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The aim of this overview paper is to provide a brief synthesis of the five review papers 
contained in the monograph. Prevailing south-westerly winds, oceanic flow patterns, and oceanic 
summer heat storage make the Nordic Seas region having temperatures 10 to 20 °C above the 
mean temperature at similar latitudes. The combination of the large heat import from south and 
the polar location implies that the region is prone to natural climate variations and particularly 
vulnerable for external forcings. Proxy data for the Holocene epoch indeed reveal large high-
frequency climate fluctuations, as well as long-term variations spanning the ‘medieval warm 
period’ and the ‘little ice age’. In phase with a strengthening of the westerly winds since the 
1960s, several oceanic key variables show trends unprecedented in available instrumental 
records, some of which extends back 50-100 years. State of the art climate models indicate that 
several of the changes may be linked to increased greenhouse gas forcing, and are therefore likely 
to be sustained or even amplified in the future. Furthermore, the marine cycling of carbon, and by 
that the major greenhouse gas carbon dioxide, is closely linked to the climate state of the region. 
The Nordic Seas region is, as one of few ocean locations, a sink for atmospheric carbon dioxide 
throughout the year. With the rapid developments in data acquisition, computational resources, 
and societal concerns for climate change and environmental issues, the review papers give an 
updated account of the present knowledge of the complex climate states of the Nordic Seas, and 
how the Nordic Seas influence the climate outside the region.                                         

 
 
 

1. BACKGROUND 
 

The region north of the Greenland-Scotland 
Ridge (GSR) and south of the Fram Strait-S
northern Norway transect (e.g. Fig. 1 in Furevik and 
Nilsen [this issue]), here defined as the Nordic Seas, 
covers about 2.5 · 106 km2, or about 0.75%, of the 
of the world oceans. The region is, despite its small 
extent, very dynamic and diverse [Blindheim and 
Østerhus, this issue; Furevik and Nilsen, this issue
Nesje et al., this issue; Skjelvan et al., this issue; 
Skjoldal, 2004, and references therein]: The 
topography of the sea floor is complex with shallo
shelves, deep basins, mid oceanic ridge systems, 
steep slopes. The typical dynamical length scales a

small, ranging from a few to some tens of kilometers
The atmosphere-ocean transfers of momentum, heat, 
fresh-water and gases are strong, notably during the 
cold winter months from November to April. Water 
masses originating from low and high latitudes meet 
and interact by means of frontal mixing, deep 
convective mixing, subduction, and entrainment. Sea 
ice is formed in the northern and western parts of the 
Nordic Seas in winter, whereas the region is 
essentially ice-free during summer. New primary 
production commonly equals or exceeds regenerated 
primary production, and fish stocks are large and the 
fisheries rich, particularly in the waters influenced by 
the warm and nutrient-rich Atlantic Water (AW).  The 
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flux of carbon per unit area from atmosphere to the 
ocean is among the highest in the world oceans.  

he above conditions within the Nordic S
l appreciated and tied to its “hot spot” status as 
aordinary warm anomaly. For the present da
, the annual and winter mean temperatures 
ral and eastern Nordic Seas are respectively 1

 ºC higher than the zonal means (Fig. 
ously high temperatures are caused by three 
isms, all of which are important [Seage
hines and Häkkinen, 2003]: (1) Prevailing 
y and southwesterly vapor-laden winds; (2) 
rd transport of heat by the Gulf Stream and th
tlantic Current system; and (3) heat released 

e seasonally warmed North Atlantic mixed 
hanges in any of the three mechanisms have 

ential to significantly alter the climate in th
  
anomalously mild climate of the Nordic Se
acent land regions has been crucial for surviva
 high latitude

’s Mirror (Speculum Regale) from the early 
tury, presented by Hellvik, 1976]. But the 
s also important in a wider context:  

or the present-day climate, about 6 Sv (1 
 m3 s-1) of cold and dense water spills over the 
ansen and Østerhus, 2000; Blindheim and 
s, this issue]. This volume transport i

of t e transport of water associated with the 
c Meridional Overturning Circulation (AMO
rives about two thirds of the AMOC volume 
rt by entraining ambient water downslope of
e [Hansen et al., 2004]. 
he intense surface forcing in the Nordic Seas 
ofound impact on the hydrographic properties 
aters that enter the Atlantic Ocean either as 

w waters across the GSR or as surface waters 
 the Denmark Strait [Hansen and Østerhus, 

ndh im and Østerhus, this issue]. It also
y modifies the Atlantic Water that eventuall
 in the Arctic Ocean [Furevik, 2001; Karch
3; Furevik and Nilsen, this issue]. 
he fresh water fluxes through the Nordic Sea
stantial, representing, together with the flo
 the Canadian Archipelago, the key routes for 
anic limb of the hydrological cycle at high 
n latitudes [Aagaard and Carmack, 1989; 
on and Visbeck, 2002; Peterson et al., 2002]. 
he Northern Hemisphere atmosp

n is ensitive to the distribution of sea sur
ature and sea ice in the Nordic Seas and in 
oring Labrador, Barents and Kara Seas [Deser
004; Kvamstø et al., 2004; Magnusdottir et a

he Nordic Sea is one of the few regions o
ceans that take up substantial amounts of 
heric carbon dioxide (CO

ake of atmospheric CO2 is large, ranging
-85 g C m-2 y-1, among the highest such fluxes 
orld oceans [Anderson et al., 2000; Takahashi

002; Skjelvan et al., this issue]. 
ral questions with regard to the large-scale 
 implications of the above-mentioned 

rspectives and with regard to the ecosystems in the 
Nordic Sea region are: 

− How stable is the oceanic circulation of the 
Nordic Seas?  

− What are the time and space characteristics of the
natural variability modes?  

− In which way and to which extent will g
nfluence the mean climate state and the 

 variability modes? 
dequately address these questions it is necessary
loy a multi-disciplinary approach in 

ing vailable knowledge of past and present 
 change, and in ide

g d namics and thermodynamics o
 system. Based on such information, the 
rints of gl

 w hin forthcoming climate observations 
del simulations. With this approach in mind, 
 review chapters presented in this book h

nized to summarize available knowledge 
he Nordic Sea climate system based on clim
ructions from the Holocene epoch (last 11.500 
Nesje et al.], ocean observations covering t
of instrumental records (mainly last 50 years
eim and Østerhus], the dynamics of the ocean 
e to atmospheric forcing for the period 1
 (the period with atmospheric reanalysis
s) [Furevik and Nilsen], observations and 
s of the cycling of inorganic carbon covering 
 decades [Skjelvan et al.], and numerical ocea
modeling covering the atmospheric reanaly
Drange et al.].  

2.  PAST AND PRESENT CLIMATE 
OBSERVATIONS 

sje et al. [this issue], a synthesis of temperat
cipitation reconstructions from pollen-analysis, 
e variations, chironomids (non-biting midges), 
g records, speleothem (chemical fingerpr
rmations) data, glacier variations, and marine 
(stable isotopes, species abundance, 
ical changes) demonstrate that the climate of 
dic Seas region has been, in general, milder 
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ia. The annual surface temperature during

iod has been estimated to be 1.8-2.0 ºC higher 
e 1961-1990 mean [Nesje et al., 2001; this 
The main reason for this climate optimum w
high summer insolation, which at 60ºN 
ed the present insolation by as much as 8-10%.
more, the coldest period throughout the e
ne was likely the ‘Little Ice Age’, covering the 
riod ca. 1550-1925, with mean annual 
atures approximately 1 ºC below the 1901-199
alue [Luterbacher et al., 2004]. 
re 2 displays reconstructed, observed, and 
ed sea surface temperature (SST) variations for 
iod 2000 cal. yr BP to the year 2100. In Fig. 2a
uced variability of reconstructed SST from the
 Norwegian Sea is provided for the last two 
ia. The time series show a fairly constant SST 
period prior to year 700. Thereafter, three 
 with a gradual century-scale warming of 0.5-1
seen between year 700-1000, 1200-1400, and 
000. Both the first and the second warming are
ted by rather quick cooling events. The c

 year 1425 is particularly rapid and strong: Here
 decreases by about 1 ºC in a few decades. 

he reconstructed SST time series clearly 
strate that the marine climate of the Nordic S
erienced both century-scale warming and rapi
 periods over the last two millennia. 

availability of high-resolution (annual to 
l resolved) climate time series covering sever
ia repre

variability modes in the past climate. With 
y distributed time series of similar kind, 
s and amplitudes of past climate variability 
can, for the first time, be constructed. 
entations of decadal and longer time sca
 variability modes are of key importance for
ing between natural and human-induced c
ns, and for evaluating and improving climate 
 beyond the relatively short instrumental 

Nordic Seas is a region with a long and 
ve history of instrumental observations [e.g., 
m and Østerhus, this issue]. A source of 
ble importance in this respect is the surface to 
ydrographic observations from Ocean Weathe
 Mike (OWS M) going back to 1948 [Øs
mmelsrød, 1999]. In Fig. 2b, the variat

r SST from OWS M are presented (thick gra
 gradual cooling is seen for the period prior t
ollowed by first a gradual and then a rapid 
g. The recent warming 

e years 2002-2004 is 1.62 ºC above the 1948-2
summer SST average (Fig. 2b), and 0.94 ºC above the 
annual mean temperature average for the same period 
(both when applying a three-year mean filter). 

It is well documented that most regions at high
northern latitudes were anomalously warm during t
period from the 1920s to 1950s [e.g., Delwort
Knudson, 2002; Johannessen et al., 2004]. It is als
likely that the extent of Arctic sea ice was less than 
normal during this period [Zakharov, 1997; 
Johannessen et al., 2004]. Based on instrumental air 
temperature from e.g. Stykkishólmur, Iceland (Fi
and Blin

arly twentieth-century warm period was the 
t since the early 19th century. In Fig. 2b, the 

ear annual mean 0-200 m temperature from th
ction in the Barents Sea is shown for the period 
001 (thin line). The decadal-scale fluc
ola and OWS M time series follow closely

more, based on the OWS M data, it is likely 
recent warming exceeds the early twenti
 warm period. While most of the early 
th-century warm period can be attributed to 
 climate fluctuations, it is likely that at least pa
ecent warming is owing to human activities 
elworth and Knudson, 2002; Johannessen et 
4].  
omparing the temperature fluctuations along the
ction and at OWS M (Fig. 2b) with the 
ructed time series from the past 2000 years 
), one can argue that the

t warming is exceptional also on a 
ium time perspective. This observation is, 
r, speculative because of uncertainties inhe

ransfer functions of the different proxies [e.g
n et al., 2001], which affect the actual 
tation of the time series [e.g. Mann et al., 
on Storch et al., 2004; Moberg et al., 2005]. 
g of reconstructed and instrumental 
tions, a challenging field of research, is

re of the greatest importance for the coming 

.  FUTURE CLIMATE AND CLIMATE 
MODELLING 

evolution of the climate of the Nordic Sea 
s, on a large degree, on changes in the ocean 
ion, affecting the poleward-directed heat fl
2c, two 21st century climate realizations from
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gen Climate Model  [Furevik et al., 2004; 
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trong IPCC SRES A2 scenario, and one wi
re modest IPCC SRES B1 scenario (for 
ons of the SRES scenarios, see e.g. 
ww.ipcc.ch). The two model realizations give
g of the summer SST of 2.13 ºC/100 yr for 
2 and 0.53 ºC/100 yr for SRES B1

ding figures for the annual average SST are 
/100 yr and 0.62 ºC/100 yr, respectively. It is
oting that the warming rate in SRES B1 is 

 to the warming between year 1200-1400 (Fig.
e rapid and strong termination of the 1200-1400 
g period does illustrate that similar cooling
may also happen in the future. 
mpilation of historical temperature records and 
e changes in the surface air temperatures in the
 Seas region, represented by Bergen, 
hólmur and Jan Mayen, are presented in Fig
ove-mentioned early twentieth-century warm
is seen in the Stykkishólmur time se
dent in the Jan Mayen time series, illustrating 
-uniform climate in the region. The simulated
on of the 21st century temperatures indicate that

rature fluctuations within a few decades. 
o note here that r

ust be based on ensembles of integrations 
oroughly tested and evaluated climate models, 
t on individual model realizations like those 
ed in Figs. 2c or 3. Averaging over many model
s or multi-model ensembles yields, in general, a
c range of expectations, which is not necessar
e for individual models or model integrations 
ubash et al., 2001; Kuzmina et al, 2004]. 
more, pulses of fresh water from the Arctic 
Dickson et al., 1988] and the dynamics of the 
nd saline North Atlantic sub-tropical 

d and fresh North Atlantic sub-polar gyre 
 et al., 2005] are important for decadal-scale 
ions of the hydrographic properties of the 

 Seas. One must assume that such fluctuations
cted by changes in climate, including 
ogenic changes. Reliable assessment of the 
ordic Seas climate will therefore require 

 models that are capable of realistically 
e the temporal and spatial characteristics of the 
ariability modes in the region.   

ANIC CHANGES DURING RECENT 
DECADES 

roper descriptions of local climate features, 
lly changes in oceanic circulation, overflow
vection, high spatial resolution are needed

anic components of climate models. As an 
e, the ocean component in the climate model 
 Figs. 2c and 3 is about 80 km, whereas a 
resolution of 20-40 km would, in general, 
 improve results [Drange et al., this issue]. 
ncouraging that the current generation of 

ea ice-ocean models is able to describe m
ey climate parameters in the Nordic Seas 

[see Drange et al., this issue]. The current 
ion of coupled sea ice-ocean models can, fo
t time, complement available ocean 
tions and can be used to guide forthcoming 
bservation strategies [e.g. Hátún et al., this 

This potential for interactive research i
e news because it will lead, over some time, to

roved representation of Nordic Sea processes i
 climate models.  

inflow of Atlantic Water to the Nordic S
he key components for climate and ecology in

ion, in addition to being an important factor for 
 variations far outside the region. Prediction of
ow of Atlantic Water over time scales of 
 to years is therefore of importance for many 
ions, ranging from basic needs of 
anding the climate system to socio-econ
ns addressing e.g. fisheries resource 
ment. On interannual time scales, Orvik and 
h [2003] demonstrated that the major 
ard volume transport of Atlantic Water off th
ian coast at 62ºN responds to the North 

c wind stress at about 55ºN with a time lag of 
5 months. Figure 4 shows a one an
on of the analyses period presented in Orvik 
gseth [2003]. It

 predicted to decrease until summer 2005. This 
at the North A

po
ee the synthesis by Furevik and Nilsen, th

near-surface properties of the Nordic Sea 
 are intimately linked to the climate of the 
 Nordic Sea. The hydrographic time ser
 are the longest continuous deep-water time 

f the world oceans. In Fig. 5, the annual mean
ature at 2000 m is shown for the period 19
he trend recapitulates the rapid warming 
nted up to 1996 by Østerhu

d continues until 1998, with a weak warming 
ter. The warming trends shown in Figs. 2b a
used by different mechanisms [Blindheim and 
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and ins ocumented for the last 50-190 
years. A gradual change in the hydrography of the 
region ly in 
response t  large-scale changes in the atmospheric 

us, this issue; Furevik and Nilsen, this issue]: 
s in the surface waters are mainly governed by
rographic properties of the Atlantic Inflow

al air-sea heat fluxes, whereas changes at depth 
ted to the formation rate of intermediate t
aters, particularly in the Greenland Basin. An 
nt task is to discover the links between these 
es. 

warming shown in Fig. 5 is partly linked to the 
lly intensified North Atlantic westerlies since 

960s [Hurrell, 1995; Furevik and Nilsen, this
The increasing trend in the NAO index between
nd the mid-1990s was accompanied by 
ing exchange rates of volume, heat and salt 
n the Atlantic and the Nordic Seas, as well as 
n the Nordic Seas and the Arctic Ocean. It also
op to the sea ice processes important for the 
ce of deep convection in the Greenland Sea
s et al., this issue] and thus contributed to th
g of the deep waters (Fig. 5) that lack recent 

tion with waters formed at near freezing poin
atures.  
ual freshening in the Nordic Seas occurred since 
sage of the fresh-water burst known as the 
Salinity Anomaly’ in the late 1960s [Dickson 
8]. This fresh water originated from the Arcti
from where it propagated quickly southward 

s and through the Denmark Strait in the late
Dickson et al., 1998; Haak et al., 2003], 
y followed by a return to the eastern part of the 
 Seas in the mid 1970s (Fig. 6). Recent a
monstrated that essentially all of the 
diate to deep waters of the Nordic Seas and the 
tlantic have experienced a freshening over the

ur decades [Dickson et al., 2002; Curry et al., 
As during the Great Salinity Anom

rce of this freshening is a reduction in both
 and liquid fresh water reservoirs in the Arctic 
  
nt observations of the salinity of the Atlan
show higher values than ever observed (Fig. 6). 
h salinity values are concurrent with the recent 
high SST at OWS M (Fig. 2b).  It is still open 
h extent the exceptional warming of the 
c Water in recent years (Fig. 2b) is linked t
nual flow field variations of the Atlantic Inflow 
 [e.g., Orvik and Skagseth, 2005]. 

5.  INORGANIC CARBON CYCLE 

mportant component of the climate system 
s the marine cycling of carbon, and the
larly the air-sea exchange of the greenhouse gas
 dioxide (CO2). Global compilations of the air-

quilibria of CO2 show that the north
c and the Nordic Seas are among the most 
 sinks of atmospheric CO2 [Takahashi et al
In Skjelvan et al. [this issue], the physically, 

y and biologically mediated carbon 
rts are quantified based on available 
tions and modeling.  

wly established time series of the seasonal 
 of total dissolved inorganic carbon (CT)
 is displayed in Fig. 7. From the figure

tions are seen in the surface water. This 
lity is, to a large extent, governed by biological 
. It follows that the plankton organisms start to 
 April in response to increasing insolation and 
ation, resulting in rapid consumption of
At 50 m depth, the effect of the bloom is seen 
ht decrease in CT followed by a slight in
espiration and remineralization. At this depth, 
between surface waters low in CT and deeper 
rich in CT becomes dominant in August-
ber. CT is close to constant at depths great
0 m. Here the downward transport of 
cally mediated carbon is close to be balanced 
vection and mixing. The presented time series
o short to detect interannual signals, but it will 
ful tool to link observed changes in 

raphy (Fig. 2b and 6) and transport (Fig. 3) to 
sea exchange of CO2. The deep water CT 
 at selected stations from the TTO/NAS 
ent Tracers in the Ocean – North Atlantic 
expedition in 1981 [Brewer et al., 198
iefly compared to deep water CT content
 from 2003, and an increase of about 6 µmol 

een which reflects that the anthropogenic 
signal has reached the abyss Norwegian Sea 
he 22 years period. 

6.  SUMMARY 

Nordic Se
 of climate of the North Atlantic realm. 

red to its latitudes it has the strongest positive 
face and surface air temperature anomalies in 
ld, and is a region particularly important for 
ass modification and formation, for air-sea 

ion, and as the major transport route for fresh 
nd heat between the North Atlantic and the 
Oceans. Large changes in the climate state of 
on have been revealed for the Holocene ep
trumentally d

has been observed since the 1960s, part
o
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Figure 1. De  annual (left) and December-February (right) means. Contours are 
shown for e (negative) anomalies. The figures are based on temperature data from 
the NCEP ]. 
 
 

 

viations from zonal mean 2 m temperature for
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Figure 2. Temperature anomalies (ºC) in the eastern and northern Nordic Seas. a. Diatom-inferred August SST variations [Jansen 
and Koc, 2000; Birks and Koc, 2002; Koc and Jansen, 2002; Andersen et al., 2004] during the last two millennia (extracted from 
Fig. 5b in Nesje et al. [this issue]). b. Observed three-year annual mean 0-200 m temperature variations at the Kola transect in the 
Barents Sea (70°30'-72°30'N, 33°30'E, thin line: updated from Bochkov [1982]; Tereshchenko [1997]) and observed three-year 
mean July-September SST variations at OWS M (66ºN, 2ºE, thick gray line: Østerhus, unpublished data). c. Simulated change of 
three-year mean July-September SST anomalies from the eastern Norwegian Sea for the period 2000-2100 based on IPCC 
scenarios SRES A2 (thick line) and SRES B1 (thin line) with the Bergen Climate Model [Furevik et al., 2003; Bentsen et al., 
2004]. The horizontal model resolution in the Nordic Seas is about 300-by-150 km in the atmosphere, and 80-by-80 km in the 
ocean. In all panels, the anomalies are relative to the mean value of the time series. 
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gure 3. Observed (thick lines) and simulated (thin lines) five-year averaged December-April 2 m temperature (ºC) at Bergen, 
rway (60ºN, 5ºE), Stykkishólmur, Iceland (65ºN, 23ºW), and Jan Mayen, central Nordic Seas (71ºN, 8ºW). The two simulati
based on the IPCC SRES A2 (thin black lines) and SRES B1 (thin gray lines) with the Bergen Climate Model. 
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Figure 4. Time series representing the observed variability of the poleward flow of Atlantic Water at the Svinøy section off the 
coast of Norway at 62 ºN (black lines) and the North Atlantic wind stress curl at 55ºN (gray line). The thick black line is updated 
from Orvik and Skagseth [2003]. In the figure, the wind stress curl is leading the flow through the Svinøy section by 15 months. 
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Figure 5. a. Time series of annual mean temperature (ºC) at 2.000 m depth from OWS Mike for the period 1948-2004 (updated 
from Østerhus and Gammelsrød [1999]). b. Number of observations per year. 
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Figure 6. Time series of annu Østerhus, unpublished data]. 
The mean salinity in 2004 is 
 

 
al mean salinity at 50 m depth from OWS M for the period 1948-2004 [

35.238. 
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Figure 7. Illustration of the seasonal cycle of total dissolved inorganic carbon at 10 m (circles), 50 m (squares) and 2.000 m 
(diamonds) at OWS M, with the curves indicating variations in time. Skjelvan, unpublished data. 
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