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ABSTRACT 

The validity of perceptual theories cannot be considered only in 
terms of how well the explanations fit experimental observations. 
Rather, it is argued that sufficient consideration must also be given 
to the physical realizability of the explanation. Experimental scien- 
tists attempt to explain their data and not just describe it, in 
essence, providing an algorithm whose behavior leads to the ob- 
served data. Thus, computational plausibility is not only an appro- 
priate but a necessary consideration. One dimension of plausibility 
is satisfaction of the constraints imposed by the computational 
complexity of the problem, the resources available for the solution 
of the problem, and the specific algorithm proposed. It is shown that 
such constraints play critical roles in the explanations of perception, 
intelligent behavior, and evolution. 

The foundation of many modern perceptual theories arises from the 
computational hypothesis: biological perception can be modeled computa- 
tionally as an information processing task. However, many argue that 
computational theories cannot explain biological behavior and that a 
computational theory would at best be an analogy. Is there any other type 
of explanation? In physics, cosmology, or chemistry, explanations and 
theories are put forward and the only requirement for their validity is 
that they account for the experimental observations. Would a cosmologist 
be required to create a universe in order for his theories to be taken seri- 
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ously? Or a biologist life? A theory that accounts for more observations 
than another is a better theory. Theories whose predictions are falsified 
are modified or rejected. Further, computation plays a large role in modern 
theory formation in the above disciplines. Computer simulation in partic- 
ular has been a very powerful tool in the physical sciences. Yet no cosmol- 
ogist would claim that he is creating a universe when building a computer 
simulation, and no one would criticize that cosmologist for not doing so. 
Yet the resulting theories would be considered valid if actual observations 
were explained. So, modeling as used in this essay has no implications of 
creating artificial life: rather computation is used as the formalism for an 
explanatory theory of perception with predictive power. 

A key difference here is that disciplines such as physics or cosmology 
do not appear to inherently involve information processing, whereas per- 
ception and intelligence in general do appear to involve information pro- 
cessing. It seems inconceivable that we will ever be able to construct a uni- 
verse of the magnitude and complexity of the one we live in. But, it does 
seem possible to soon construct machines with the same number of proces- 
sors and connections as the human brain.' 

Given the computational hypothesis, I claim that there is one basic is- 
sue that constrains all theories, regardless of implementation, namely 
computational complexity (amount of time and processing hardware re- 
quired to reach a solution). Unfortunately, it appears that all problems 
are too hard in their general form (require unrealizable amounts of time or 
hardware or both). Thus, a new style of complexity analysis is required 
that attempts to solve these too hard problems in the context of the 
available resource limits and performance requirements. The full general- 
ity of the problem will necessarily be sacrificed in order to achieve this. 
Thus, 

problem complexity 
resource limits 
performance specifications 

form an important first set of constraints that must be satisfied. If one is 
concerned with brain models, then values relating to human brains and 
performance must be considered. If one is building a machine system, the 
type of analysis is the same, even though the results of the analysis will 
differ. Other design constraints include: 

cost to develop 
cost to replicate 

The most recent computer from Thinking Machines Corporation, for example, the CM-5, 
has a peak processing rate of about 10" operations per second, while the human visual cortex 
may have about l O I 5  operations per second. This is not too far from the numbers of neurons and 
connections in the brain; in addition, each of the CM-5 processors seem to have much more 
power than a neuron. 
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physical shape and size, or packaging 
weight 
power consumption 
temperature control 
communication requirements and restrictions. 

How do all of these constraints interact? It does not seem sensible to ap- 
proach design as an optimization task of any sort: optimizing along one 
design variable necessarily will affect the others. We need to seek satis- 
fying solutions, that involve design trade-offs along all variables in order 
to yield a solution. The trade-offs may differ depending on the implemen- 
tation medium: in particular, trade-offs for a silicon implementation may 
not be the same as those for a neural implementation. 

This contribution focuses on the first of the above constraints: problem 
complexity. The combinatorial problems are very apparent, and in fact in 
most (if not all) natural problems, optimal solutions are computationally 
intractable in any implementation, machine or neural. A few examples are 
in order. 

i) Vision (the first two examples will be elaborated below): 
Visual Search with unknown targets using a passive sensor sys- 

Visual Search with unknown targets using an active sensor system 

Polyhedral Line-labeling is NP-complete (Kirousis & Papadim- 

tem is NP-complete (Tsotsos, 1989,1990a); 

is NP-complete (Tsotsos, 1992b); 

itriou, 1988). 
ii) Reasoning: 

Finding the best explanation for a class of independent problems 
using probability theory (and several other forms 
of abduction) is NP-hard (Bylander, Allemang, 
Tanner, & Josephson, 1989); 

Abductive reasoning for all but the simplest theories is NP-com- 
plete (Selman & Levesque, 1989a); 

Many forms of default reasoning are NP-hard (Kautz & Selman, 
1990; Selman & Kautz, 1990); 

Many of the strategies for defeasible inheritance in taxonomic 
hierarchies are intractable (Selman & Levesque, 
1989b). 

iii) Neural Networks: 
For directed Hopfield Nets, determining whether a stable con- 

figuration can be found is NP-complete (Godbeer, 
1987); 

PERFAOF, ,  is NP-Complete (the loading task for neural net- 
works) (Judd, 1990). 
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This listing only scratches the surface of the literature on the topic: 
there are many more examples and they form quite broad and natural 
problem classes. It appears that any interesting intelligent problem has 
the characteristic that it is susceptible to combinatorial explosion. It is 
important to stress however that the examples given above do not by 
themselves prove that these problems or that cognition are computation- 
ally intractable. They simply constitute evidence that the computational 
issues are real and may place severe constraints on algorithms proposed 
for the problems of cognition. 

A BRIEF INTRODUCTION TO 
COMPUTATIONAL COMPLEXITY 

Computational complexity is studied to determine the intrinsic diffi- 
culty of mathematically posed problems that arise in many disciplines. 
See Garey & Johnson (1979) and Stockmeyer & Chandra (1979). Many of 
these problems involve combinatorial search, i.e., search through a finite 
but extremely large, structured set of possible solutions. Examples include 
the placement and interconnection of components on an integrated circuit 
chip, the scheduling of major league sports events, or bus routing. Any 
problem that involves combinatorial search may require huge search 
spaces to be examined: this is the well-known combinatorial explosion 
phenomenon. Complexity theory tries to discover the limitations and pos- 
sibilities inherent in a problem rather than what usually occurs in prac- 
tice. After all, the worst case does occur in practice as well. This approach 
to the problem of search diverges from that of the psychologist, physicist, 
or engineer. In the same way that the laws of thermodynamics provide 
theoretical limits on the utility and function of nuclear power plants, 
complexity theory provides theoretical limits on information processing 
systems. If biological vision can indeed be computationally modeled, then 
complexity theory is a natural tool for investigating the information pro- 
cessing characteristics of both computational and biological vision sys- 
tems. If the results of these analyses provide deeper insights into the 
problem and yield verifiable predictions, this would constitute evidence 
in favor of the computational hypothesis. 

Using complexity theory, one can ask for a given computational prob- 
lem C, how well, or at what cost can it be solved? More specifically, the 
following questions can be posed: 

(1) Are there efficient algorithms for C? 
(2) Can lower bounds be found for the inherent complexity of C? 
(3) Are there exact solutions for C? 
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(4) What algorithms yield approximate solutions for C? 
(5) What is the worst-case complexity of C? 
(6) What is the average complexity of C? 
Before studying complexity one must define an appropriate complexity 

measure. Several measures are possible, but the common ones are related to 
the space requirements (numbers of memory or processor elements) and time 
requirements (how long it takes to execute) for solving a problem. Com- 
plexity measures in general deal with the cost of achieving solutions. 

Complexity theory begins with a 1937 paper in which the British 
mathematician Alan Turing introduced his well-known Turing Machine, 
providing a formalization of the notion of an algorithmically computable 
function. He postulated that any algorithm could be executed by a ma- 
chine with an infinitely long paper tape, divided into squares, a printer 
that writes and erases marks on the tape, and a scanner that senses 
whether or not a given square is marked. This imaginary device can be 
programmed to find the solution to a problem by executing a finite number 
of scanning and printing operations. What is remarkable about the Turing 
Machine is that in spite of its simplicity, it is not exceeded in problem 
solving ability by any other known computing device. If the Turing Ma- 
chine is given enough time, it can in principle solve any problem that the 
most sophisticated computer can solve, regardless of serial/parallel dis- 
tinctions or any other type of ingenious design. As a result, the fact that a 
problem can be solved by a Turing Machine has been accepted as a neces- 
sary and sufficient condition for the solvability of the problem. A similar 
thesis was also put forward by another mathematician, Alonzo Church 
(19361, and thus it is usually referred to as the Church/Turing Thesis: any 
problem for which we can find an algorithm that can be programmed in 
any programming language running on any computer, even if unbounded 
time and space are required, can be solved by a Turing Machine. Perception 
can in principle be solved;2 it can thus be implemented on a Turing machine 
and its computational nature confirmed. 

Turing proved that the problem of logical satisfiability-for a given 
arbitrary formula in predicate calculus, is there an assignment of truth 
values of its variables such that the formula is true?-cannot be decided 
by any algorithm in a finite number of steps. This provided the basis for 

A simple-minded, in principle solution to perception is: store all possible images of all 
objects and events one may ever encounter; then for each stimulus search that store until a 
match is found; link that match to an appropriate action by searching through all possible 
stimulus-action associations. This solution is guaranteed to be correct; however, it is 
impossible to ever construct a simulation of it or to realize it with neural hardware simply 
because far too many space and time resources are required. Recall however, that Turing 
Machines have infinite tape. If one considers doing this for say a day, by using two video 
cameras, one recording what the eye sees, and the other recording the agent's actions, the 
task no longer seems so formidable. 



other similar proofs of intractability. Once one could prove problems were 
inherently intractable, it was natural to ask about the difficulty of an ar- 
bitrary problem and to rank problems in terms of difficulty. 

In what sense are complexity results inherent to a particular problem? 
Certain intrinsic properties of the universe will always limit the size and 
speed of computers. Consider the following argument from Stockmeyer and 
Chandra (1988): The most powerful computer that could conceivably be 
built could not be larger than the known universe (less than 100 billion 
light-years in diameter), could not consist of hardware smaller than the 
proton cm in diameter), and could not transmit information faster 
than the speed of light (3 x l@ m/s). Given these limitations, such a com- 
puter could consist of at most pieces of hardware. It can be proved 
that, regardless of the ingenuity of its design and the sophistication of its 
program, this ideal computer would take at least 20 billion years to solve 
certain mathematical problems that are known to be solvable in principle. 
Since the universe is probably less than 20 billion years old, it seems safe 
to say that such problems defy computer analysis. In a subsequent section a 
new example with biological importance will be introduced which further 
demonstrates this point. 

Some Basic Definitions 
The following are some basic definitions common in complexity theory 

(Garey & Johnson, 1979). A problem is a general question to be answered, 
usually possessing several parameters whose values are left unspecified. 
A problem is described by giving a general description of all of its parame- 
ters and a statement of what properties the answer, or solution, is required 
to satisfy. An instance of the problem is obtained by specifying particular 
values for all of the problem parameters. An algorithm is a general step- 
by-step procedure for achieving solutions to problems. To solve a problem 
means that an algorithm can be applied to any problem instance and is 
guaranteed to always produce a solution for that instance. An important 
issue here is whether or not a proposed algorithm is decidable (or solv- 
able). Basically, the requirement for this is that there exists a Turing Ma- 
chine which can compute yes or no for each element of the set A for the fol- 
lowing question: if the set A is countably infinite? and there is another set 
B which is a subset of A, is a given element of A contained in B? A proof of 
decidability is sufficient to guarantee that the a problem can be modeled 
computa tionally. 

The time requirements of an algorithm are conveniently expressed in 
terms of a single variable, n, reflecting the amount of input data needed to 

A set  is countable if there is a one-to-one and onto mapping from the natural numbers 
(integers beginning with 0) and the set. The set may be finite or infinite. 



describe a problem instance. A time complexity function for an algorithm 
expresses its time requirements by giving, for each possible input length, 
an upper bound on the time needed to achieve a solution. If the number of 
operations required to solve a problem is an exponential function of n, then 
the problem has exponential time complexity. If the number of required 
operations can be represented by a polynomial function in n, then the prob- 
lem has polynomial time complexity. Similarly, space complexity is de- 
fined as a function for an algorithm that expresses its space or memory re- 
quirements. Algorithmic complexity is the cost of a particular algorithm. 
This should be contrasted with problem complexity which is the minimal 
cost over all possible algorithms. The dominant kind of analysis is worst- 
case: at least one instance out of all possible instances has this complexity. 

A worst-case analysis provides an upper-bound on the amount of compu- 
tation that must be performed as a function of problem size. If one knows 
the maximum problem size, then the analysis places an upper bound on 
computation for the whole problem as well. Thus, one may then claim, 
given an appropriate implementation of the problem solution, that pro- 
cessors must run at a speed dependent on this maximum in order to ensure 
real-time performance for all inputs in the world. Worst-cases do not only 
occur for the largest possible problem size: rather, the worst-case time 
complexity function for a problem gives the worst-case number of computa- 
tions for any problem size; this worst case may be required simply because 
of unfortunate ordering of computations (for example, a linear search 
through a list of items would take a worst-case number of comparisons if 
the item sought is the last one). Thus, worst-case situations in the real 
world may happen frequently for any given problem size. Many argue that 
worst-case analysis is inappropriate for perception because of one of the 
following reasons: 

1) relying on worst-case analysis and drawing the link to biological vi- 
sion implies that biological vision handles the worst-case scenarios: 

2) biological vision systems are designed around average or perhaps 
best-case assumptions: 

3) expected case analysis more correctly reflects the world that biologi- 
cal vision systems see. 

Each of these criticisms will be addressed in turn. 
1) This kind of inference is quite incorrect. As was shown in (Tsotsos, 

1990a), it is impossible for the biological (or any other) visual system to 
handle worst-case scenarios. The whole argument exists only to prove that 
all worst-case scenarios cannot be handled by human vision in a bottom-up 
fashion and that the quest for general solutions is futile. 

2) It is far from obvious what kind of assumptions (if any) went into the 
design of biological vision systems. Vision systems emerged as a result of a 
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complex interaction of many factors including a changing environment, 
random genetic mutations, and competitive behavior. It is probably the 
case that the best we will ever be able to do under such circumstances is to 
place an upper bound on the complexity of the problem, and this is all 
worst-case analysis will provide. 

3) Analyses performed by other authors (Grimson, 1988, for example) 
based on expected or average cases, depend critically on having a well- 
circumscribed domain and an algorithm. Thus the complexity measures de- 
rived reflect algorithmic complexity and not problem complexity as is the 
goal of the present paper. Only under those conditions can average or ex- 
pected case analyses be performed. In general, it is not possible to define 
what the average or expected input is for a vision system in the world. 
Furthermore, the result of the analysis will be valid only for the average 
input, and does not place a bound on the complexity of the vision process as 
a whole. This also would not provide any guidance in the determination of 
required processing power for real-time performance. See also Uhr (1990). 

Critical ideas in complexity theory are that of complexity class and, 
related to it, reducibility. If a problem S is known to be efficiently trans- 
formed (or reduced) to a problem Q then the complexity of S cannot be 
much more than the complexity of Q. Efficiently reduced means that the 
algorithm that performs the transformation has polynomial complexity. 
The class P consists of all those problems that can be solved in polynomial 
time. If we accept the premise that a computational problem is not 
tractable unless there is a polynomial-time algorithm to solve it, then all 
tractable problems belong in P. 

In addition to the class P of tractable problems, there is also a major 
class of presumably intractable problems. If a problem is in the class N, 
then there exists a polynomial p ( n )  such that the problem can be solved by 
an algorithm having time complexity 0(2P(n)); the time complexity func- 
tion is asymptotically (as n becomes large) dominated by the polynomial 
p ( n ) .  A problem is NP-complete if it is in the class NP, and it polynomi- 
ally reduces to an already proven NP-complete problem. These problems 
form an equivalence class. Clearly, there must have been a first NP-Com- 
plete problem. The first such problem was that of satisfiability (Cook’s 
1971 Theorem). There are hundreds of NP-Complete problems. If any NP- 
Complete problem can be solved in polynomial time, then they all can. 
Most doubt the possibility that non-exponential algorithms for these 
problems will ever be found, so proving a problem to be NP-complete is 
now regarded as strong evidence that the problem is intrinsically in- 
tractable. If an efficient algorithm can be found for any one (and hence all) 
NP-complete problems, however, it would be a major intellectual break- 
through. 
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Implications of NP-Completeness 
What can be done when confronted with an NP-complete problem? A 

variety of approaches have been taken: 
(1) Develop an algorithm that is fast enough for small problems, but 

that would take too long with larger problems. This approach is often 
used when the anticipated problems are small. 

(2) Develop a fast algorithm that solves a special case of the problem, 
but does not solve the general problem. This approach is often used when 
the special case is of practical importance. 

(3) Develop an algorithm that quickly solves a large proportion of the 
cases that come up in practice, but in the worst case may run for a long 
time. This approach is often used when the problems occurring in practice 
tend to have special features that can be exploited to speed up the compu- 
tation. 

(4) For an optimization problem, develop an algorithm which always 
runs quickly but produces an answer that is not necessarily optimal. Some- 
times a worst-case bound can be obtained on how much the answer pro- 
duced may differ from the optimum, so that a reasonably close answer is 
assured. This is an area of active research, with sub-optimal algorithms 
for a variety of important problems being developed and analyzed. 

(5) Use natural parameters to guide the search for approximate algo- 
rithms. There are a number of ways a problem can be exponential. Consider 
the natural parameters of a problem rather than a constructed problem 
length and attempt to reduce the exponential effect of the largest valued 
parameters. 

NP-Completeness effectively eliminates the possibility of developing 
a completely satisfactory algorithm. Once a problem is seen to be NP- 
Complete, it is appropriate to direct efforts toward a more achievable 
goal. In most cases, a direct understanding of the size of the problems of in- 
terest and the size of the processing machinery is of tremendous help in 
determining which are the appropriate approximations. One could hy- 
pothesize that the evolutionary process discovered these methods 
through millennia of experimentation. 

ON ALGORITHMS "GOOD " vs BIOLOGICALLY PLAUSIBLE 

The notions of a good algorithm and an intractable problem was devel- 
oped in the mid-to-late 1960's. A good algorithm is one whose time re- 
quirements can be expressed as a polynomial function of input length. An 
intractable problem is one whose time requirements are exponential func- 
tions of problem length, or in other words, a problem which cannot be 
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solved by any polynomial time algorithm for all instances. Note that the 
boundary between good and bad problems is not precise. A time complexity 
of nlooo is surely not very practical while one of 20.0°1 is perfectly realiz- 
able. Yet empirical evidence seems to point to the fact that natural prob- 
lems simply do not have such running times, and that the distinction is a 
useful one. 

Biological plausibility of a given theory or algorithm is not the same 
notion as that of good algorithm, yet few bother to make the distinction. 
Usually, physical limitations, however real, do not enter into the discus- 
sion just like they do not enter the discussion in any theoretical complexity 
argument (for example, see Gopalkrishnan, Pamakrishnan, & Kanal, 
1991). It is also true in complexity theory that algorithms with polyno- 
mial complexity are believed to be good while those with exponential 
complexity are bad; yet, there are an infinite number of values of expo- 
nents and variables that would lead to the exact reverse when an algo- 
rithm is physically realized. Consider simply the following pair of func- 
tions: O(AnX) and 0 ( 2 X n / A ) .  It is easy to see that there is an infinite space 
in which the polynomial function has actual value larger than the expo- 
nential depending on the values of the constants A and x .  And of course, 
there is an infinite number of such function pairs that we may compare. 
Early complexity theorists of course understood this problem. Yet, they 
claimed that polynomial functions with bad behavior do not occur in prac- 
tice and likewise exponential functions with good behavior also do not oc- 
cur in practice. Thus, the search for polynomial and sub-polynomial com- 
plexity functions is the driving goal of theory. 

But an important issue seems forgotten: if the practice of complexity 
analysis is to lead to tangible benefits then the theorems must lead to al- 
gorithms that must be physically realizable and the physical realization 
must in some way be better than others with respect to time or space effi- 
ciency. No matter what the time and space complexity functions, there is 
an infinite space of possible variable values or problem sizes which will 
not be practically realizable. The fact that all computers have finite 
memories is sufficient to guarantee this. One cannot in practice take infi- 
nite time to read or load an infinite Turing Machine tape. Engineering de- 
sign specifications always impose constraints: the amount of memory may 
be limited by power consumption or cost; the number of processors is like- 
wise constrained: real-time response places a hard constraint on time com- 
plexity and thus on problem size. These constraints cannot be ignored in 
any complexity discussion which may eventually be used to solve real 
problems. And the whole point of complexity theory is to formally pro- 
vide insights on the relative difficulty of real problems. Yet, virtually 
all theoretical discussions do exactly this. The concern of this essay is on 
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what are the constraints whose satisfaction is required in order for a the- 
ory to be biologically plausible. 

It is claimed that it is not sufficient for a perceptual theory to only ex- 
plain a set of experimental observations: experiments typically can use no 
more than a minuscule subset of all possible stimuli. Broader considera- 
tions beyond experiment are needed. Biological plausibility of a percep- 
tual theory will thus be characterized in three stages. First, a theory must 
of course be sufficient to explain the observations. Second, it is important 
to define the size of problem which the algorithm must be able to handle, 
and this follows: 

The algorithm that embodies the theory accepts up to the same num- 
ber of input samples of the world per unit time as human sensory or- 
gans. It is a non-trivial task to determine exactly the quantitative 
nature of the input to the human sensory system. With respect to the 
visual system, there are two eyes; each has about 110-125 million 
rods and 6.3-6.8 million cones; each eye can discriminate over a lumi- 
nance span of 10 billion to one; the spatial resolution of the system 
peaks at about 40 cycles/degree while the temporal resolution peaks 
at about 40 Hz but the two are not independent; finally, there are 
many inputs from other sensory and motor areas. See Dowling (1987) 
for further discussion. 
The implementation that realizes the algorithm exists in the real 
world and requires amounts of physical resources which exist. 
The output behavior of the implementation as a result of those stim- 
uli is comparable both in quality, quantity and timing to human be- 
havior. The behavioral literature on exactly what the quality, 
quantity, and timing of human behavior is to a variety of stimuli is 
immense, but far from complete. What is required however, are re- 
sponses from the algorithm that agree qualitatively and quantita- 
tively with human responses and that are generated with the same 
time delays as human responses. 

The third stage of the definition requires that the functions for time 
and space complexity of any algorithm which we claim performs some in- 
formation processing task in the brain only permit values of their vari- 
ables which lead to brain-sized space requirements and behaviorally-con- 
firmed time requirements. Issues of polynomial vs exponential do not enter 
the discussion of biological plausibility at all. In other words: 

solutions should require significantly fewer than about 10 processors 
operating in parallel, each able to perform one multiply-add opera- 
tion over its input per millisecond; 
processor average fan-in and fan-out should be about 1000 overall; 
and 

9 
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solutions should not involve more than a few hundred sequential pro- 

Any perceptual theory must satisfy the above characterization: and 
similarly, any theory of any other aspect of intelligent behavior would 
have a corresponding characterization of biological plausibility. 

cessing steps. 

ON COMPUTATIONAL MODELING AND PERCEPTION 

Complexity theory is as appropriate for analysis of visual search 
specifically and of perception in general as any other analysis tool cur- 
rently used by biological experimentalists. Experimental scientists at- 
tempt to explain their data and not just describe it: it is no surprise that 
their explanations are typically well-thought-out and logically moti- 
vated, involving procedural steps or events. In this way, a proposed course 
of events is hypothesized to be responsible for the data observed. There is 
no appeal to non-determinism nor to oracles that guess the right answer 
nor to undefined, unjustified, or undreamed-of mechanisms that solve dif- 
ficult components. In essence, experimental scientists attempt to provide 
an algorithm whose behavior leads to the observed data. Attempts at 
providing algorithmic explanations appeared even before the invention of 
the computer. For example, perception as hypotheses and unconscious in- 
ference theory (Helmholtz, 1963) is remarkably similar to the current rea- 
soning paradigm in artificial intelligence, where reasoning is formalized 
as a logical process using formal mathematics. 

The basic formal requirement for the computability of perception is 
that perception be formally decidable (see Davis, 1958, 1965, for in-depth 
discussions of decidability). If a problem can be formulated as a decision 
problem, that is, we wish to know of each element in a countably infinite 
set A, whether or not that element belongs to a certain set B which is a 
proper subset of A, then the problem is decidable if there exists a Turing 
Machine which computes yes or no for each element of A. This requires 
that perception, in general, be formulated as a decision problem. This for- 
mulation does not currently exist. Visual search, an important sub-problem 
however, can be formulated as a decision problem (Tsotsos, 1989) and is de- 
cidable (it is an instance of the Comparing Turing Machine defined in 
Yashuhara, 1971). More research is needed to try to formalize other sub- 
problems of perception in the same way. If some aspect of perception is de- 
termined to be undecidable, this does not mean that all of perception is 
also undecidable nor that other aspects of perception cannot be modeled 
computationally. For example, one of the most famous undecidable prob- 
lems is whether or not an arbitrary Diophantine equation has integral so- 
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lutions (Hilbert’s 10th problem). This has theoretical interest, but more 
importantly, this does not mean that mathematics cannot be modeled 
computationally! Similarly, another famous undecidable problem is the 
halting problem for Turing Machines: it is undecidable whether a given 
Turing Machine will halt for a given initial specification of its tape. This 
too has important theoretical implications, but since Turing Machines 
form the foundation of computation, it certainly does not mean that com- 
putation cannot exist! 

Appeals to non-algorithmic explanations cannot seriously be enter- 
tained because, by definition of algorithm, they would not give a step-by- 
step procedure for achieving a solution to a problem. Thus, the problem 
would remain unsolved except by appeals to inexplicable processes, and 
this does not lead us any closer to understanding perception. Since biologi- 
cal scientists provide algorithmic explanations, computational plausibil- 
ity is not only an appropriate but a necessary consideration. One dimension 
of plausibility is satisfaction of the constraints imposed by the computa- 
tional complexity of the problem, the resources available for the solution 
of the problem and the specific algorithm proposed. 

Any computational paradigm is a candidate for use in constructing a bi- 
ologically plausible model. Neural network approaches are not the only 
ones that are biologically plausible as is often believed. Neural networks 
are Turing-equivalent and they are subject to the same constraints of com- 
putational complexity and computational theory as any other implemen- 
tation (see Judd, 1990, for further discussion and proofs of this statement). 
It is important to note that relaxation processes are specific solutions to 
search problems in large parameter spaces and nothing more. Neural net- 
works use variations of such search procedures which in general may be 
termed optimization techniques. If optimization is the process by which 
real neurons perform some of their computation, it is subject to precisely 
the same considerations of computational complexity as any other search 
scheme. 

Visual Search 
Visual search is a common if not ubiquitous sub-task of vision, in both 

man and machine. A basic visual search task is defined as follows: given a 
target and a test image, is there an instance of the target in the test image 
(Rabbitt, 1978)? Typically, experiments measure the time taken to reach a 
correct response. Region growing, shape matching, structure from motion, 
the general alignment problem, connectionist recognition procedures, etc., 
are specialized versions of visual search in that the algorithms must de- 
termine which subset of pixels is the correct match to a given prototype or 
description. The basic visual search task is precisely what any model- 
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based computer vision system has as its goal: given a target or set of tar- 
gets (models), is there an instance of a target in the test display? Even ba- 
sic vision operations such as edge-finding are also in this category: given a 
model of an edge, is there an instance of this edge in the test image? It is 
difficult to imagine any vision system which does not involve similar op- 
erations. It is clear that these types of operations appear from the earli- 
est levels of vision systems to the highest. 

In Tsotsos (1989), a computational definition of the visual search task 
was presented, and the unbounded case was distinguished from the 
bounded case. Unbounded visual search refers to a search task where the 
target is not given explicitly in advance, and even if it can be given it is 
not used by the sensory apparatus to optimize search in any way. Bounded 
visual search on the other hand, is a search task where the target is 
known explicitly in advance and it is used to optimize the search process. 
An equivalence was drawn between unbounded search and bottom-up pro- 
cesses, and bounded search and task-directed visual processes. 

It was shown in Tsotsos (1989,1992b) that unbounded visual search, re- 
gardless of whether the images are time-varying or the camera system is 
dynamically controlled (active), is NP-complete. This is due solely to 
the fact that the subset of pixels in an image which corresponds to a target 
cannot be predicted in advance and all subsets must be considered in the 
worst case. The bounded problem, on the other hand, requires linear time 
for the search process. This qualitatively confirms all of the visual search 
data that has been experimentally discovered (say, by Treisman, 1988). 
These results are true for an active camera system as well (Tsotsos, 1992b). 
The four theorems proved in those papers show that in general, a bottom- 
up approach to perception (as suggested by Marr, 1982) is not only compu- 
tationally intractable, but biologically implausible. Yet, task-directed 
approaches do have direct biological counterparts. 

ON COMPUTATIONAL COMPLEXITY AND EVOLUTION 

In the section introducing complexity theory, an example due to Stock- 
meyer and Chandra (1979) was given in order to demonstrate the concept 
of an intractable problem. A new example that has direct biological rele- 
vance is now presented to further support this notion. Consider for a mo- 
ment the following simple-minded and straightforward evolutionary 
strategy. First, suppose that an organism named Protorasis was the very 
first organism with a visual system (Figure 1). Its visual system consists of 
a single eye, whose retina contains a single photoreceptor, which responds 
uniquely to only 10 shades of gray. Of those shades of gray, only 7 have 
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meaning to the organism, and are linked to some sort of action. Thus, the 
only visual processing requirements for Protorasis' brain are that those 7 
models are somehow represented and that matching can be done 
(presumably by a simple network of neurons). 

stimuli to which Protorasis' photoreceptor responds 

itorasis 

models of meaningful stimuli linked to actions 

..... ...... 0 .  0 0  ...... ........... ..... ..... ..... .... ...... ...... 
i.:.:.. ... 

Figure 1. A fanciful depiction of the very first organism with a visual 
system, Protorasis. The visual system consists of a single eye, whose 
retina contains a single photoreceptor which responds uniquely to 
only 10 shades of gray shown at the top. Of those shades, only 7 have 
meaning to the organism, and are linked to some sort of action. 

This network could be as simple as that depicted in Figure 2, where 7 
output neurons are completely connected to the 10 photoreceptor outputs 
with excitatory and inhibitory connections. Also, suppose that random 
mutations can cause one or more of the following to change: the number of 
eyes; the number of photoreceptors in an eye; the range of stimuli to which 
each photoreceptor can uniquely respond; the number of neurons (and their 



connectivity) available for storing and matching models. Also assume 
that the perceptual and behavioral strategy for each subsequent organism 
was exactly the same as for Protorasis. 

excitatory connection 
inhibitory connection - - - - - 

Figure 2. The network required to solve the task of linking a small 
number of perceptual stimuli to units whose response initiates action 
for Protorasis. The network has 10 input units, 7 output units, and 70 
connections. 

What constraints are there on subsequent visual systems so that they 

E represent the number of eyes (without any assumptions about 
whether they are convergent on the same portion of the scene or not); 

Pi be the number of photoreceptors in eye i; 
N be the number of models which may be stored and matched (coarsely 

speaking, this gives a measure of the amount of brain devoted to vi- 
sual processing); 

S be the number of unique stimuli to which each photoreceptor uniquely 
responds. 

may still function as well as that of Protorasis? Let: 
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It is easy to characterize the resulting number of possible images and re- 
quired number of units for matching in a quantitative manner. The number 
of possible images is given by 

i=l 

If each of these images has some significance to an organism, then 

i=l 

otherwise N has some value less than this. In either case the number of 
connections in the model of Figure 2 is given by S*N. 

Now suppose that Protorasis-2 was the result of some mutation that in- 
creased the size of the brain for model storage and matching from 7 to 700, 
and also increased the number of photoreceptors from 1 to 4. The number of 
possible images would be 104. Even though there was a comparatively 
much larger increase in brain size, there is no longer sufficient computation 
power to recognize more than 7% of the possibilities using the simple- 
minded strategy of Protorasis. Similarly, if Protorasis-3 resulted from an 
ability to detect many more shades of gray in the environment, say 100, 
and included an increase in brain size from 700 to 10,000. the problem is 
even more acute. Small changes in P or S lead to exponentially large in- 
creases in N. In this case, there are lo8 potential images for the 10,000 
storage units! 

Perceptual power for an organism may be estimated using the quotient 

N 

This reflects the percentage of world events to which the organism can 
perceive and react. The larger this value is, the more powerful the per- 
ceptual capabilities of the organism are with respect to its sensory appa- 
ratus. This of course assumes a constant time recognition strategy as is as- 
sumed with the network of Figure 2. 

These are just the static images. If 2 is the time interval in seconds dur- 
ing which significant time-varying events may occur, and the visual sys- 
tem may sample every a seconds then the total number of possible image 
sequences would be given by 
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It does not require much further analysis or discussion in order to see that 
this simple and straightforward strategy cannot possibly be the one evo- 
lution actually used. Our brains would be wildly larger than they are 
(recall the characterization of biologically plausible). 

It is clear that not all possible images will have significance to any 
given organism. However, it may be postulated that greater perceptual 
power, via the ability to recognize a larger and richer set of images, 
would lead to better likelihood of survival for an organism. For example, 
a greater variety of food sources could be recognizable as would a greater 
variety of predators. So, an evolutionary goal could be to achieve large 
values of E, S, and P for a given value of N. 

Formally, as mentioned earlier, the problem of visual search-finding 
a target in an image-requires exponential time in its worst case using a 
single processor (or exponential processors for a constant time solution), 
and the strategy described for Protorasis is similarly exponential in na- 
ture (in number of processors and connections). Could it be that through 
random mutations, evolution discovered the same principles of approxi- 
mation and optimization that have been determined to be appropriate for 
dealing with NP-complete problems? 

The theory of computational complexity permits these conclusions: and 
further, to lay a theoretical foundation proving why evolution did not 
take the direct and simple path of Protorasis. Moreover, as described ear- 
lier, the theory gives guidelines on how to deal with such exponentially 
difficult problems, and the surprise is (or perhaps it is not that surprising 
after all!) that many of the suggestions have biological counterparts: 

Develop a fast algorithm that solves a special case of the problem, 
but does not solve the general problem: the observation that not all combi- 
nations of locations in an image need be considered in a matching process 
because objects and events are spatio-temporally localized permits spatio- 
temporally localized receptive fields to be used as an approximating mea- 
sure. This special case is solved much faster (the exponential is reduced to 
a low order polynomial function), but the general problem is not solved 
since general location combinations are not considered (Tsotsos, 1988). 

Develop an algorithm that quickly solves a large proportion of the 
cases that come up in practice, but in the worst case may run for a long 
time: the observed serial bottleneck believed to be the reason for visual 
attention may be a manifestation of this. Simpler tasks can be solved 
quickly in parallel, while more complex tasks require serial, selective at- 
tention (Tsotsos, 1991). 



Use natural parameters to guide the search for approximate algo- 
rithms: hierarchical organization and hierarchical abstraction are well- 
accepted methods for reducing search and these methods reduce the search 
dramatically in perception (Tsotsos, 1988). 

A model that incorporates the above approximations and abstractions 
leads to the possibility of Protorasis’ recognition system performing its 
tasks with different time requirements. That is, different objects or stimuli 
may be recognized with different time costs. Thus, a different compara- 
tive measure of power is possible: the number of different perceptual 
events recognizable divided by the time required for their recognition: 

j=1 

where model j g N  requires time Ti. The larger this quotient, the more pow- 
erful the perceptual system, and this is independent of the details of the 
sensors themselves (number of eyes, photoreceptors, etc.). The organism 
which can recognize and act on a larger set of perceptual events, on aver- 
age faster than another organism, has a competitive advantage over that 
other organism. This function naturally accounts for the fact that many 
events may be recognizable very quickly while others may take more 
time; and that a larger proportion of the former is better than a larger 
proportion of the latter. 

Unfortunately, it is not obvious how these measures can be put into 
practice. It is probably not possible to ever know the value of N for any or- 
ganism: however, for a given large set of objects or event stimuli, the corre- 
sponding times for recognition could be measured and thus different organ- 
isms compared. It would be illuminating to carry out such a comparative 
experiment. 

ON COMPUTATIONAL MODELING AND BEHAVIORISM 

The philosophy for realizing intelligent behaviors in machines as ar- 
ticulated by Brooks, his colleagues and others, has received a great deal 
of attention (Brooks, 1991a, 1991b). Brooks believes that machines con- 
structed out of simple modules with simple communication will exhibit in- 
telligent behavior as an emergent property; the behavior is not directed 
by a single homunculus nor is it explicitly specified in the machine in any 
way. These principles are the cornerstones of the subsumption architecture 
Brooks proposed in 1986 for intelligent control. A simple description of the 



subsumption idea includes: control layers define a total order on a robot’s 
behaviors: the dominance of layers follow a hypothesized evolutionary 
sequence: each layer may spy on layers at lower levels and inject signals 
into them. It is claimed that the structure is scalable to human-like be- 
havior and Brooks argues strongly against: 

the sense-model-plan-act framework for robot control: 
the representation of intermediate or hierarchical computations: 
the explicit representation of goals: and, 

9 CAD-like models of the world. 
He goes on to claim that perception is connected to action, and further that 
his approach can be extended to cover the whole story, both with regards 
to building intelligent systems and to understanding human intelligence. 
As proof of his position he offers compelling evidence: many mobile robots 
that seem to have robust and interesting performance. 

Brooks seems to be re-kindling the torch of old behaviorism, a philoso- 
phy appearing about 1913 in the psychology community (Watson, 1919). 
Behaviorism stood for one basic belief humans are biological machines 
and as such do not consciously act, do not have their actions determined by 
thoughts, feelings, intentions, or mental processes. Human behavior is a 
product of conditioning: humans react to stimuli. Behaviorism is not popu- 
lar currently in psychology nor in cognitive neuroscience. 

Similarly, arguments against Brooks’ position are not new. For exam- 
ple, Kirsh (1991) focuses on one of Brooks’ claims, that intelligent behav- 
ior is concept-free. Kirsh claims that concepts are necessary for some types 
of behavior and also can make computational processes simpler. He argues 
for the need of representation in a theory of perception simply because vi- 
sion is complex and must be sometimes solved in general ways. 

But Brooks is not alone in his belief that some sort of behaviorist the- 
ory is the most appropriate. Ramachandran’s (1990) utilitarian theory is 
remarkably similar. Ramachandran rejects previous well-known theories 
of perception (Helmholtz’s perception as unconscious inference, Gibson’s 
direct perception, Marr’s natural computation) and proposes rather that 
perception does not involve intelligent reasoning, nor resonance with the 
world, nor the creation of internal representations. Rather, perception is a 
bug of tricks. Through millions of years of evolution, the visual system 
has evolved numerous short-cuts, rules-of-thumb, and heuristics each one 
adopted only because it works and not because of any other appeal. Ra- 
machandran is particularly critical of computational theories. Although 
he does make some valid points, he has developed a perspective on per- 
ception that can be labeled as a behaviorist approach just like Brooks, 
and thus is subject to the same criticism, as will be outlined next. 



Behaviorists seem haunted by one of their claims, namely that their 
paradigm and the solutions formulated within it will scale up to problems 
which are human-like in their size. This is particularly true of Brooks, 
who claims a solution to intelligence in general. The arguments Brooks 
presents on scaling are inadequate (Brooks, 1991a, 1991b). Although 
Brooks mentions the issue, these arguments never appear in any concrete 
and direct fashion. Ramachandran seems unaware of this issue. 

It can be proved that strict behaviorism (that is, not deviating in any 
way from the published principles and dogma, specifically, that no ex- 
plicit targets are permitted) is not supported by current biological evi- 
dence and may require time to execute that is given by an exponential func- 
tion in the image size in the worst-case (Tsotsos, 1992a). It does not matter 
what kind of computational medium is used for the implementation 
(recall the Church/Turing Thesis); the exponential worst-case behavior 
depends solely on the inability of a behaviorist system to know where the 
stimuli that trigger tricks or behaviors are found. Parallelism does not 
help; if the search is conducted in parallel, an unrealizable number of pro- 
cessors (given by an exponential function of image size) will be needed, 
again something which is not biologically plausible. It does not matter if 
the visual system is passive or active, the same conclusions are reached. It 
is this search action which is inherent in the behaviorist or utilitarian 
view but which is never explicitly addressed that results in the rejection 
of these theories. Small signals (such as simple voltages, or sonar blips) 
would not lead to the same problem; thus the success of the current imple- 
mentations. The alternative is to employ a satisfying set of approxima- 
tions and optimizations (Tsotsos, 1988,1990, 1992a, 1992b) that tie the be- 
haviors or tricks together. 

CONCLUSION 

In this essay I argued for the need to consider issues of realizability 
within biologically plausible limits for any theory that is proposed as an 
explanation for perception, or intelligence in general. The theoretical 
foundations for realizability can be laid within the framework of compu- 
tational complexity theory. Further, that theory provides guidelines for 
how to deal with problems that appear to be unrealizable. In previous 
papers, it was shown that a small number of unifying approximations and 
optimizations are sufficient for reducing the potential combinatorial ex- 
plosion and satisfying the definition of biological plausibility outlined 
earlier (Tsotsos, 1988,1990,1992a. 1992b). 
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Now, this kind of argument is not new: Uhr (1980) and Feldman and 
Ballard (1982) among others, have attempted to make similar arguments. 
Each drew their own conclusions: Uhr that pyramid structures were 
needed: Feldman and Ballard argued for massive parallelism. However, 
none of the previous authors tied such back-of-the-envelope calculations 
directly to a formal theory and none put all the elements together to show 
that they satisfy biological plausibility. 

The results force a change to Marr’s (1982) view of computational vi- 
sion, namely, that in principle solutions are not necessarily realizable and 
thus are not necessarily acceptable. A necessary condition on their valid- 
ity is that they must also satisfy the complexity constraints of the prob- 
lem and the resources allocated to its solution. Similarly, the results force 
a change to the behaviorist approach to intelligence. 

One final point: we cannot assume that evolution finds optimal solu- 
tions in the same sense that complexity theory seeks. Evolution finds sat- 
isfying solutions and it is those solutions which perceptual theorists are 
attempting to find. It would be an uninteresting conclusion if complexity 
theory applied only to artificial computation problems and not natural 
ones. Thus, this essay argued for a new style of complexity analysis, that 
attempts to balance problem complexity, available resources for its solu- 
tion and required performance time in the context of the computational 
modeling of biological perception. 
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DISCUSSION 

V. S. Ramachandran (Neurosciences Program, University of California 
at  Sun Diego, La JoZZa, CA): In this essay Tsotsos raises several interesting 
issues concerning the computational approach to vision. It seems to me 
that he and I see eye to eye on many issues but not on all. In this ”reply” I 
will not comment on the more formal aspects of his theory but will confine 
myself, instead, to some of the meta-theoretical questions that he ad- 



dresses. It is not clear to me what he means by the term ”behaviorist.” I 
should point out as the answer that my criticisms were directed mainly 
against the Marr school of Computational Vision rather than computa- 
tional vision in general (Ramachandran, 1985b, 1990; Churchland, Ra- 
machandran, & Sejnowski, 1993). In this essay I shall try to summarize 
some of these ideas. 

David Marr’s ideas created nothing short of a revolution in our under- 
standing of human vision comparable to the Chomskyian revolution in 
linguistics. The major strength of his approach to vision is that it allows a 
much more precise and rigorous formulation of perceptual problems than 
what one could achieve by doing psychophysics or physiology. Unfortu- 
nately, there are also several major pitfalls associated with his ap- 
proach and I shall take this opportunity to spell them out briefly. 

Levels of Analysis. Any complex information processing systems-in- 
cluding the human visual system-can be understood at several distinct 
“levels”+.g., the level of the ”computational problem,” the level of al- 
gorithm (a sequence of steps) and finally, least important (in Marr’s 
scheme), the actual neural hardware that is used to implement the algo- 
rithm. To ensure progress in understanding vision it is important not to get 
“confused” between these levels, especially since the logical structure of 
arguments at each level is quite independent of the other levels. 

This argument may be valid for some simple machines, but when we are 
talking about complex biological systems, I would like to submit that the 
only sure way to progress, in fact, is to deliberately get confused between 
these levels-deliberately make what orthodox philosophers might call 
”category mistakes.” There is now a wealth of experimental evidence 
which suggests that our perceptual experience of the world is powerfully 
constrained by the actual neural machinery, i.e., the ”hardware” that 
mediates perception (e.g., see Ramachandran, 1985b, 1992; Ramachandran 
& Gregory, 1978, 1991; Ramachandran, Rogers-Ramachandran, Stewart, 
& Pons, 1992; Ramachandran, Stewart, & Rogers-Ramachandran, 1992). 
And, in general, I think no important discovery in science has ever been 
made by respecting the distinctions between levels. For example, consider 
Mendelian inheritance. You can’t think of two more different levels than 
the behavior of pea plants and the structures of molecules, and yet it is by 
bridging these two that the science of Biology was born. 

Identifying the computational problem. According to Marr, the single 
most important step in understanding human vision is to provide a precise 
mathematical formulation of the “computational problem” confronting 
the organism. In doing this it is best to start from first principles (e.g., by 
considering ”natural constraints”) and to avoid being confused by results 
obtained by psychophysical and physiological methods. 
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Unfortunately it is not always obvious what the so-called computa- 
tional problem is in any given situation. (Try answering the simple ques- 
tion: what is the goal of color vision?) Indeed the real visual system often 
seems to subdivide any given problem into many ”sub-problems” many of 
which would be difficult to discern unless you do experiments and acquire 
a certain familiarity with the phenomenology of human vision. It should 
come as no surprise, therefore, that most of the computational problems 
that AI researchers are currently preoccupied with were in fact identified 
by psychophysicists (e.g., the stereo-correspondence problem by Julesz and 
Wheatstone; the structure from motion by Wallach, the aperture problem 
by Wallach, and the motion correspondence problem by Ternus). They cer- 
tainly weren‘t deduced from “first principles.” 

Modularity. According to Marr’s doctrine of modularity, ”early vision” 
processes, such as stereo, motion correspondence, shape-from-shading, 
structure from motion, etc., are mediated by several autonomous modules. 
These modules remain largely insulated from each other and convey the 
results of their computations to higher visual centers for subsequent pro- 
cessing. Vision, in this scheme, is a strictly bottom-up affair. 

It may indeed be useful to treat vision as modular at least as first ap- 
proximation but there is now a great deal of evidence that the modules 
must interact with each other significantly even at the very earliest 
stages of visual processing. We have shown, for example, that both mo- 
tion correspondence (Ramachandran, 1985a; Ramachandran & Anstis, 
1986) and stereopsis (Ramachandran, 1986; Nakayama, Shimojo, & Ra- 
machandran, 1990) can be strongly influenced by image segmentation based 
on implied occlusion. More remarkably, we find that a jumping sound 
source superimposed on a dynamic noise display will cause the noise to 
”jump” along with the sound-an example of cross-modal motion capture 
(Ramachandran, Intrilagator, & Cavanagh, unpublished manuscript). 

A simple version of cross modal motion capture can be produced by using 
a single dot blinking on and off adjacent to a white square. Subjects view- 
ing this display usually do not see any motion-they just see a spot blink- 
ing on and off. We then added an auditory stimulus presented by ear- 
phones. Simultaneous with the blinking on of the light, a tone is sounded 
in the left ear; simultaneous with the blinking off, a tone is sounded in the 
right ear. Subjects see the single dot move to the right behind the occluder. 
In effect, the sound ”pulls” the dot in the direction the sound moves 
(Ramachandran, Intrilagator, & Cavanagh, unpublished manuscript). 
This is convincing evidence for some form of ”heterarchy,” and against a 
pure, straight through, noninteractive hierarchy. (A weak subjective mo- 
tion effect can be achieved when the blinking of the light is accompanied 
by somatosensory left-right vibration stimulation to the hands.) 



It comes as no surprise that visual and auditory information is inte- 
grated at some stage in neural processing. After all, we see dogs barking 
and drummers drumming. What is surprising about these results is that 
the auditory stimulus has an effect on a visual process (motion correspon- 
dence) that Pure Vision orthodoxy considers "early." 

Segmentation. This is a special case of the modularity argument. Ac- 
cording to this view, certain elementary visual functions such as stereop- 
sis, motion, color, etc. are mediated relatively early in visual processing 
by specialized modules, whereas segmentation of the visual scene into 
separate objects is assumed to be a more complex process that can actually 
use the output of these early vision modules. Since the modules perform 
their functions prior to image segmentation, the argument goes, one can suc- 
cessfully model them and study them experimentally without worrying 
about segmentation (Marr, 1981). Contrary to this view, out evidence sug- 
gests that image segmentation can profoundly influence a number of early 
visual processes such as stereopsis (Ramachandran, 1986; Nakayama, 
Shimojo, & Ramachandran, 1990), structure from motion (Ramachandran, 
Cobb, & Rogers-Ramachandran, 1988), motion correspondence (Ramachan- 
dran, 1985a; Ramachandran, Rao, & Vidyasagar, 19731, and shape-from- 
shading (Ramachandran, 1988). The implication is that the early vision 
modules are not autonomous-they interact significantly with each other 
and with segmentation. Any program of research on perception must take 
these facts into account. 

Consider stereopsis, the matching of slightly dissimilar images from 
the two eyes to recover stereoscopic depth. Julesz stereograms (Julesz, 
1971) are often cited by Marr and his colleagues to illustrate the view 
that stereopsis is a prime example of modularity-of an early visual pro- 
cess that is relatively autonomous and insulated from other visual pro- 
cesses such as segmentation. The stereogram depicted in Ramachandran 
(1986, Figure 7) flatly contradicts this view. We created this stereogram 
using two illusory squares by introducing small horizontal disparities be- 
tween the vertical edges of the cut sectors. The disks themselves were at 
zero disparity in relation to the surrounding frame. 

If the top pair (conveying crossed disparities) is stereoscopically fused, 
one sees a striped square standing well in front of a background consisting 
of black circles on a striped mat. If the bottom pair (uncrossed disparities) 
is fused, one sees four holes in the striped opaque foreground mat, and 
through the holes, well behind the striped mat, one sees the four corners 
of a partially occluded striped square on a black background. These are es- 
pecially surprising results, because the stripes of the perceived foreground 
and the perceived background are, by definition, at zero disparity. The 
only disparity that exists on which the brain can base stereo depth per- 
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ception comes from the edges of the pacmen. Notice that in this display, 
the illusory contours must emerge after stereoscopic fusion and yet these 
contours can in turn influence the matching of finer elements in the dis- 
play. Assuming that perceiving subjective contours is a ”later” effect re- 
quiring global integration, and that finding stereo correspondences for 
depth is an “earlier” effect, then this result appears to be an example of 
“later” influencing-in fact enabling-”earlier.” The emergence of quali- 
tatively different percepts (illusory square in front of disks, versus illu- 
sory square behind portholes) cannot be accounted for by any existing 
stereo algorithms. Most of these algorithms would simply predict a rever- 
sal of in sign of perceived “depth” if the disparities are reversed 
(Ramachandran 1986; Nakayama, Shimojo, & Ramachandran, 1990). 

Absence of “top-down“ influences. According to Marr, the computations 
of early vision modules are unaffected by high level object knowledge and 
semantics. The segmentation of Gregory’s “Dalmatian dog” according to 
this view, occurs not because we know it is a dog and use this knowledge to 
segment the image but because of certain hidden cues intrinsic to the im- 
age, e.g., collinear edges that generate illusory contours around the edge of 
the dog. 

But if this is strictly true, why does a hollow mask (viewed from the 
inside) look convex rather than hollow? Are Helmholtz (1963) and Gre- 
gory (1970) incorrect in assuming that the reason faces look convex is be- 
cause we know them to be faces? This is an important issue, for if they are 
right then it would be a striking example of the role of “top-down” influ- 
ences in vision and would imply that even semantic knowledge can influ- 
ence the processing of early vision modules such as those concerned with 
shape from shading and stereopsis. 

But does this depth reversal effect really have anything to do with 
faces? Is it possible, for example, that the reversal of the hollow mask re- 
sults simply from a generic assumption that objects are usually convex? Or 
does high-level semantic knowledge also play a role? To find out, 
Richard Gregory, Kerrie Maddock, and I presented subjects with two adja- 
cent masks, one of which is right side up, the other is upside down. Upside 
down faces are often poorly recognized, and in any case, upright faces are 
what we normally encounter. In the experiment, subjects walked slowly 
backwards away from the pair of stimuli, starting at 0.5 m, moving to 5.0 
m. At a distance of about 0.5 m, subjects see both masks as depth inverted 
(concave). At about 1 m, subjects usually see the upright mask as convex; 
the upside down mask, however, they continue to see as concave until they 
are at a distance of 1.5-2.0 m. Because the stimuli are identical except for 
orientation, this experiment illustrates that ”later” process (face catego- 
rization) has an effect on an ”earlier” process (shading and stereopsis). 



Hierarchical Processing. Marr’s scheme implies that vision is largely a 
“bottom-up” process with a one-way flow of information from the sense or- 
gans to the motor output. Although generating an appropriate motor out- 
put is the ultimate goal of vision there has, until now, been no evidence 
that the motor programs themselves (that are used to generate the output) 
can influence the early stages of perception. This idea has been dubbed 
”dead vision” by Ballard (1989) to contrast it with what Brooks (1986) 
has called “active vision.” 

It is remarkable that this myopic view of vision has held sway for so 
by especially given the flatly contradictory evidence from physiology- 
the existence of massive backprojections from so-called ”higher” to lower 
visual areas. It is a well known, but often glossed over fact, for example, 
that there are three times as many fibers coming back from V1 to the LGN 
than vice versa-even though the textbooks usually mislead as by show- 
ing only forward projecting arrows. It is usually assumed tacitly that 
these back projections may simply be involved in some aspect of overall 
gain control but that they may not be crucially involved in the actual 
computations that lead to perception. 

The fact that what we see depends not only on the input but also on 
what you intend to do with the information (i.e., the type of behavior you 
wish to generate) receives support from a new series of experiments that 
we have been doing on patients with squint (Ramachandran, Cobb, & Va- 
lente, 1992). 

Exotropia is a form of squint in which both eyes are used when fixating 
on small objects close by (e.g., a foot from the nose) but when looking at dis- 
tant objects, the ”squinting” eye deviates outward by as much as 40” to 60”. 
Curiously, the patient does not experience double vision-the deviating 
eye‘s image is usually assumed to be “suppressed.” It is not clear, however, 
at what stage in visual processing the suppression occurs. 

Surprisingly, it is claimed by orthoptists that in a small subset of these 
patients, “fusion” occurs not only during inspection of near objects, but also 
when the squinting eye deviates (see Duke-Elder, 1949, for a review). This 
phenomenon, called ”anomalous retinal correspondence” or ARC, has not 
always been taken seriously, perhaps because it was assumed that ARC 
implies a rather improbable lability of binocular receptive fields. Clini- 
cians and physiologists raised in the Hubel-Wiesel tradition usually take 
it as Gospel that (1) binocular connections are established in area 17 in 
early infancy and that (2) binocular ”fusion” is based exclusively on 
anatomical correspondence of inputs in area 17. For instance, if a squint is 
surgically induced in a kitten or an infant monkey, area 17 displays a com- 
plete loss of binocular cells (and two populations of monocular cells) but 
the maps of the two eyes never change. No apparent compensation such as 
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”anomalous correspondence” has been observed in area 17 and this has 
given rise to the conviction that it is highly improbable that an A R C  
phenomenon truly exists. 

To explore the possibility that there might be more to the ARC reports, 
Ramachandran, Cobb, and Valente (1992) recently studied two patients 
who had intermittent exotropia. Ramachandran’s two patients appeared 
to “fuse” images both during near vision and during far vision-when the 
left eye deviated outward-a condition called “intermittent exotropia 
with anomalous correspondence.” 

To determine whether these patients do indeed have two (or more) 
separate binocular ”maps” of the world, Ramachandran, Cobb, and Va- 
lente (1992) devised an experimental procedure that tested the binocular 
alignment of after-images; the after-image for the right eye being gener- 
ated independently of the after-image for the left eye. Here is the proce- 
dure: (1) The subject (with squint) was asked to shut one eye and to fixate 
on the bottom of a vertical slit-shaped window mounted on a flashgun. A 
flash was delivered to generate a vivid monocular afterimage of the slit. 
He was then asked to shut this eye and view the top of the slit with the 
other eye (and a second flash was delivered). (2) The subject opened both 
eyes and viewed a dark screen, which provided a uniform background for 
the two afterimages. 

The results were as follows: (A) The subject (with squint) reported that 
he saw afterimages of the two slits that were perfectly lined up with 
each other, so long as he was converging within about arm’s length. (B) On 
the other hand, if he relaxed vergence and looked at a distant wall (such 
that the left eye deviated), the upper slit (from the anomalous eye) 
vividly appeared to move continuously outwards so that the two slits 
eventually became misaligned by several degrees. They then repeated 
this experiment on two normal control subjects and found that no misalign- 
ment of the slits occurred for any ordinary vergence of conjugate eye move- 
ments. Nor could misalignments of the slits be produced by passively dis- 
placing one eyeball to mimic exotropia in the normal individuals. 

Ramachandran, Rogers-Ramachandran, Stewart, and Pons (1992) have 
dubbed this phenomenon “dynamic anomalous correspondence.” The phe- 
nomenon itself is not new but these authors have been able to establish its 
existence clearly and have pointed out a number of implications that ap- 
pear not to have been recognized by the Neuroscience and AI community. 

1. Binocular correspondence can change continuously in “real time” in a 
single individual depending on the degree of exotropia. Hence, binocular 
correspondence (and ”fusion”) cannot be based exclusively on the anatomi- 
cal convergence of inputs in area 17. The relative displacement observed 
between the two afterimages also implies that the “local sign” of retinal 



points (and therefore binocular correspondence) must be continuously up- 
dated as the eye deviates outwards. 

2. Since the two slits would always be “lined up” as far as area 17 is 
concerned, the observed misalignment implies that feedback (or feedfor- 
ward) signals from the deviating eye must somehow be extracted sepa- 
rately for each eye and must then influence the egocentric location of 
points selectively for that eye alone. This is a somewhat surprising result, 
for it implies that “remapping” of egocentric space must be done very 
early-before the “eye of origin” label is lost-i.e., before the cells be- 
come completely binocular. Since most cells beyond area 18 (e.g., MT or V4) 
are symmetrically binocular we may conclude that the correction must in- 
volve interaction between reafference signals and the output of cells as 
early as 17 or 18. 

It is quite remarkable that a complete remapping of perceptual space in 
x-y coordinants can occur selectively for one eye‘s image simply in the in- 
terest of preserving binocular correspondence. It would be interesting to see 
if this remapping process can be achieved by algorithms of the type pro- 
posed by Zipser and Anderson (1988) for parietal neurons or by “shifter- 
circuits” of the kind proposed by Van Essen and Anderson (1990). 

Identifying ”natural cons traints.” An important idea put forth by Marr 
is the notion of ”natural constraints.’’ Marr points out (as did J. J. Gibson, R. 
L. Gregory, and Helmholtz) that the evolving visual system did not have 
to cope with problems of arbitrary complexity (i.e., not like solving a 
problem in number theory, for example). The system can capitalize, in- 
stead, on certain statistical regularities in the natural world-regulari- 
ties based on the physics of matter, and these properties can be used to im- 
pose constraints on solutions to perceptual problems. 

But how do you go about identifying these constraints? It would be won- 
derful if they could be deduced from first principles, of course, but you re- 
ally can’t do this because you never know which particular constraints a 
given creature is exploiting unless you watch what it is doing. For exam- 
ple, at some abstract level both bats and humans have the same prob- 
lem-avoiding obstacles and grasping edible objects (either with the 
mouth or with the hands)-but bats use echolocation and humans use a va- 
riety of depth cues-primarily visual-such as stereo, motion parallax, 
convergence, etc. And there is no way you could have guessed that bats 
used echolocation unless you did bat psychophysics-e.g., jamming their 
sonar to see what happens to their behavior. 

In this context, Tsotsos also makes a valid point. His work suggests that 
in addition to natural constraints (imposed by the environment), there is 
also another important source of constraints, namely, that arising from 
computability and resources available for computation. This is just as real 



and in some ways more fundamental from a theoretical perspective since 
such constraints would apply regardless of sensory modality or domain of 
application. 

Finally, it is surely obvious that natural constraints, by themselves, do 
not impose a unique solution to perceptual problems; there are usually far 
too many theoretically plausible solutions and the only way to find out 
which particular one is used is by doing psychophysics and physiology. 

Conclusion. It would seem, therefore, that many of M a d s  ideas are 
fundamentally flawed (e.g., the notion that segmentation does not con- 
strain early vision), whereas others may be only partially true (e.g., the 
idea that early vision is relatively immune from top-down influences). I 
hasten to add, however, that this long list of criticisms should not in any 
way be seen as detracting from the originality and importance of Marr’s 
contribution. Marr was a brilliant scholar and had he been alive today he 
would almost certainly have cheerfully acknowledged these shortcom- 
ings. I do hope, however, this commentary will stimulate at least some of 
his colleagues to incorporate our findings into a new and more viable the- 
ory of human vision. 
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Tsotsos: Since computational behaviorists cite Ramachandran’s “col- 
lection of tricks” metaphor as biological evidence for their models, I in- 
cluded his work in my broad view of ”behaviorism” in order to strengthen 
my arguments by extending their domain of applicability to include a bio- 
logical model. Unfortunately, it is clear that the term behaviorism has no 
single interpretation. Ramachandran’s utilitarian view was never in- 
tended as a formal model nor should it be classified as behaviorist. What 
does matter however, is how Ramachandran’s collection of tricks is to ac- 
tually work so that human perception is the result. This is a goal of the 
computational behaviorists. Are all tricks always active, always looking 
at the whole visual field to see if they should react? It can be easily 
shown that this is an intractable solution. Does each simply look at spe- 
cific parts of the visual field in order to reduce the amount of computa- 
tion? This would not lead to the flexibility of function that human visual 
systems possess. The only tractable yet flexible solution is that each is ac- 
tivated only by an appropriate stimulus; thus an integration strategy is 
needed. The computational behaviorists provide one, but do so in an ulti- 
mately intractable and biologically implausible manner. Ramachan- 
dran’s contribution is to illuminate some of the interactions which must be 
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explained. Together, we both stress the fact that theorists and modelers 
alike must respect computational and biological realities. 

The physical constraints I list at the beginning of my paper are all or- 
thogonal dimensions in design to those discussed by Marr (1982). According 
to Marr, the computational level of a theory addresses the questions: 
What is the goal of the computation? Why is it appropriate? and, What 
is the logic of the strategy by which it can be carried out? Marr called so- 
lutions at this level ”in principle” solutions. At the representational and 
algorithmic level one asks: How can this computational theory be imple- 
mented? What is the representation for the input and output? What is the 
algorithm for the transformation? And, finally, at the implementational 
level one asks: How can the representation and algorithm be realized 
physically? Complexity considerations (problem complexity, resources, 
performance specifications) span these three levels and are not just im- 
plementational details as Marr implies. If the task to be performed or the 
algorithm to be implemented is tractable, then perhaps efficiency is only 
an implementational detail. However, if the task is an intractable one, as 
vision in its most general form seems to be, complexity satisfaction is not 
simply a detail to contend with during implementation, just as discretiza- 
tion and sampling effects or numerical stability are not simply implemen- 
tational details. Complexity satisfaction is a major constraint on the pos- 
sible solutions of the problem. It can distinguish between solutions that 
are realizable and those that are not. Ascertaining how much computation 
can be performed will strongly constrain which computations are chosen to 
actually solve the problem. It is this class of “natural constraints” which I 
propose play important, but until now, ignored roles in perceptual theo- 
ries. It is not the case as Ramachandran states that we should purposely 
confuse the levels. Rather, the levels are intimately related, and they 
are related by other orthogonal design dimensions. 

Finally, I would like to strengthen Ramachandran’s argument against 
the independent modules view proposed by Marr. When Marr proposed 
the independent modules view, he was working on a hypothesis that, in 
the mid-to-late-I970’s, reflected current best knowledge of neurobiology. 
John Allman and Jon Kaas had recently discovered area MT in the owl 
monkey which seemed to be concerned exclusively with motion computa- 
tions (Allman & Kaas, 1971). Semir Zeki had reported observations on 
area V4 (Zeki, 1977), and it appeared as if the role of V4 was to process 
color independently of motion. Since these two areas had such unique and 
seemingly independent properties, a good hypothesis to test would be 
whether or not the independence applied throughout the visual cortex. 
This would also be good for computational modelers; we could work on 
solving simpler and smaller sub-problems, and then only worry about their 
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integration into a whole rather than have to deal with the many interac- 
tions among functionalities. This was a very sensible thing to propose at 
the time, and David Marr left his mark on the field for realizing this. Ev- 
idence accumulated since then, however, paints a very different picture of 
the visual cortex and a serious look at the current neurobiology leads to 
strong contradiction. The paper by Felleman and Van Essen (1991), for ex- 
ample, if anything else, is a crystal clear demonstration that no area of 
the visual cortex is without massive input from many other areas, most of 
the pathways are both bottom-up as well as top-down, and further that 
we are quite in the dark about the details of what each of the visual ar- 
eas is computing. Even the independent P and M pathways distinction has 
fallen by the wayside (Maunsell, 1992; Martin, 1992). The view recently 
proposed by Oliver Braddick on the computations underlying the percep- 
tion of motion is even more problematic (Braddick, 1992). He cites evi- 
dence that leads him to believe that the computations are composed of 
many interacting computational loops and re-entrant processing streams. 
No independent modules here! The hypothesis has been refuted with re- 
spect to biological visual systems and those who continue to follow that 
perspective are out of date. 
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