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 Introduction: Rainbow Trout as a Model of

Social Stress 

 In teleost fish, as in other vertebrates, individuals that 
have recently lost fights or hold a subordinate position in 
a stable social hierarchy often show a general behavioral 
inhibition, characterized by suppressed aggressive and 
reproductive behavior, reduced feeding, and low locomo-
tor activity [Abbott et al., 1985; Francis et al., 1993; Hunt-
ingford et al., 1993; Winberg and Nilsson, 1993; Winberg 
et al., 1993; Oliveira and Almada, 1998; Øverli et al., 1998; 
Höglund et al., 2001; Gomez-Laplaza and Morgan, 2003; 
Amorim and Almada, 2005; Black et al., 2005; Hsu et al., 
2006]. Physiologically, subordinate fish show many of the 
signs of prolonged stress that are commonly observed in 
mammals, including elevated hypothalamus-pituitary-
interrenal (HPI) axis activity, decreased hypothalamus-
pituitary-gonadal (HPG) activity, and chronically in-
creased brain serotonin (5-hydroxytryptamin, 5-HT) 
metabolism [Winberg et al., 1992; Winberg and Nilsson, 
1993; Francis et al., 1993; Fox et al., 1997; Winberg and 
Lepage, 1998; Øverli et al., 1999; Elofsson et al., 2000; 
Höglund et al., 2000; Bass and Grober, 2001; Doyon et al., 
2003; Parikh et al., 2006].

  Social modulation of behavior is particularly distinct 
in small groups of salmonid fish, in which the fish can be 
highly aggressive and territorial both in nature and under 
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 Abstract 

 Salmonid fishes such as the rainbow trout  (Oncorhynchus 
mykiss)  are frequently used to study behavioral and neuro-
endocrine effects of socially induced stress. A predictable 
aggressive response to territorial intrusion, a well described 
neuroanatomy, and many essential similarities in the stress 
response in fishes and other vertebrates are among the ad-
vantages of this comparative model. One conspicuous dif-
ference when compared to mammals, however, is that in 
telost fish and other non-mammalian vertebrates, neuro-
genesis persists into adulthood to a much higher degree. 
Very little is known about the functional significance of indi-
vidual differences in the rate of brain cell proliferation in fish, 
or whether structural changes in the fish brain are influ-
enced by the social environment. In this paper we discuss 
the observation that brain cell proliferation is reduced in 
subordinate fish, focusing in particular on whether such in-
dividual variation reflects a difference in coping style or is 
indeed a response to social interactions. 
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conditions of rearing in captivity. Migratory salmonids 
are pre-eminently territorial at life stages when they re-
side in rivers, and clear dominance/subordination rela-
tionships form in experimentally established pairs of ju-
venile salmonids. In such assemblages, dominant indi-
viduals can often be seen to monopolize food, and initiate 
virtually all aggressive acts [Øverli et al., 1998, 1999;
Höglund et al., 2002].

  Rainbow trout  (Oncorhynchus mykiss)  is one of the 
most commonly used fish species in biological studies 
[Thorgaard et al., 2002]. It is also one of the most aggres-
sive salmonid species, and has been used in a range of 
influential studies on the neuroendocrine and behavior-
al correlates of social position [see, e.g., original papers by 
Pottinger and Pickering, 1992; Johnsson and Björnsson, 
1994; Winberg and Lepage, 1998; Øverli et al., 1999; Slo-
man et al., 2001, and reviews by Sloman and Armstrong, 
2002; Gilmour et al., 2005; Summers and Winberg, 2006]. 
The neuroanatomy of salmonid fish has also been exten-
sively studied [Northcutt and Bradford, 1980; Billard and 
Peter, 1982; Holmqvist and Ekström, 1995; Teitsma et al., 
1999; Carruth et al., 2000; Vetillard et al., 2002]. This 
crucial knowledge, in combination with a predictable ag-
gressive response to territorial intrusion, makes salmo-
nid species such as the rainbow trout ideal for compara-
tive studies of the neuroendocrine correlates of social po-
sition. A particularly advantageous aspect of the behavior 
of domesticated rainbow trout is that these fish easily 
adapt to new environments, including rearing in isola-
tion. A period of isolation prior to the construction of 
new social groups is often an essential part of experimen-
tal design, serving to minimize the effect of previous so-
cial interactions, or to reveal trait characters that predict 
social position [Øverli et al., 2004]. 

  The Interaction between Social Position and 

Stress Coping Style 

 A caveat of all research on social interactions is the in-
herent difficulty in determining which traits are causes 
and which are consequences of social position. Behavioral 
inhibition in subordinate animals can be viewed as a pas-
sive coping response serving to avoid costly interactions 
with aggressive dominant individuals [Leshner, 1980]. It 
has, however, also been firmly established that coping style 
has a genetic component [Driscoll et al., 1998; Koolhaas et 
al., 1999; Lepage et al., 2000; Ellenbroek and Cools, 2002; 
de Boer et al., 2003; Veenema et al., 2003]. In rainbow trout, 
the magnitude of the cortisol response to stress shows both 

consistency over time and a moderate to high degree of 
heritability, and high-responding (HR) and low-respond-
ing (LR) lines of rainbow trout have been generated by in-
dividual selection for consistently high or low post-stress 
cortisol values [Pottinger and Carrick, 1999]. Genetically 
determined differences in HPI-axis activity affect social 
standing in such a way that LR fish usually win fights for 
social dominance [Pottinger and Carrick, 2001]. Other 
studies suggested that LR fish are also characterized by a 
rapid recovery of food intake after transfer to a novel envi-
ronment, and a reduced locomotor response in a territo-
rial intrusion test [Øverli et al., 2001, 2002]. Hence, some 
of the features of the LR trout line suggest that they repre-
sent selection for a proactive stress coping style, as defined 
by Koolhaas et al. [1999]. It should, however, also be point-
ed out that the behavior of the HR-LR lines of fish is high-
ly context dependent, and are influenced by factors such as 
novelty of the environment and group size [Schjolden et 
al., 2005, 2006; Schjolden and Winberg, 2007]. The appar-
ent parallel to genetically determined stress coping styles 
in mammals, and the existence of similar trait associations 
in unselected populations of rainbow trout [Øverli et al., 
2004, 2006] nevertheless suggest an evolutionarily con-
served correlation among multiple traits.

  Based on the observation that rapid resumption of 
food intake in a new environment is a highly predictable 
indicator of the outcome of fights for dominance in both 
fish and  Anolis  lizards [Øverli et al., 2004; Korzan et al., 
2006], Summers et al. [2005] were able to demonstrate a 
range of region-specific differences in brain serotonergic 
function between presumptive dominant and subordi-
nate animals while they were still kept in isolation. Hence, 
there is every reason to think that some of the physiolog-
ical and behavioral characteristics that have previously 
been interpreted as effects of rank might in reality reflect 
pre-existing individual variation. On the other hand, it 
has been shown that individuals retain the capacity to 
rapidly change their physiology and behavior in response 
to social opportunity [Burmeister et al., 2005; Burmeis-
ter, 2007]. In any case, subordination and chronic stress 
might alter hormone feedback and responsiveness, and 
perhaps reinforce pre-existing differences, so that domi-
nant and subordinate individuals will respond different-
ly to any intended and unintended experimental stressor. 
Contradictions in the literature on social interactions 
and stress have been pointed out by several reviewers 
[e.g., Creel, 2001; Honess and Marin, 2006], and interac-
tions between inherited differences in stress coping style 
and acute and chronic effects of social position are likely 
to be responsible for many of these.
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  Adult neurogenesis and other forms of structural plas-
ticity in the brain have received much attention in asso-
ciation with social stress. Reduced hippocampal neuro-
genesis appears to be central to the pathophysiology of 
chronic stress and depression [Dranovsky and Hen, 2006; 
Warner-Schmidt and Duman, 2006]. Adult hippocampal 
neurogenesis also represents an intercept between the 5-
HT system and the HPA axis. Thus measuring neurogen-
esis in animal models of social stress and stress coping 
styles might shed new light on the dynamics of these sys-
tems. In line with the topic of this symposium, the rest of 
this paper is devoted to discussing differences in neuro-
genesis between dominant and subordinate animals, fo-
cusing in particular on whether such individual variation 
reflects a difference in coping style or is indeed a response 
to social interactions.

  Linking Physiological, Behavioral and Cognitive 

Traits – Possible Role of Neurogenesis 

 A long standing dogma in neuroscience was that the 
adult mammalian brain is incapable of cell renewal. It is, 
however, currently agreed that new neurons and glial 
cells are generated in the brain of adult individuals from 
all major vertebrate taxa, a process known as adult neu-
rogenesis [Eriksson et al., 1998; Gould et al., 1999a; Biebl 
et al., 2000; Gross, 2000; Garcia-Verdugo et al., 2002; 
Nottebohm, 2002; Kempermann et al., 2004; Laplagne et 
al., 2006; Ramirez-Amaya et al., 2006]. Adult neurogen-
esis in the hippocampus has received much attention, as 
it appears to be highly important for behavior, mood and 
cognition in both animals and humans, and is affected by 
a range of environmental, endocrine, and pharmacologi-
cal factors [Bodnoff et al., 1995, Gould et al., 1997, 1998, 
1999b; Brezun and Daszuta, 1999; Duman et al., 2001; 
Nilsson et al., 1999; Jacobs et al., 2000; Shors et al., 2001; 
Lipkind et al., 2002; Malberg and Duman, 2003; Sapol-
sky, 2003; Huang and Herbert, 2005; Vaynman and Go-
mez-Pinilla, 2006; Fuchs et al., 2006].

  In particular, stress and glucocorticoid exposure have 
been shown to reduce adult hippocampal cell prolifera-
tion [Gould et al., 1992; Cameron and Gould, 1994; Cam-
eron et al., 1995; McEwen, 1996], whereas voluntary ex-
ercise [van Praag et al., 1999a, b] and environmental en-
richment do the opposite [Kempermann et al., 1997; 
Nilsson et al., 1999]. Not surprisingly, then, the experi-
ence of social subordination leads to reduced neurogen-
esis [Gould et al., 1997, 1998; Blanchard et al., 2001].

  In animal models of depression, and not only those 
utilizing social stress, a general behavioral inhibition is 
often seen after chronic, severe, or unpredictable stress-
ors [Willner, 1990; Weiss and Kilts, 1998; Anisman and 
Matheson, 2005]. Treatment with anti-depressants such 
as serotonin reuptake inhibitors increases neurogenesis 
[Malberg et al., 2000; Duman et al., 2001], and prevents 
both the reduction in neurogenesis and the behavioral 
inhibition associated with stress [Czéh et al., 2001; Mal-
berg and Duman, 2003]. Schmidt-Hieber et al. [2004] 
showed that associative long-term potentiation can be in-
duced more easily in young neurons than in mature neu-
rons under identical conditions. These authors raised the 
hypothesis that newly generated neurons express unique 
mechanisms to facilitate synaptic plasticity, which might 
be important for the formation of new memories. Conse-
quently, newborn hippocampal neurons are assumed to 
have a central function in cognition [Aimone et al., 2006]. 
Reduced cognitive performance, i.e., reduced ability to 
interpret a situation based on previous experience, might 
reduce predictability and control, and hence promote 
passive, or reactive, behavioral stress responses.

  The question of whether genetically determined dif-
ferences in stress coping style also incur differences in 
hippocampal cell proliferation was addressed by Veene-
ma et al. [2004]. Working with the long (LAL) and short 
(SAL) attack latency mouse strains, these authors found 
that hippocampal cell proliferation was less affected by 
stress in the proactive and aggressive SAL mice. Higher 
glucocorticoid levels and reduced 5-HT signaling [Vee-
nema et al., 2003, 2004; Veenema and Neumann, 2007] 
in the LAL mice might be contributing to this difference. 
Genetic influence on hippocampal neurogenesis has also 
been shown in several other studies [Hayes and Nowa-
kowski, 2002; Kempermann and Gage, 2002; Schau-
wecker, 2006; Kronenberg et al., 2007]. The observation 
that social stress affects neurogenesis [Gould et al., 1997] 
and structural plasticity in the brain [Magarinos et al., 
1996; Fuchs and Flügge, 2003] has received wide atten-
tion, but the possible interaction between these effects 
and pre-existing differences in stress coping style is less 
studied.

  Effect of Social Stress on Telencephalic Cell 

Proliferation in Rainbow Trout 

 Compared to mammals, neurogenesis persists into 
adulthood to a much higher degree in the central nervous 
system of teleost fish and other ectothermic vertebrates 
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[Font et al., 2001; Zupanc, 2001a, 2006]. The number of 
brain cells increases with age, body weight, and body 
length in teleosts [Birse et al., 1980; Zupanc and Horschke, 
1995], and specific regions of active cell division, prolif-
eration zones, have been found in all major brain areas of 
adult fish [Zupanc and Horsche, 1995; Ekström et al., 
2001; Zupanc et al., 2005]. The continuous generation of 
cells contributes to the well-documented ability of fish to 
regenerate parts of the central nervous system after in-
jury [Stuermer et al., 1992; Zupanc and Ott, 1999]. As 
commented by Zupanc [2001b], this impressive degree of 
proliferation makes it particularly interesting to examine 
adult neurogenesis from a comparative point of view. 
Very little is, however, known about the regulation and 
functional significance of neurogenesis in teleost fish.

  In a recent experiment [Sørensen, 2005], pairs of rain-
bow trout were allowed to fight for dominance, and were 
then left to interact for 4 days. The thymidine analogue 
5-bromodeoxyuridine (BrdU) was administered intra-
peritoneally to all fish 24 h prior to the end of the exper-
iment. Through incorporation into the DNA of cells
going through S-phase, BrdU acts as a marker of prolif-
eration. Proliferating cells were visualized immunohisto-
chemically and quantified in transverse sections of the 
telencephalon, in which areas homologous to the mam-
malian hippocampus are thought to be located based on 
both anatomical and functional evidence [Northcutt and 
Bradford, 1980; Butler, 2000; Rodríguez et al., 2002; Por-
tavella et al., 2004].

  Brain stem monoamine metabolism and plasma cor-
tisol were analysed in fish from the same experiment. 
These data confirmed that subordinate fish were chroni-
cally stressed, for instance showing significantly elevated 
concentrations of the serotonin metabolite 5-hydroxyin-

dole acetic acid (5-HIAA concentrations in control, dom-
inant, and subordinate fish, respectively, were: 69.7  8  
10.1 ng/g, 73.7  8  10.2 ng/g, and 105.8  8  10.8 ng/g, with 
F (2,26)  = 3.5, p = 0.04) and increased plasma cortisol con-
centrations (cortisol in control, dominant, and subordi-
nate fish, respectively, were: 33.3  8  9.2 ng/ml, 22.9  8  6.7 
ng/ml, and 88.0  8  22.4 ng/ml in control, dominant, and 
subordinate fish, respectively, with F (2,29)  = 6.0, p = 0.007). 
As expected, subordinate individuals also showed re-
duced forebrain cell proliferation (stained nuclei/mm 3  in 
control, dominant, and subordinate fish, respectively, 
were: 2,041  8  224, 1,634  8  141, and 1,276  8  76, with 
F (2,12)  = 5.8, p = 0.02) ( fig. 1 ). The data suggests that social 
interaction leads to reduced cell proliferation in both 
dominant and subordinate fish, although more so in
subordinate fish, which was the only group where appro-
priate post-hoc comparisons revealed a statistically sig-
nificant difference compared to controls. If the lower pro-
liferation seen in subordinate fish only reflects a pre-ex-
isting difference, one would expect the control group (a 
random selection of isolated, non-disturbed animals) to 
contain an equal number of presumptive dominant and 
presumptive subordinate individuals. This group should 
then be intermediate to both other groups. Instead, the 
intermediate values are displayed by the dominant fish.

  Further evidence from behavioral analysis also sug-
gests that aggressive social interactions have a major in-
fluence on brain cell proliferation. Daily observation of 
the frequency of aggressive acts in each pair revealed that 
the aggression received by subordinate fish on the first 
day of interaction correlated negatively with the number 
of BrdU marked cells in the telencephalon (Pearson r 2  = 
0.77, p = 0.05). Neither the number of aggressive acts re-
ceived on the final day of interaction (R 2  = 0.14, p = 0.53), 

  Fig. 1.  BrdU-positive cells in the dorsal and 
ventral nuclei of the ventral telencephalon 
of ( a ) control, ( b ) dominant and ( c ) subor-
dinate fish. 
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nor the total number of aggressive acts received during 
the whole observation period (R 2  = 0.13, p = 0.55) showed 
any trend towards such a relationship. The number of 
subordinate fish that was subject to the BrdU immuno-
histochemistry (n = 5) is too low to allow firm conclu-
sions based on correlative measures. The observation that 
initial aggression is important, but not what happens af-
terwards, also seems somewhat contradictory. It should, 
however, be pointed out that a previous study also showed 
that it was, in fact, aggression received at the earliest stag-
es of hierarchy formation that determined neuroendo-
crine impact in subordinates [Winberg and Lepage, 
1998].

  In comparison, a recent study by Mitra et al. [2006] 
found that individual differences in hippocampal cell 
proliferation in intruder rats was not related to aggression 
received by the subject, but rather to the frequency of de-
fensive behavior shown by each test subject. These au-
thors concluded that individual differences in stress-re-
lated behavior influenced cell proliferation in the mouse 
hippocampus.

  It is, however, not unlikely that there also could have 
been a pre-existing difference between the individuals 
assuming dominant and subordinate positions. The 
groups’ differing levels of cell proliferation could reflect 
a pre-existing difference in the vulnerability to social 
stress. This is obviously complicated by the fact that the 
subordinate fish are exposed to a completely different 
stress level than dominant fish while in the hierarchy, ac-

companied by differences both in cortisol levels and 5-
HT activity.

  It is becoming increasingly more evident that genetic 
factors are highly important in determining predisposi-
tion for depressive disorders [Hayes and Nowakowski, 
2002; Kempermann and Gage, 2002; Schauwecker, 2006; 
Kronenberg et al., 2007] Also, the fact that the previously 
mentioned SAL and LAL mouse strains display differ-
ences in baseline neurogenesis [Veenema et al., 2004], not 
only indicates that there could be a distribution of base-
line neurogenic rates in a natural population, but also 
that these could, indeed, correspond with stress coping 
style. One can only speculate on whether a reduced base-
line neurogenesis in itself would be a determining factor 
for social subordination, or if it appears as a side effect of 
other factors that predispose an individual for a subordi-
nate position. As previously mentioned, behavior in isola-
tion can predict social position in rainbow trout [Øverli 
et al., 2004] in the same way as in Anolis lizards [Korzan 
et al., 2006]. Thus it would be of huge interest to expose 
animals predicted to be dominant and subordinate in an 
otherwise equal pair to either social dominance or sub-
ordination through pairing with smaller or larger ani-
mals. Together with an investigation of baseline neuro-
genesis performed on a larger selection of animals this 
could shed light on whether the rate of neurogenesis is a 
determining factor for social position, a side effect of oth-
er inherent traits or merely a product of a stressful situa-
tion. 
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