al., 2012].255

3.2.2 Least Action Principles256

Physics offers a useful formalism to understand, at a quantitative level, the ability of257

biological systems (as evidenced by regulative development and regeneration) to work258

towards an invariant outcome, despite various perturbations. Understanding this259

’goal-directed’ activity is an important open problem in biological control.260

The least action principle can predict the emergence of form, in terms of the flow or261

paths of least action in biological systems. For example, in colonies, ants find the paths262

of least action to harvest food and bring it to the colony. This example considers their263

paths as flow channels, or trajectories, finding the least average action for each instance264

of foraging, given available resources. More generally, minimization of action in an open265

system leads to structure formation. The ’flows’ in such (dissipative) systems are of266

energy, matter and constituent elements along the paths of least action. An open267

dynamical system tends towards its state of least action, or the ’most action efficient268

state’. A canonical example of the emergence of such dissipative structures is when a269

moving fluid (e.g., a river) erodes obstructions to its flow to form a network of flow270

channels.271

In (dissipative) random dynamical systems [Arnold, 1995], [Crauel and Flandoli,272

1994], action is not minimized for each element of the system, but, on average over an273

ensemble of elements (or repeated trajectories of the same element) [Georgiev and274

Georgiev, 2002], [Georgiev et al., 2015], [Georgiev and Chatterjee, 2016], [Georgiev275

et al., 2017]. Obstructive-constraint minimization therefore reduces action for each276

event within the system and self-organizes it, forming a flow structure that could be277

construed as a dissipative structure [England, 2015], [Evans and Searles,278

2002], [Prigogine, 1978]. Crucially, since self-organizing open systems are not279

conservative, their structured flow is quintessentially dissipative. While the Lyapunov280

function of a physical system is readily used to establish the stability of a fixed point in281

dynamical systems, physicists commonly use the Lagrangian to solve the trajectory of a282

systems states. Classically, for a conservative system, the Lagrangian is defined as:283

L = T − V , (19)

where V is the potential energy of the system, defined through the constraints of the284

system, and T is the kinetic energy of the particles that constitute the system at hand.285

For any Lagrangian, the trajectory of states in generalized coordinates (t, x̃(t), ˙̃x(t)) are286

given by the solutions to the the Euler-Lagrange equation, which are bound by the287

principle of variations to be functions for which the following functional has extrema288

(i.e., is stationary):289

S(x̃) =

∫ t2

t1

L(t, x̃(t), ˙̃x(t)) dt . (20)

S integrates the Lagrangian of generalized states for boundary conditions defined for290

initial and final time points t1 and t2. The most likely path between these points is291

obtained when the functional derivative is zero; i.e., δS = 0. This is the Hamilton’s292

principle. In this case, the equations of motion are derived from the Euler-Lagrange293

equations which are the solutions of the principle of least action:294
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d

dt

∂L

∂ ˙̃xi
− ∂L

∂x̃i
= 0 for i = 1, 2, . . . , n. (21)

Where x̃i are the generalized coordinates and ˙̃xi the generalized velocities.295

For dissipative systems, this equation has additional dissipative terms. For example,296

if the dissipative function depends on the square of the velocity:297

F =
1

2
k ˙̃x2 (22)

Then the Euler-Lagrange equations become:298

d

dt

(
∂L

∂ ˙̃xi

)
− ∂L

∂x̃i
+
∂F

∂ ˙̃xi
= 0 (23)

The constraints to motion of the agents in a system are given additionally by the299

Lagrange multipliers.300

δ

∫ t2

t1

[L(t, x̃(t), ˙̃x(t)) +
∑
k

λk(t)gk(t, x̃(t))]dt = 0 (24)

Where λk are the Lagrange multipliers, and gk are the constraints [Arfken and301

Weber, 1995]. The solutions are the constrained Lagrangian equations of motion, which302

with the added dissipative terms are as follows.303

d

dt

(
∂L

∂ ˙̃xi

)
− ∂L

∂x̃i
+
∂F

∂ ˙̃xi
=
∑
k

λk
∂gk
∂x̃i

(25)

Terms with random noise can also be added to this equation, which are pertinent for304

biological systems [El Kaabouchi and Wang, 2015]. Because the Lagrangian describes305

the trajectories of particles under forces, the functional S is the action of the system.306

Hence, when the variational principle is applied to the action of a system in this307

manner, it is referred to as a least action principle. To apply least action principles to308

the kind of systems of interest in biology, it is necessary to consider the action of an309

ensemble of systems of particles. Minimizing the average action allows individual310

trajectories to deviate from their paths of least paths, so that they can reduce the311

action of other particles. The most likely solution for an ensemble minimizes the312

ensemble average of action, compared to other arrangements of particles and implicit313

constraints on their flow. As the system evolves, it searches forever lower minima of this314

average action [Georgiev and Georgiev, 2002], [Georgiev et al., 2015], [Georgiev and315

Chatterjee, 2016], [Georgiev et al., 2017]. This means that the principle of least action316

does not apply in isolation to each member of the ensemble but is contextualized by317

coupling between particles that depend upon many characteristics. These characteristics318

include: the number of particles, the number of interactions, the total action of the319

system within certain interval of time, etc. Furthermore, these interdependent functions320

(interfunctions) are bound by power law relations [Georgiev et al., 2015], [Georgiev and321

Chatterjee, 2016], [Georgiev et al., 2017]. From our perspective, the key observation322

here is that any (dissipative) random dynamical system can be formulated as a gradient323

flow on the log likelihood of its states. This is reflected in our solution L(x̃) = − ln p(x̃)324

to the Fokker-Planck equation in (17), which means the action is the time or path325

integral of the marginal likelihood or self-information:326

S =

∫ t2

t1

L(x̃(t) dt =

∫ t2

t1

ln p(x̃|m) dt , (26)
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for any system or model m. This means, the least action integral over the Lagrangian327

turns into an integration over the self-information of states, which is known as entropy328

in information theory. In short, the principle of least action manifests as a principle of329

least entropy – for systems that possess a random dynamical attractor – and thereby330

obtain non-equilibrium steady-state. We now consider the specific structure of the331

system or model m that underwrites Bayesian inference; namely, the Markov blanket.332

3.2.3 Markov Blanket333

A robust literature is developing around the ability of cells and many other aneural334

systems measuring aspects of their environment via specific sensors [Baluška and Levin,335

2016]. All biological systems can be analyzed in terms of sensory and internal states and336

the relationships between them [Rosen, 2012].337

A Markov partition separates all states x ∈ X into external e ∈ E, sensory s ∈ S,338

active a ∈ A , and internal states i ∈ I (with their generalized versions x̃, ẽ, s̃, ã, and ĩ),339

so that340

x̃ ∈ X = E × S ×A× I , (27)

where × denotes the Cartesian product that returns a product set of sets. The341

ensuing partition is defined in table 1. The Markov blanket separating external and342

internal states is hence given by S ×A, as depicted in Figure 1. The partition into343

external, internal and blanket states rests upon conditional independencies implicit in344

the system’s equations of motion or dynamics. In brief, external and internal states345

depend only upon blanket states, subject to the constraint that sensory states are not346

influenced by internal states and active states are not influenced by external states.347

With the Markov partition (and associated influences) in hand, the flow f(x̃) can348

then be decomposed into 4 parts:349

fe(ẽ, s̃, ã)

fs(ẽ, s̃, ã)

fa(s̃, ã, ĩ)

fi(s̃, ã, ĩ)

(28)

The response of active and internal states, to sensory stimuli, therefore, becomes350

(a) fa(s̃, ã, ĩ) = (Qa − Γa)∇ãL(s̃, ã, ĩ)

(b) fi(s̃, ã, ĩ) = (Qi − Γi)∇ĩL(s̃, ã, ĩ)

(c) L(s̃, ã, ĩ) = − ln p(s̃, ã, ĩ|m) ,

(29)

where m describes the Markov partition that defines the underlying random351

dynamical system (e.g., a cell).352

Set Dependent sets Description of set contents

sample space Ω random fluctuations or outcomes
external states E E ×A× Ω hidden states causing sensory inputs.
sensory states S E ×A× Ω signals mapping from external to internal states.

active states A S × I × Ω action determined by sensory and internal states.
internal states I I × S × Ω internal states causing action.

Table 1. Table denoting variables of Bayesian Inference.
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Fig 1. Markov blanket schematic. The internal and external states of each cell are
separated by a Markov blanket, which comprises the cell’s sensory and active states.
The internal states can be interpreted as the intracellular states of a cell, such as its
gene expression levels. While the sensory states correspond to the surface states of the
cell membrane, such as receptors and ion channel states. The active states are given by
the underlying active components of the cytoskeleton, such as actin filaments and
microtubules. By associating the gradient flows of the Markov blanket partition with
Bayesian belief updating, self-organization of internal states – in response to sensory
fluctuations – can be thought of as perception, while active states couple internal states
back to hidden external states vicariously, to provide a mathematical formulation of
action and behavior. Adapted from [Friston et al., 2015].

Inserting (c) into (a) and (b), gives:353

(a′) fa(s̃, ã, ĩ) = (Γa −Qa)∇ã ln p(s̃, ã, ĩ|m)

(b′) fi(s̃, ã, ĩ) = (Γi −Qi)∇ĩ ln p(s̃, ã, ĩ|m)
(30)

The key aspect of this dynamics is that the autonomous (i.e., active and internal)354

states of an agent depend upon same quantity, which reduces to the log probability of355

finding the agent in a particular state; where the agent’s states comprise the internal356

states and their Markov blanket. In this partition, autonomous states are those states357

that do not depend upon external states; namely, internal and active states. Solving358

equation (30) for the evolution f of active and internal states thus corresponds to359

evaluating the gradients of the log probabilities above that correspond to the360

Lagrangian of an open system. In general, this would be a very difficult problem to361

solve; however, we can now replace the Lagrangian with a variational free energy362

functional of a probabilistic model of how a system thinks it should behave, as follows.363

3.2.4 Kullback-Leibler Divergence and Variational Free Energy364

Using the above Markov blanket partition, we can now interpret internal states as365

parametrizing some arbitrary probability density q(ẽ) over external states. This allows366

us to express the Lagrangian or Lyapunov function as a free energy functional of beliefs,367

and implicitly a function of the internal states. In probability theory, an ergodic random368
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dynamical system is a system which has the same behavior averaged over time as369

averaged over the system’s states. In physics ergodicity implies that a system satisfies370

the ergodic hypothesis of thermodynamics, which says that over a sufficiently long time371

span, the time spent by a system in some region of state or phase space of individual372

states (with the same energy) is proportional the probability of the system be found in373

that region [Boltzmann, 2009].374

Using the statistical definition for an expected value as averaged over all states375

x ∈ R,376

E[X] =

∫
R

xp(x) dx , (31)

we can then express the variational free energy through the introduction of the377

Kullback-Leibler Divergence:378

DKL(p‖q) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx, , (32)

which is the expectation of the logarithmic difference between the probabilities p379

and q, where the expectation is taken using the probabilities p.380

Therefore, in place of the log density ln p(s̃, ã, ĩ|m) above, we can now write a381

variational free energy F that corresponds to the logarithmic difference between the382

(variational) density or Bayesian beliefs about external states q(ẽ) and actual383

probability densities p(ẽ, s̃, ã, ĩ|m) of all states under the Markov blanket m defined in384

Table 1 and Figure 1:385

F (s̃, ã, ĩ) =

∫
ẽ

q(ẽ) ln
q(ẽ)

p(ẽ, s̃, ã, ĩ|m)
dẽ

= − ln p(s̃, ã, ĩ|m) +DKL(q(ẽ)‖p(ẽ|s̃, ã, ĩ)) .
(33)

The first term is also called (Bayesian negative log) model evidence, or marginal386

likelihood, which essentially describes the likelihood that the sensory inputs were387

generated by a generative model implicit in the Markov blanket m. The second term is388

referred to as relative entropy and works as to minimize the divergence between the389

variational and posterior density q(ẽ) and p(ẽ|s̃, ã, ĩ) respectively. As a result,390

maximizing model evidence results into minimizing the free energy of the system, and391

because the divergence of the second term can never be less than zero, free energy is an392

upper bound on the negative log evidence. Using this expression, the flow of393

autonomous (i.e., active and internal) states becomes394

(a′′) fa(s̃, ã, ĩ) = (Qa − Γa)∇ãF (s̃, ã, ĩ)

= (Γa −Qa)∇ã ln p(s̃, ã, ĩ|m)− (Γa −Qa)∇ãDKL

(b′′) fi(s̃, ã, ĩ) = (Qi − Γi)∇ĩF (s̃, ã, ĩ)

= (Γi −Qi)∇ĩ ln p(s̃, ã, ĩ|m)− (Γi −Qi)∇ĩDKL .

(34)

The key thing to note here is that the gradient descent on variational free energy395

will reduce the divergence in equation (32) to its lower bound of zero (because the396

divergence cannot be less than zero). At this point, the gradients of the divergence in397

equation (34) disappear and the dynamics reduce to the self-organization in equation398

(30), which is what we want to solve.399

This is important because the variational free energy bound in equation (33) can be400

evaluated in a straightforward way given a generative model; namely, the joint401
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probability over (generalized) external, internal and blanket states. On this view, we402

can associate the joint probability in equation (33) with a likelihood; namely, the403

probability of an cell’s states, given external states and a prior; namely, the prior404

probability of a cell’s states (i.e., internal states and their Markov blanket). Finally, this405

means that q(ẽ) plays the role of a posterior density over hidden or external states406

under a particular Markov blanket or model (m). Crucially, this variational posterior is407

parameterized by internal states. In other words, we can talk about the internal states408

encoding beliefs about external states.409

In summary, to solve the problem of self-organization, we can specify a generative410

model for a cell and integrate (34). Before we turn to the construction of this generative411

model, we will briefly consider the ensuing (Bayesian filtering) scheme we used below to412

simulate self-organization in terms of dynamical belief updating in subsequent sections.413

3.3 Bayesian Filtering and Self-Organization414

We have seen above that one can replace the Lyapunov or Lagrangian function for415

any dynamics of a system that is equipped with a Markov blanket with a variational416

free energy that depends upon a generative model. This variational free energy is,417

effectively, a variational (upper) bound on model evidence; here, interpreted in terms of418

the probability of an agent’s state (see equation (1)). This means that one can always419

interpret any self-organization to non-equilibrium steady-state (i.e., no time variation of420

the density over states) in terms of maximizing a quantity that plays the role of421

Bayesian model evidence. This is sometimes referred to as self-evidencing, a concept422

from brain sciences, where the agent (usually the brain) has to identify an evidentiary423

boundary between itself and its environment as a necessary condition for424

inference [Hohwy, 2016], [Moutoussis et al., 2014].425

The variational free energy here is exactly the same mathematical construct used in426

statistics and variational Bayes. Simple examples of this include Kalman filtering and427

particle filtering, for inferring hidden states under dynamic Bayesian networks. Similar428

schemes have been used to infer genetic regulatory network structures from available429

genomic microarray time-series measurements [Lijun et al., 2008], [Noor et al., 2012].430

The generalization of methods like Kalman filtering to a non-linear setting (in431

generalized coordinates of motion) leads to generalized (variational) filtering. These432

induce a variational free energy bound on model evidence by assuming under a433

fixed-form (usually a Gaussian) for the variational density q(ẽ) above. This fixed form434

assumption underwrites the variational approximation that renders an intractable435

integration problem (30) into a tractable optimization problem that can be expressed as436

a gradient descent (34). The ensuing optimization rests upon a particular generative437

model – and implicit priors – which, in the research presented in this paper corresponds438

to the target morphology, or goal state [Friston et al., 2008], [Friston, 2008].439

In summary, variational filtering is the quantification and minimization of a440

variational free energy, which places an upper bound on the dispersion of a particle’s441

internal states and their Markov blanket [Buckley et al., 2017], [Friston et al., 2010].442

Variational free energy hence converts any process of self-organization into a gradient443

descent on a free energy landscape, where basins correspond to attractor states, or goal444

states – akin to the target morphology – as described next.445

4 Modeling Morphogenesis446

In this section, we illustrate self organization to non-equilibrium steady-state using447

the variational principles described above, by trying to explain the behavior of a model448

of pattern regulation by considerations of information processing and error minimization449
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with respect to a specific target morphology. In this setting, the game changes subtly450

but profoundly. Above, we have seen that the dynamics of any random dynamical451

system, equipped with a Markov blanket, can be formulated in terms of a gradient flow452

on variational free energy. As a reminder, a Markov partition separates all states x ∈ X453

into external e ∈ E, sensory s ∈ S, active a ∈ A , and internal states i ∈ I (with their454

generalized versions x̃, ẽ, s̃, ã, and ĩ). Variational free energy rests on an unknown455

generative model that produces the dynamics responsible for self-organization. Here, we456

turn this formulation on its head by specifying a generative model – and implicit457

variational free energy function – and simulate self-organization by solving the equations458

of motion in equation (34). In other words, we specify the form of the attracting set in459

terms of a probabilistic generative model of how external states perturb blanket states460

(i.e., a likelihood model) and how external states evolve (i.e., a prior). To do this, we461

have to simulate both the flow of autonomous (i.e., internal and active) states of each462

cell or agent and the external states that constitute its immediate milieu. In other463

words, we have to specify the external dynamics as a generative process and a464

generative model of that process entailed by the flow of internal states.465

To illustrate the basic phenomenology, we will consider the self-assembly of an466

ensemble of cells to simulate morphogenesis, under different conditions. The generative467

model required is relatively simple but serves to illustrate the potential utility of this468

variational (free energy) formulation of self-assembling autopoietic behavior.469

4.1 Constructing the Model470

We need to specify the generative model given by the probability density p(s̃, ã, ĩ|m)471

of sensory states s, active states a and internal states i, as well as the dynamics of the472

environment, determined through the flow fẽ and fs̃ of external states e and sensory473

states s, respectively. This allows us to specify the requisite equations of motion for the474

system and its external states. Here, we will adopt a probabilistic nonlinear mapping475

with additive noise:476

s =g(1)(e(1)) + ω(1)

e(1) =g(2)(e(2)) + ω(2) ,
(35)

where the superscripts denote the first and second levels of our hierarchical model g.477

Gaussian assumptions about the random fluctuations or noise ω mean that we can write478

the requisite likelihood and priors as:479

p(s̃, ã, ĩ|ẽ1) =N (g(1)(e(1)),Π(1))

p(ẽ1|ẽ2) =N (g(2)(e(2)),Π(2)) .
(36)

where N is the normal distribution, and Π(t)) denotes the precision (or inverse480

variance) of the random fluctuations.481

We then construct the approximate posterior density q(ẽ) introduced in (32) using482

the associated Lagrangian or Lyapunov function483

L(x̃) =− ln p(s̃, ã, ĩ, ẽ|m)

=− ln p(s̃, ã, ĩ|ẽ1)− ln p(ẽ1|ẽ2) ,
(37)

Under a Laplace assumption, the variational density becomes a normal distribution:484

q(ẽ) = N (̃i,−∇ĩ̃iL(s̃, ã, ĩ, ĩ)) , (38)
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where ∇ĩ̃iL(s̃, ã, ĩ, ĩ)) denotes the curvature of the Lagrangian with respect to485

internal states. With this generative model and assumed form for the variational486

density, we can now evaluate the variational free energy for any given sensory state and487

perform a gradient descent according to equation (34).488

An interesting technical detail here rests upon the use of generalized coordinates of489

motion. This means that one can associate the dissipative flow with a gradient descent490

on the expected energy function in equation (37) (noting that the entropy term of the491

variational free energy does not depend upon the means encoded by internal states).492

Furthermore, we can associate the divergence-free flow with an update term, so that493

Γ∇F (s̃, ã, ĩ) =∇Eq[L(s̃, ã, ĩ)]

Qi∇F (s̃, ã, ĩ) =Dĩ = (it, i, ...)

∇ ·Dĩ =0 .

(39)

Here, D is a block matrix operator that acts upon generalized coordinates of motion494

to return generalized motion (with zero divergence). Γ and Q are the diffusion and495

friction tensor introduced previuosly, and Eq[L] is the expected value of L under the496

variational density; i.e., posterior belief q(ẽ). This divergence free component effectively497

plays the role of an update term in Bayesian filtering – that can be interpreted as a498

gradient descent on variational free energy in a moving frame of reference. See [Friston499

et al., 2010] for details. In summary, this scheme can be regarded as a generalized500

(variational) filter, in which the internal states become the expected values of the501

external (hidden) states.502

Finally, we assume that action is sufficiently fast to use the adiabatic approximation503

ẽ ≈ ã, which greatly simplifies the specification of external dynamics.504

4.2 Variational Free Energy Minimization505

By effectively minimizing variational free energy, each Markov blanket or agent will506

appear to engage in belief updating, under the generative model, so that the evolution507

of the system will inevitably lead to a non-equilibrium steady state of minimal free508

energy. This provides a rigorous foundation for an intuitive concept familiar to all509

students of development and regeneration: cells act, remodeling tissues and organs, to510

minimize the global difference between the current configuration and a species-specific511

anatomical goal state [Pezzulo and Levin, 2015], [Pezzulo and Levin, 2016]. Cells and512

cell groups change their behavior based on signals they perceive from their environment513

(measurement) and act with respect to expectations (genetically encoded, and shaped514

by cellular learning) [Baluška and Levin, 2016].515

Because free energy corresponds to (an upper bound on) Bayesian model evidence516

− ln p(s̃, ã, ĩ|m) as introduced in equation (33), this self-organizing behavior will also517

appear to be self-evidencing. This description of dynamics uses terms like Bayesian518

beliefs q(ẽ) and self-evidencing in a purely technical (non-propositional) sense, which519

can be ascribed to simple systems like macromolecules and cells. The simulations below520

consider a small set of cells that are equipped with the same generative model such that521

they collectively self-organize to minimize variational free energy in an interdependent522

way, which has all the hallmarks of morphogenesis. This example is appropriate to523

models such as the highly-regenerative planaria [Levin et al., 2019], [Durant et al., 2016].524

All the cells in the simulation start off with random initial signaling profiles near the525

center of their environment. In order for them to self-organize to the target526

configuration, each cell must infer its own location in the ensemble by forming and527

testing beliefs (or predictions) q(e) about the hidden causes of the signaling528

concentrations it senses (i.e., , the secretion profiles and hence cell identities of the other529
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Fig 2. Schematic of variational Bayesian simulation of morphogenesis illustrated via a
type of regenerative patterning observed in planarian flatworms and other organisms.
A: When dissecting out the center piece of a planarian flatworm, the constituent cells
will remodel into a new worm. Here, cells that form different tissue types were grouped
together as one cell in the simulation for simplicity, with the cell signaling types defined
in Figure 3. B: Expected Signal concentrations (background color) at each final
position (colored stars) in the target morphology encodes the cellular model of inference,
with the color coding from A. C: Cells are constantly comparing their sensed signal
concentrations to their expectations by minimizing their free energy functional, which
effectively aims to reduce the prediction error ε̃ defined in equation (47) (dashed lines)
on expected sensory states s defined in equation (40) (continuous lines).

cells (Figure 2). This can be formalized in terms of minimizing free energy, which530

effectively minimizes prediction errors ε̃.531

In more detail, in these simulations, each cell has control over what level of signals it532

can secrete of the four different generic types used here, and each cell can move in any533

direction. Furthermore, each cell has a generic place-encoded model of some (shared)534

target configuration based on signaling concentrations that would be sensed under that535

configuration. This means that for each of the four possible cell types associated with536

specific positions in the cell cluster cells expect to sense specific concentrations of537
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Fig 3. Encoding of Target morphology. This modeling scheme casts the arrangement of
cells as an inference process, where the target morphology is encoded in each cell by
expectations of external signals e∗c for any given position e∗x in the defined target
morphology that constitutes the final configuration of cells. Each row in e∗c corresponds
to a different signaling type, while every column represents the signal expression states
for a different cell. This figure uses the same color coding used to differentiate cell types
as in Figure 2.

signaling molecules. See Figure 3.538

Sensory states s corresponded to chemotactic concentrations of intracellular,539

exogenous and extracellular signals, such that:540

s =

scsx
sλ

 =

 ec
ex

λ(ex, ec)

+ ω , (40)

where e are the external states of concentrations c and positions x of other cells.541

The signal concentration sλ at each position of the i -th cell is given through the542

secretion and diffusion of signaling molecules of each other cell j and itself, given by the543

coefficient:544

λi(ex, ec) = τ ·
∑
j

ecj · exp(−k dij) , (41)

where ecj is the combination of the four signals expressed at each position j,545

depicted in Figure 2B as colored coded around the target positions e∗, which are546

defined in Figure 3, and547

dij =| exi − exj | , (42)

is the distance between the i-th cell and the remaining cells, to which the secreted548

signal diffuses with diffusion coefficient k.549

To preclude over-sensitivity to concentration gradients in early simulation steps –550

and model the emergence of cellular response to extracellular signals (e.g., through551

increased expression of cell surface receptors over time) – a time sensitivity factor552

τ ∈ [0, 1] was included, with553
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τ = 1− exp

(
t

T

)
, (43)

where T = 1
ln(2) , analogous to the half-life in exponential decay. This can be thought554

of as modeling changes in interfunctions that describe the characteristics of systems,555

which we introduced in section 3.2.2.556

By analogy to stem cell-like behavior, we specify the same generative model g for557

each cell:558

g(e) =

e∗ce∗x
λ∗

σ(e), (44)

where λ∗ = λ(e∗c , e
∗
x) is the signal concentration at the target locations, and559

σ(ej) =
exp ej∑
j exp ej

(45)

is the softmax function (or normalized exponential). This function is often used in560

neural networks to enforces a sum to one constraint, which allows an interpretation as a561

categorical distribution over mutually exclusive outcomes.562

Using these expressions – and the equations of motion from the previous sections –563

we can express the flow of internal and active (i.a. autonomous) states from (34) as564

(a′′) fa(s̃, ã, ĩ) = (Qa − Γa)∇ãF (s̃, ã, ĩ) = Dã−∇ãs̃ ·Π(1)ε̃

(b′′) fi(s̃, ã, ĩ) = (Qi − Γi)∇ĩF (s̃, ã, ĩ) = Dĩ−∇ãε̃ ·Π(1)ε̃−Π(2)ĩ ,
(46)

while suppressing higher order terms (under the assumption of a smooth system,565

which is guaranteed by (43)). Here, ε = s− g(i) is the prediction error associated with566

sensory states – the state of chemotactic signal receptors – and can hence be expressed567

as:568

ε =

εcεx
ελ

 =

sc − e∗cσ(i)
sx − e∗xσ(i)
sλ − λ∗σ(i)

 . (47)

D corresponds to the matrix derivative operator on generalized states and the signal569

precision Π(1) is set to 1. We assumed Gaussian priors (with a mean of 0) over the570

hidden states with a small precision Π(2) (i.e., high variance) with a log precision of571

minus two.572

In summary, under this sort of generative model (with continuous states and573

additive Gaussian noise), the internal states organize themselves to minimize574

(precision-weighted) prediction error based upon predictions of sensed signaling states575

from neighboring cells. In neurobiology, this scheme is also known as predictive coding576

and can be regarded as a generalized form of Bayesian filtering as described in section 3.577

Predictive coding refers to describing the dynamics of the system in terms of prediction578

errors ε through accumulation of model evidence lnp(s̃, ã, ĩ|m), which maximizes579

likelihood p(s̃, ã, ĩ|ẽ1) [Friston and Kiebel, 2009]. This is the process underlying the580

formulation of variational free energy above.581

In the next section, we describe the results of some numerical analyses that582

underwrite the validity of this variational formulation by reproducing empirical583

behaviors in silico. In particular, we simulate responses of this multicellular ensemble to584

perturbations commonly used experimentally.585
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4.3 Perturbation Simulations586

4.3.1 Animal Body Polarity Inversion587

First, we introduced a gradient in the generative process for the signaling inputs that588

each cell receives from its environment, depending on each cell’s chemotactic behavior589

(sensing and acting upon signals) and signaling outputs (secretion). This represents590

either a change in the way signaling concentrations are spread, maintained or591

counterbalanced in the extracellular environment of the cell (reflecting the experimental592

use of viscosity or osmolarity modifying compounds for example), or in sensitivity of the593

cell to changes in its environment (similar to the way we use the time sensitivity factor594

τ). This manipulation could be implemented experimentally by using receptor activity595

modifying drugs; for example, ethanol for neurotransmitters in the brain, [Banerjee,596

2014], or retinoic acid through cross-modulation of cell-surface receptor signaling597

pathways. [Chambon, 1996].598

To simulate formal changes – such as body polarity inversion – one can change the599

process that generates sensory inputs, as given by (40); namely, the mapping between600

sensory states s and external states e that constitute chemotactic concentrations of601

intracellular, exogenous and extracellular signals. Specifically, we changed the mapping602

sx = ẽx to:603

(a) sx = (ẽx)2

(b) sx = −(ẽx)2
(48)

for the vertical axis, thereby changing the perceived distance of each cell to another604

in the vertical direction. In this instance, (a) results in a double head formation, and (b)605

in a double tail formation (cf. Figure 4).606

Essentially, by introducing the terms corresponding to the square of the gradients607

with a different sign in (48), we changed the way sensory states (signaling inputs) were608

updated from changes in extracellular concentrations (external states) depending on the609

position of other cells. The squared gradient produces two things:610

(1) it causes the signal concentrations to be updated only based on positive (or611

negative with the minus sign in (48)(b)) values, essentially causing each cell to explain612

all sensory inputs as an increased signal from one direction.613

(2) It increases the sensitivity of sensory inputs to extracellular concentrations614

(external states), thereby increasing the effective precision.615

4.3.2 Anomalous Cell Behavior616

Some of the deepest insights into biological regulation come from observing instances617

where the normally tight processes go awry such as the cellular defection known as618

cancer [Moore et al., 2017], or disorders of development seen in birth defects. These619

processes can readily be modeled in our paradigm via changes of cellular620

decision-making. If we introduce the same type of gradient as in the previous621

simulations, but for only one cell, then we are effectively altering the sensitivity of that622

cell to changes in its environment (cf. Figure 5).623

This can be specified formally as624

sx,j = (ẽx,j)
2 for j = jf and sx,j = ẽx,j for j 6= jf , (49)

where jf denotes the affected cell.625

By introducing a local increase in a cellular signaling, this phenotype can be rescued626

enabling other cells to respond more definitively to their joint signaling. For example,627

the induced mutant phenotype above can be rescued by applying a square root to the628
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Fig 4. Time-lapse movie montage of simulations of morphogenesis with mirrored
anterior/posterior polarity (head and tail positioning). A: 8 cells with initially
unspecified cell types start to infer a correct target morphology by performing
chemotaxis and updating their posterior beliefs, or predictions, q – and hence secretion
profile. B: Using (48)(a), we introduced a positive squared gradient in the generative
process for the signaling inputs that each cell receives from its environment, resulting in
double head formation. C: Using (48)(b), we introduced a negative squared gradient in
the generative process for the sensory inputs that each cell receives from its
environment, resulting in double tail formation.

distance exponent in the signal concentration of the misbehaving cell. This attenuates629

the diffusion of signals given by λ in (41) for the affected cell jf into:630

λjf = τ ·
∑
l

ecl · exp(−k
√
djf l) . (50)

In short, with a simple manipulation of extracellular diffusion one can reinstate631

normal pattern formation. These examples illustrate how simple changes to632

extracellular signaling can have a profound effect on self-organization – an effect that633

depends sensitively on the ensemble behavior of cells – that depends upon a shared634

generative model. A key point – made by these kinds of simulations – is that one can635

reproduce aberrant morphogenesis (and an elemental form of cancer) without changing636

any intracellular mechanisms (i.e., the encoding of an implicit generative model). The637

message here is that casting morphogenesis, in terms of an inference process means that638

the ability of a cell to model its external milieu depends upon the coherence between639

the external generative processes and the model of those processes. Perturbations to640

either can result in profound changes in ensemble dynamics. Here, we restricted the641

manipulations to the external biophysics; i.e., the generative process. In future work, we642

will explore a larger repertoire of manipulations that speak to key empirical phenomena.643

Matlab software running these simulations, under different conditions is available from644

the author and can be downloaded as part of the academic SPM software from645

https://www.fil.ion.ucl.ac.uk/spm/software/ (accessed via a graphical user interface646

invoked with the command >> DEM).647
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Fig 5. Time-lapse movie montage of simulations of morphogenesis with single cell
aberrant signaling. A: 8 cells with initially unspecified cell fates start to infer a correct
target morphology by performing chemotaxis and updating their beliefs and hence
secretion profile. B: One of the cells (white arrow) has a perturbed signaling response
mechanism and hence fails to correctly infer its place in the ensemble. C: The same
aberrant cell from B initially is rescued by an increased signaling sensitivity of the other
cells, leading another cell (green arrow) to switch position with the aberrant cell (pink
arrow).

5 Discussion and Conclusion648

Here, we provide a rigorous mathematical foundation for a poorly-understood but649

very important phenomenon: cellular decision-making, such as occurs during pattern650

regulation. The Bayesian inference framework enables quantitative models linking651

sensory mechanisms with functional behaviors in cells and tissues. In section 3 we have652

shown that the variational free energy that is being minimized in Bayesian inference653

follows out of classical analytical and statistical physics considerations as a unique form654

of a least action principle. Specifically, we showed that a Lyapunov function plays the655

role of a potential function in any dynamical system, and is being minimized to solve656

the flow of states in that system through a gradient descent. We then introduced the657

notion of a Markov blanket partition of states that allowed us to replace the Lyapunov658

function – or the related Lagrangian that is being used to compute the gradient descent659

in classical least action principles – with a variational free energy functional. This660

functional turns the classical gradient flow of any dynamical system into a gradient661

descent on the expectation of the (logarithmic) difference between (Bayesian) beliefs662

about external states and an actual probability density of all the states – as given by663

the Kullback-Leibler divergence. For non-equilibrium systems, this transforms an664

intractable integration problem of a thermodynamic potential into a tractable665

integration over a probabilistic model of how a system thinks it should behave.666

In section 4, we showed how the attractor (or goal) states of the variational free667

energy landscape – on which the gradient descent described occurs – can be associated668

with a target morphology in a developmental, regenerative, or aberrant biology setting,669

thereby casting morphogenesis as an inference process. Through Bayesian inference670
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simulations of such processes, we showed how we can control the morphogenesis671

outcome through manipulations to the external biophysics (i.e., the generative process672

of our simulations) through knowledge of the underlying generative model of the673

inference process.674

Before discussing these simulation results in more detail and drawing conclusions for675

the applications of this Bayesian formulation of self-organization to the experimental676

control of morphogenesis in real biological systems, we will first analyze the the677

mathematical assumptions that went into this model.678

5.1 Summary of Mathematical Assumptions Underlying the679

Model680

The variational formulation that underlies the simulations above demand a681

sufficiently smooth system. This means that abrupt changes in signaling can disrupt the682

simulations. In our applications, this effect was finessed by using a time sensitive683

coefficient from (43).684

This type of time dependent sensitivity emerges from theoretical considerations and685

can, in principle, be tested for empirically in real biological systems. This sort of time686

sensitivity may manifest either through an increase of receptors, or proteins modifying687

the efficiency of signal transduction inside the cell; for example, in the levels of688

G-proteins, which act as molecular switches for multiple signaling pathways [Gilman,689

1987]. When analyzing a cellular system that starts from a pre-specified configuration,690

such as in later stages of development or regeneration, this time-sensitivity may not be691

a prominent feature of the (implicit) generative model.692

We have also made Gaussian assumptions about the fluctuations ω in the flow of693

states and a Laplace assumption for the approximate posterior density (cf. (38)). The694

Laplace assumption is often applied to modelling dynamics in neuronal populations, by695

a Gaussian neuronal population density. This allows population dynamics to be696

described by equations concerning the evolution of the population’s mean and697

covariance, using the Fokker-Planck equation [Marreiros et al., 2009], [Friston et al.,698

2007]. This assumption has also been applied to gene regulatory networks [Imoto et al.,699

2001], which motivate the notion of internal states used in this work.700

Most fundamentally, we have assumed the existence of a Markov blanket, which701

separates external and internal states through a set of active and sensory states. This702

statistical boundary does not necessitate a stationary or unique boundary between703

agents, but can be mutable [Clark, 2017], and conform to the type of simulations704

in [Friston, 2013]. Nevertheless, it needs to be verified empirically that signal705

transmission and adaptive responses on a cellular level are not instantaneous (as in our706

adiabatic approximations), and that active states indeed cause changes in sensory states.707

Finally, we have appealed to nonequilibrium steady-state (under ergodic708

assumptions) for the type of dynamics studied here. While this is a common assumption709

made in the description of dynamical systems, some argue that any biological system is710

non-ergodic at a molecular level [Longo and Montévil, 2013]. Yet it remains unclear711

whether this holds true for states of cellular signaling and genetic expression investigated712

here. Furthermore, the ergodic (e.g., weakly mixing) assumptions that underlie the free713

energy principle are only those inherent in the existence of a pullback attractor. The714

pullback attractor is defined as a state, or set of states, to which a random dynamic715

system would converge to (yet not necessarily reach due to random fluctuations) if given716

enough time and with continuous mixing under these ergodic assumptions. In other717

words, the key assumption that underlies the variational formulation on offer here is the718

existence of an attracting set that underwrites non-equilibrium steady-state.719
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5.2 Extending Variational Principles to Open Systems720

Because we have shown that the variational free energy minimization in active721

inference is related to the variational principle of least action, it is worth pointing out722

where these two approaches diverge. Due to the nature of the variational calculus and723

least action principles, in which action is integrated over a time interval between fixed724

time points, it is normally only applicable to closed systems – as opposed to biological725

systems that operate far from thermodynamic equilibrium.726

In order to measure action efficiency in complex open systems, the principle of least727

action needs to be modified from the minimal action along a single, fixed trajectory, to728

the minimum of the average action over an ensemble of trajectories within a certain729

interval of time.730

In open systems, there is a constant flow and change of the number of states and731

constraints, as well as of the energy of the system itself. This will cause the system to732

converge onto an attractor state, without ever truly reaching it, but instead to be in a733

constant process of reorganization . [Georgiev, 2012].734

The same is true for the simulations in this paper, where the system starts in a far735

from equilibrium state, which necessitated the introduction of the time sensitivity tau.736

Furthermore, while the variational free energy is minimized over time and the system737

appears to approach an attractor state, partial information flow remains in the updating738

of prior beliefs, largely due to the intrinsic random fluctuations ω of the external states.739

5.3 Applicability of Bayesian Inference to Biological Systems740

One central aspect of the modeling based on the Bayesian inference proccess741

employed above is the updating of prior beliefs (that is the parameters of an agent’s742

internal model encoding its expectation of its environmment) via evidence accumulation743

through the Bayes theorem of (1), as dictated by ever changing active states which,744

effectively, fulfil predictions. Because this process rest on the minimization of the745

variational free energy and with it the divergence of prior belief and posterior density746

introduced in (33), this necessarily implies an observable non-random exploratory747

mechanism that can accumulate the evidence needed to update priors. For example, in748

visual perception, saccadic eye movements have been identified and modeled as just749

such an exploratory mechanism that accumulates model evidence efficiently [Friston750

et al., 2012].751

In this setting, actions are selected that minimize expected free energy, where752

expected free energy features uncertainty reducing, information seeking aspects. In753

non-neural biology, adaptation to environmental stresses have been shown to elicit an754

exploratory response in gene expression, such as previously unexpressed exogenous755

genes in rats following stress stimulation [Elgart et al., 2015]. Theoretical simulations756

from the same group have shown that this compensation can – in theory – be explained757

using random exploratory expression of genes until the correct gene is expressed [Soen758

et al., 2015], [Schreier et al., 2017], but the question must be asked how efficient this759

would be in the context of short term adaptation, and how negative effects resulting760

from random expression of detrimental genes would be counterbalanced. Instead, we761

hypothesize along the lines of Bayesian inference, that this gene expression is not762

random, but follows distinct trajectories that are encoded by changes in active states of763

the cell (e.g., protein translation, cytoskeletal rearrangement and membrane764

permeability and receptor activity modifications).765

In other words, we postulate that expression of exogenous or otherwise unexpected766

genes is driven by a directed, explorative process where active states become expression767

profiles that aim to minimize variational free energy through prior beliefs encoded by768

the internal epigentic states in the Bayesian sense as outlined above. If none of these769
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distinct trajectories are present, we would have to conclude that no Bayesian inference770

process can take place on the level of gene expression in such an adaptation experiment771

but would instead have to move towards an adaptation mechanism on a different772

time-scale, such as its transient bioelectric states. As seen in the previous sections, the773

same is true for prior beliefs (such as encoded by the epigenetic state of a cell), which774

need to be able to be updated within a time window smaller than that of physiological775

adaptation.776

5.4 Predictive Capability of the Simulations777

In our simulations, we were able to systematically perturb the overall morphology of778

our model system without changing the internal, generative model of the constituent779

cells; i.e., the gene regulatory networks that motivate the internal states. First, we780

produced alterations of anterior-posterior polarity (i.e., two head or two tail regions),781

which emulate phenotypes as inducible in planarian regeneration [Durant et al., 2017].782

While the mechanism of the phenotype induced by transient bioelectric pattern783

perturbations explored by Durant et al. was not explicitly used in this model, it is784

worth pointing out that both leave the underlying, hardwired internal states – i.e., the785

genetic level – unmodified, but instead work on the computational cellular processes786

that encode map of the final target morphology [Levin, 2012b].787

Second, we reproduced abnormal signaling and functional behavior of a single cell788

within a cellular ensemble as a first step in cancer formation. We show that with simple789

modifications of the inference process we can induce – and rescue – mispatterning of790

these developmental and regenerative events – without changing the hard-wired791

generative model of the cell as determined by its DNA. We conclude that macro- onto792

micro-scale feedback during development and regeneration – especially considering the793

capability of developing tissue to dynamically adapt to changes in its environment –794

implies the need for active inference on a cellular level, and that the variational795

formalism explored in this work provides us with the means to predict and control its796

outcomes.797

5.5 Concluding Remarks798

A major challenge in current attempts to control the morphogenetic outcomes in799

developmental or regenerative biological systems is the quantitative modeling of how the800

signaling and sensing activities of individual cells are coordinated and regulated to801

result in large-scale anatomical patterns that enable robust structure and802

function [Levin, 2012b], [Gilbert and Sarkar, 2000].803

An important gap in the field is that the complexity and non-equilibrium nature of804

the biological systems investigated have made the computation of the flow of states over805

time – and thereby the control of that flow to a different stable attractor state806

corresponding to a desired morphogenetic outcome – near impossible.807

Here, we show how a variational free energy formulation – which casts morphogenesis808

as a (Bayesian) inference process – allows us to control specific morphogenesis outcomes809

through manipulations to the external biophysics; by providing the fundamental insight810

and modeling capability of how these biophysical, morphogenetic fields [Levin,811

2012b], [Goodwin, 2000] are interpreted by individual cells and used to coordinate on a812

macroscopic level. Notably, this capability is achieved without changing the implicit813

generative model of a cell as specified, for example, by its DNA. Therefore, this814

formalism offers a new road map for understanding developmental change in evolution815

and for designing new interventions in regenerative medicine settings, where816

system-level results of interventions on the genomic level hard to predict.817
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Equipped with these proof-of-principle results, we can now explore a larger818

repertoire of manipulations that speak to key empirical phenomena in developmental819

and regenerative biology. Crucially, the challenge will be to write – and test at the820

bench – a generative model for a real developmental, regenerative, or aberrant biological821

system, where realistic biophysical parameters can be fed into an experimentally822

tractable in vivo model for unprecedented rational control of growth and form [Pezzulo823

and Levin, 2015], [Pezzulo and Levin, 2016].824
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