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INTRODUCTION

A theoretical formulation of the oceanic plankton sys-
tem usually includes descriptions of biological and ocean
dynamical quantities like species composition, nutrient
availability, advective transport, vertical mixing, solar
radiation, and temperature. A complete mathematical
formulation of the plankton system is therefore very com-
plicated and highly non-linear. Thus, existing ecosys-
tem models by necessity represent a simplification of
the actual properties of the marine biota.

Although we conclude that the ocean plankton sys-
tem is complex there are, nevertheless, some features of
the plankton system that are fairly predictable. An ex-
ample is provided by the importance of physical factors
for high latitude spring blooms. Sverdrup (1953) showed
that the major plankton blooming in the spring cannot
proceed unless the available light over the well-mixed
upper ocean layer is such that the integrated growth of
phytoplankton in the mixed layer is above the respira-
tion rate of the organisms. These quantities are well pre-
dictable illustrating that the integrated behaviour of the
plankton system can be described even if the details are
not known.

The physical properties of the upper ocean can be de-
scribed by means of physical models (for instance,

Gaspar 1988; Oberhuber 1993). The coupling between
physical properties of the ocean and the plankton sys-
tem can therefore be studied by coupled physical-bio-
logical models. It is interesting and encouraging that it
is possible to simulate the major (or integrated) features
of the marine ecosystem over large areas such as the
North Atlantic ocean using ecosystem models with es-
sentially uniform biological parameters (Oschlies &
Garçon 1998) or with ecosystem models designed to
describe the seasonal cycling of plankton and plant nu-
trients at specific locations (Fasham & al. 1993; Drange
1996).

One of the fundamental topics in mathematical mod-
elling deals with the robustness of the model formula-
tion. It is well known that even small changes in the
model formulation and parameter values may completely
change the time development of the model (Truscott &
Brindley 1994; Edwards & Brindley 1996, 1999). Fur-
thermore, it appears that a model can be robust in one
parameter regime but highly sensitive in another param-
eter regime. Thus, a detailed analysis of the model may
be necessary to fully comprehend the model behaviour.
Unfortunately, it appears that thorough discussions of
the mathematical properties of marine ecosystem mod-
els are more an exception (see for instance Busenberg &
al. 1990) than a rule.
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The aim of this study is to investigate the mathemati-

cal behaviour of a simple model for the biological cycle
during the productive season at high latitudes. To con-
struct a model for the ecosystem we must:
• formulate the mathematical model;
• find parameter values that reproduce measurements;

and
• evaluate the properties of the model, including

search for multiple solutions, examine sensitivity
to parameter values, and study the stability of the
time development of the modelled variables.

We do not intend to make a full investigation of the model
system in this study. Instead, we concentrate on certain
solutions and the associated behaviour of the system that
may be of practical concern in the modelling attempt.
Accordingly, the guideline for this study is simplicity
rather than completeness; a more complete discussion
on the stability properties of a similar model may be
found in Truscott & Brindley (1994) and Edwards &
Brindley (1996, 1999). To exemplify the model features
we use data from Station Mike (66°N, 2°E) in the Nor-
wegian Sea as a testbed for ascribing parameters to the
model.

The paper is outlined as follows: In Sec. 2 we describe
the basic structure of the model. Parameter values that
allow the model to reproduce measurements can be found
from an analysis of the model equations and data, and a
description of this procedure is given in Sec. 3. The sen-
sitivity to changes in parameters is also an important
model feature, and it is briefly covered in Sec. 4. The
stability aspect of the model is described in Sec. 5,
whereas the time evolution of the model compartments
for Station M is presented in Sec. 6. Discussions are de-
voted to Sec. 7.

2. FORMULATION OF THE PLANKTON SYSTEM

The most basic properties of the oceanic plankton sys-
tem can be described with the dissolved nutrient con-
centration N, the phytoplankton concentration P, and the
zooplankton concentration Z. Further, we temporarily
include the detritus concentration D to describe the ex-
port of organic material from the euphotic zone. The
variables P and Z should be regarded as integrated, or
distribution probabilities, of the entire phyto- and
zooplankton populations, respectively (Radach & Maier-
Reimer 1975). Some major features of the system are:
• Phytoplankton consumes dissolved nutrients dur-

ing growth.
• Zooplankton uses phytoplankton as food source.
• Both phyto- and zooplankton have a metabolism in

which they consume body weight and release nu-
trients to the water. The grazing of zooplankton on
other zooplankton will result in a loss of organic

material from the zooplankton pool due to the, say
20-40 %, losses in the zooplankton feeding proc-
ess. We will describe these “self-grazing” losses as
a metabolic process.

• Import and export of nutrients and biomass to/from
the upper layer. Mixing of nutrients from deeper
layers to the upper layer represents an import of
dissolved nutrients. Phytoplankton may sink out of
the upper layer and be lost from the system repre-
senting a loss term. Further, movements of zoo-
plankton may create a vertical flow in the model.
However, the most important export process is prob-
ably the sinking of faecal pellets produced by zoo-
plankton. We represent this flux by introducing the
detritus concentration D.

EQUATIONS OF THE SYSTEM

Conservation equations that describe the evolution of the
system may be put in the form
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Here G
P
(N,P) is the net growth of phytoplankton (de-

pends on the nutrient concentration N, and the
phytoplankton concentration P); M

Z
 is the metabolism

for zooplankton; M
D
 represents mineralisation of detri-

tus; S represents sources/sinks in the nutrient equation
due to external processes like mixing; G

Z
 is the growth

of zooplankton; W
P
 is the loss of phytoplankton from the

upper layer caused by sinking phytoplankton; W
D
 is the

loss of sinking particles; and ε represents an assimila-
tion efficiency for zooplankton (i.e., 1 – ε represents the
production of large detritus particles with high sinking
speeds, the egestion of small particles is, accordingly,
described through M

Z
). See Evans & Garçon (1997) for

detailed formulations on ecosystem models based on Eqs
1a-d.

SOME SIMPLIFICATIONS

Although Eqs 1a-d are general enough to describe the
time development of many ecosystems, the equations are
too complicated to admit a simple analysis of the sys-
tem. Therefore, we introduce the following simplifi-
cations:
• We assume that the plankton sinking term W

P
(P) is

small compared to the other terms in the
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phytoplankton equation, at least as long as the nu-
trient concentration N is above a certain minimum
value. Accordingly, we put W

P
(P) = 0.

• If the sinking velocity of detritus is sufficiently large,
the nutrients that are converted to detritus will be
exported to deeper layers. Thus, the export of nu-
trients can be calculated directly from (1 – ε)G

Z
(P,Z).

With these simplifications the equations describing the
system can be put in the form
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MODEL FLUXES

The fluxes in Eqs 2a-c may be written as
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where γ represents the growth rate, κ the half-saturation
constant, and µ the metabolism. For phytoplankton, γ

P

includes the effect of light on growth. Furthermore, n
and m are constants that may take values of 1 or 2 de-
pending on the ecosystem formulation (Steele &
Henderson 1981, 1992, 1995; and Sec. 4.3).

If the nutrient concentration is much larger than the
half-saturation constant, i.e., if N/(κ

N
 + N) ≈ 1, we may

write G
P
(N,P) ≈ G

P
(P), where

    G P PP P P( ) ( )= −γ µ , (4)

Eq. 4 is useful when analysing the sensitivity of the sys-
tem to changes in parameter values in the case where
there are plenty of dissolved nutrients.

The typical phytoplankton growth rate in the upper
layer, γ

P
, can be calculated as

    
γ P P I I z= Γ ,max lim ( ( )) , (5)

where <> represents a mean value over 24 hours and the
mixed layer depth, Γ

P,max
 is the phytoplankton growth rate

at optimal growth conditions, it depends on the tempera-
ture (Eppley 1972), and Γ

P,max
 ≈ 1.1 day–1 at 10 °C. The

growth rate depends on the light intensity according to

    
I I

I

II

lim ( ) =
+κ , (6)

where κ
I
 is the half-saturation constant for light. Typical

values of κ
I
 range between 25-100 µmol photons/(m2s)

reflecting the light sensitivity of the organisms (Rhee &
Gotham 1981; Sakshaug & Slagstad 1991). Finally, the
penetration of light in the ocean can be written

  

dI

dz
k Id= ⋅ , (7)

where z is depth (z is positive upwards) and k
d
 is the

extinction coefficient for oceanic water.
Some calculations of γ

P
 are shown in Fig. 1. The cal-

culations are based on observed cloudiness at Station M
and mixed layer depths taken from a one dimensional
turbulence model that has been forced by observed at-
mospheric conditions at Station M (Broström 1997).
Fig. 1 illustrates the physical control on primary pro-
duction, i.e., it essentially reflects the annual cycles of
the radiation conditions, the temperature and the thick-
ness of the mixed layer. There is, however, a feed back
from the biological system through self-shading. We have
therefore ascribed a typical summer value, k

d
 = 0.1 m–1,

to the extinction coefficient in the calculation presented
in Fig. 1.

3. ESTIMATING MODEL PARAMETERS

There are three factors that influence the model behav-
iour: The model structure; the mathematical formulation
of the flows; and the parameters that describe the strength
of the flow functions. Given a model structure, the time
development of the ecosystem model will depend on the
mathematical formulation and the parameter values,
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Fig. 1. An estimate of the phytoplankton growth rate γ
P
 at Station

M in 1991 for different values of the phytoplankton light sensi-
tivity parameter κ

I
. γ

P
 represents the mean potential growth rate

for phytoplankton over the mixed layer, i.e., it represents the av-
eraged growth rate at high nutrient concentration (see Eq. 5).
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implying that different flow formulations need different
parameter values to describe a similar time development.

If the model parameters are known, it is possible to
solve the system and determine the time evolution of the
model. It is therefore a direct coupling between the pa-
rameters of the model and the model solution. Accord-
ingly, for each independent observational set we have of
the system, it is possible to determine the numerical value
of one parameter. We will use this approach to deter-
mine the numerical value of the least known parameters
of the ecosystem model.

We consider the phytoplankton dynamics as to be more
comprehensively described in the literature than the dy-
namics of the zooplankton (Eppley 1972; Sakshaug &
Slagstad 1991). Accordingly, we assume that the phyto-
plankton growth and metabolism rate, i.e., γ

P
, κ

N
, and µ

P
,

are known (see Table 1 for the numerical values used in
this study, and Broström (1997) for a motivation of the
choices).

The situation is more complicated for the zooplankton
compartment for several reasons. Zooplankton may have
“advanced” survival strategies and life cycles that make
their behaviour difficult to study. In addition, the
zooplankton compartment represents the highest trophic
level in our model, so the zooplankton loss term also
includes grazing from higher trophic levels, a process
that is hard to parameterise. The response of zooplankton
grazing on phytoplankton has been studied in a number
of investigations (Frost 1977; Hansen & al. 1990). We
believe that the functional form of the grazing is easier
studied than the magnitude of the grazing capacity and
assign a prescribed value to κ

P
 rather than to γ

Z
. Accord-

ingly we assume that the parameters of the zooplankton
equation are the parameters for which little is known and
we intend to determine γ

Z
, µ

Z
, and ε from observations.

For κ
P
 we use a value of 0.5 µmol/kg that is typical for

Calanus finmarchicus which dominates the population
at station M (Tande & Slagstad 1992). However, for NPZ

models for the North Atlantic, κ
P
 = 1 µmol/kg is a more

typical value (Evans & Parslow 1985; Fasham & al. 1990;
Evans & Garçon 1997).

OBSERVATIONS TO FIT

The zooplankton parameters γ
Z
, µ

Z
, and ε are considered

as a priori unknowns. To determine these parameters we
use three empirical observations of the ecosystem. The
observations are based on data from the period immedi-
ately after the transient part of the spring bloom in the
Norwegian and the surrounding seas. This period starts
in early May, ends three months later in early August,
and is characterised by a steady decrease in the nitrate
concentration. We refer to this period as the decay phase
and the observations can be summarised as:
1. According to upper ocean measurements at Station

M for 1991, the decrease in nitrate concentration
during the decay phase, d, is about 12 µmol/kg in
90 days (F. Rey, Marine Research Institute, Bergen,
Norway; see also Fig. 9a), so
d(NO

3
) = –0.13 µmol N/(kg day).

2. The phytoplankton concentration appears to vary
around a reasonably well-defined mean value P

S

during the decay phase (F. Rey, Marine Research
Institute, Bergen, Norway; see also Fig. 9b). The
chlorophyll concentration is approximately 1 mg/
m3, thus assuming C:Chl = 50 and C:N = 106:16
ratios we have
P

S
 ≈ 0.6 µmol N/kg.

3. The zooplankton concentration varies around a
mean value Z

S
 during the decay phase. From obser-

vations we have the rough estimate
Z

S
 ≈ 0.9 µmol N/kg.

The estimate of Z
S
 is based on the following findings:

• Sakshaug & Slagstad (1992) estimated the averaged
ratio of phytoplankton and zooplankton biomass to
2/3 in the Barents Sea.

Table 1. The constants in the standard parameter setup of the model.

Constant Meaning Value

γ
P

Phytoplankton growth rate 0.7 day–1

µ
P

Phytoplankton metabolism 0.1 day–1

κ
N

Half-saturation constant for phytoplankton growth on nutrients 0.1 µmol/kg

1γ
Z

Zooplankton growth rate (n = 1) 0.733 day–1

2γ
Z

Zooplankton growth rate (n = 2) 0.677 day–1

1µ
Z

Zooplankton metabolism (m = 1) 0.244 day–1

2µ
Z

Zooplankton metabolism (m = 2) 0.272 (µmol/kg)–1 day–1

κ
P

Half-saturation constant for zooplankton grazing on phytoplankton 0.5 µmol/kg

ε Zooplankton feeding efficiency 0.611
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• Lenz & al. (1993) made observations in the begin-
ning of June at 58°N, 23°W and obtained the esti-
mates: A phytoplankton standing stock of 2056 mg
C/m2, a mesozooplankton stock of 1933 mg C/m2,
and a microzooplankton stock of 110 mg C/m2.
However, the mesozooplankton stock could only
account for 50 % of the estimated grazing rate sug-
gesting that the nano- and microzooplankton popu-
lation must be significant.

• Burkill & al. (1993) estimated the microzooplankton
population to 428 mg C/m2 at 60°N, 20°W, sug-
gesting that the microzooplankton biomass may be
higher than the 110 mg C/m2 observed by Lenz &
al. (1993).

Taken together, a reasonable estimate of the phyto-
plankton to zooplankton ratio is 2/3 for the Nordic seas.
Thus, given that P

S
 ≈ 0.6 µmol N/kg, we obtain the esti-

mate Z
S
 ≈ 0.9 µmol N/kg for Station M.

THE APPROXIMATE BALANCE DURING THE DECAY PHASE

During the decay phase, the biological system is charac-
terised by variations around relatively constant mean
levels for zoo- and phytoplankton, while the level of dis-
solved nitrate decays at a reasonably constant rate (Fig.
9a). In this state we have coexistence of substantial zoo-
and phytoplankton populations characterised by approxi-
mate balance between rates of growth and decay.

According to the above given considerations regard-
ing the properties of the decay state we assume that the
right hand sides of Eqs 2b-c vanish if we consider the
mean value over the mixed layer depth and a substantial
portion of the decay phase, say 10 or 20 days. Some-
what intuitively we assume that the contribution provided
by mixing is small, and we set S = 0.01 µmol/(kg day).

Inserting the known properties of the solutions into
Eqs 2, using Eqs 3, we arrive at

    

d NO P Z S

P
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Z
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P
Z Z

P P S Z S
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where P
S
 and Z

S
 represent mean values for P and Z for

the decay phase. In deriving Eq. 8b we have made the
assumption that production is not limited by nutrient,
which is presumably true at least in the early part of the
decay phase.

These three equations can be used to determine the
values of γ

Z
, µ

Z
 and ε, given that κ

P
, γ

P
, and µ

P
 are known

(parameter values given in Table 1). With γ
P
 = 0.7 day–1

(Fig. 1) and the prescribed values of d(NO
3
), P

S
, and Z

S
,

we get the following approximate values of γ
Z
, µ

Z
 and ε:
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where the superscripts 1 and 2 on γ
Z
 and µ

Z
 refer to the

value of n and m, respectively. The fact that we get simi-
lar numerical values for each n and m arises since κ

P
 ≈

P
S
 and Z

S
 ≈ 1 µmol/kg. It should be noted that with κ

P
 =

1 µmol/kg, we obtain 1γ
Z
 ≈ 1.1 day–1 and 2γ

Z
 = 1.5 day–1.

However, all these cases correspond to an apparent
zooplankton growth rate that is approximately 0.2-0.25
day–1 for the given phytoplankton concentration.

The obtained parameter values are quite similar to
values found in the literature for comparable types of
ecosystem models. For instance, for Bermuda Station S
and Ocean Weather Station India in the Atlantic Ocean,
Fasham & al. (1990) and Fasham (1993) used a
zooplankton assimilation efficiency ε of 0.75, and a
maximum zooplankton growth rate γ

Z
 of 1 day–1 (using

κ
P
 = 1 µmol/kg). In addition, Fasham & al. (1990) used

the value 0.15 day–1 for µ
Z
 for the case of a linear me-

tabolism (see also Evans & Garçon 1997).

4. STEADY STATE SOLUTIONS AND SENSITIVITY
ANALYSIS

We have already found the relation between the steady
state solution of the model and the parameter values. It
is, however, still interesting to know the sensitivity of
the solution to variations in the parameter space. As de-
scribed in Sec. 3, the system is in a quasi-steady state
after the initial part of the bloom and we will investigate
the sensitivity of the steady-state solutions. However, it
should be mentioned that although there exists a steady
state solution, it may be unstable to infinitesimal distur-
bances; thus the analysis of the steady state solutions
must be complemented with the stability analysis in the
next section before a final understanding of the model is
reached.

Let us assume that the greatest variability of the sys-
tem is caused by
• solar radiation;
• mixing intensity (i.e., the depth of the mixed layer);

and
• input and export of nutrients.
These factors mainly influence the biological system
through the phytoplankton dynamics, implicitly by the nutri-
ent concentration or directly by the phytoplankton growth
rate. We therefore investigate the response of the system
to changes in the total nutrient concentration, defined as
N

T
 ≡ N + P + Z, and the phytoplankton growth rate.
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THE STEADY STATE SOLUTION

The properties of the steady state solution and its stabil-
ity are investigated for a system where the total nutrient
concentration is considered as constant. Thus, we con-
sider a system where the export from the system is bal-
anced by an import of dissolved nutrients; or where all
nutrients are mineralised to dissolved nutrient immedi-
ately as they leave the planktonic states and where S = 0.
The dissolved nutrient concentration in the system can
be expressed as a function of the total nutrient concen-
tration and Eqs 2b-c may be written as

    

dP

dt
G N P Z P G P Z

dZ

dt
G P Z M Z

P T Z

Z Z

= − − −

= −

( , ) ( , ),

( , ) ( ).ε
(9 a, b)

The steady state solutions, denoted P
0
 and Z

0
, are de-

fined from Eqs 9 by dropping the time derivatives
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The solutions to these algebraic equations are not eas-
ily found, and an analytical solution is only found for
the n = m = 1 case, for the other cases we use numerical
solutions. The solutions to Eqs 10 are shown in Figs 2-4.
Recall that the dissolved nutrient concentration in the
steady state, denoted N

0
, can be calculated from N

0
 = N

T
 –

P
0
 – Z

0
.

An analysis of the solutions with high dissolved nutrient

concentrations

During a significant part of the spring-summer at station
M there are plenty of nutrients in the productive layer
and the behaviour of the model under such conditions is
crucial to its success. Further, there are some interesting
dynamical features at high dissolved nutrient concentra-

tions, e.g., the multiple solutions for the m = 2 case (Figs
3 and 4). Accordingly we will discuss the solutions pre-
sented in Figs 2-4 for the case of N

0
/(κ

N
+N

0
) ≈ 1, which

allows some analytical solutions that give guidance to a
more thorough understanding of the system. Among other
things, the analytical solutions give a better understand-
ing of the sensitivity of the solution in the parameter
space.

Let us consider the case with N
0
/(κ

N
+N

0
) ≈ 1, with

this assumption we can write
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= −
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where G
P
(P

0
) is given by Eq. 4.

The phytoplankton concentration is given by the fol-
lowing polynomial (note that the P

0
 = 0 solution has been

removed)
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Introducing P
*
 = P

0
/κ

P
, we may write Eq. 12a as
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Fig. 2. Steady state solution to the model for the n = m = 1 case as a function of a) the total nutrient
concentration and b) the phytoplankton growth rate. Below N

T
 ≈ 0.6 µmol/kg the solution changes

to a state where Z
0
 = 0 (not shown). Changing the value of n to 2 will not significantly alter the

figure. Panel a is drawn for γ
P
 = 0.7 day–1, and panel b is drawn for N

T
 = 10 µmol/kg.
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Some solutions to Eq. 13, valid for N
0
/(κ

N
+N

0
) ≈ 1, are

given below.

Case with m = 1

Inserting m = 1 in Eq. 13 gives

    
P

n

*

/

= −( )−
1

1

1χ , (14)

where

    

1

1
χ

εγ
µ

= Z

Z

.

It is interesting that the phytoplankton concentration is
fully described by parameters of the zooplankton equa-
tion. Thus P

0
 does not depend on the phytoplankton

growth rate which explains the insensitivity to N
T
 and γ

P

as shown in Fig. 2. Continuing, since P
0
 only depends

on the parameters in the zooplankton equation, the model
case with n = 2 will show a similar sensitivity to N

T
 and

γ
P
 (parameters that only influence the phytoplankton

growth rate) as the n = 1 case. Further, for high total
nutrient concentration, the zooplankton concentration is
directly proportional to γ

P
 (Eq. 12b and Fig. 2b).

Case with m = 2

The solutions with m = 2, displayed in Figs 3-4, show
that there may be multiple solutions for some parameter
regimes. An important task is to find how the multiple

solutions relate to parameter space. With m = 2, Eq. 13
does not have a simple solution for P

0
 for an arbitrary

value of n, and the different cases are treated separately.
For n = 1, we get

    
P* =

− ± −( )2 2 22 4

2

χ χ χ
, (15a)

where

    

2

2
χ

εγ
µ κ

γ
γ µ

=
−







Z

Z P

Z

P P

. (15b)

For n = 1 there are only real solutions if 2χ is larger than
4, further, these solutions are multiple solutions (Fig. 5).
An analytical solution to Eq. 13 also exists for n = 2, but
due to its complexity it is only presented graphically in
Fig. 5. For n = 2, multiple solutions appear at 2χ ≈ 3.

The solutions described in Fig. 5 correspond to the
solutions in Figs 3 and 4 with the lowest phyto- and
zooplankton concentrations. For the n = 1 (n = 2) case,
these solutions vanish at γ

P
 ≈ 0.7 day–1 (γ

P
 ≈ 0.8 day–1),

corresponding to 2χ ≈ 4 (2χ ≈ 3) by means of Eq. 15b,
which follows the results presented in Fig. 5. Thus, 2χ is
a valuable quantity in estimating the disappearance of
the solution with low phytoplankton concentration.

We have concentrated our investigation to the case with
γ

P
 = 0.7 day–1 and for this phytoplankton growth rate both
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Fig. 3. Steady state solution to the model for the n = 1, m = 2 case as a function of the total nutrient concentra-
tion for γ

P
 = 0.7 day–1 (upper row), and as function of the phytoplankton growth rate for N

T
 = 10 µmol/kg

(lower row). Multiple solutions are possible above N
T
 = 3 µmol/kg for γ

P
 = 0.7 day–1, and between γ

P
 ≈ 0.25

day–1 and γ
P
 ≈ 0.7 day–1 for N

T
 = 10 µmol/kg. Note that the model solution is very sensitive to small changes in

γ
P
 around the value γ

P
 = 0.7 day–1.
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n = 1 and n = 2 cases have solutions with low phyto-
plankton concentration. However, the model solutions
are very sensitive to changes in γ

P
 around 2χ  = 4 for the

n = 1 case, and around 2χ  = 3 for the n = 2 case. Thus, in
a more realistic situation where the phytoplankton growth
rates varies during the year (e.g., Fig. 1), with growth
rates exceeding γ

P
 = 0.7 day–1, the system can move into

a regime where the solution with high phytoplankton con-
centrations is the only existing solution. In this case, the
system will move rapidly towards the solution with high
phytoplankton concentration.

According to measurements from Station M, the
phytoplankton concentrations are generally below 1 µmol
N/kg and we find no evidence that the solution with the
high phytoplankton concentration has a counterpart in
observations. Therefore, this solution probably represents
an unwanted feature of the model. Comparing the n = 1
case (Fig. 3) with the n = 2 case (Fig. 4), we see that the
disappearance of the solution with low P concentrations
is highly dependent upon the model formulation. If the
solution with high phytoplankton concentration is an
unwanted feature of the model, it appears that the model
case with n = 2 may be the preferred one.

The solutions with low dissolved nutrient concentrations

In the last section, we stated that for m = 1, the phyto-
plankton concentration is fully described by the param-
eters in the zooplankton equation at high nutrient con-
centrations (Eq. 14). However, this conclusion on P

0
 is

not restricted to high nutrient concentrations, it is in fact

valid as long as there are zooplankton in the system.
Accordingly, the phytoplankton concentration is inde-
pendent of N

T
 and γ

P
 down to approximately N

T
 ≈ 0.6

µmol/kg. Below this concentration the zooplankton con-
centration becomes zero; this case is not covered by our
analysis but it is characterised by having the main parts
of the nutrients in the form of phytoplankton (until very
low values of N

T
 when phytoplankton also vanishes from

the system).
The solution with the high phytoplankton concentra-

tion, and low dissolved nutrient concentration, can be
understood if we consider phytoplankton concentrations
high enough to saturate G

Z
, i.e.,    P Pn

P
n n( )κ + ≈ 1 . The

zooplankton grazing can no longer respond to the
phytoplankton growth and the phytoplankton population
will grow until most of the dissolved nutrient has been
used. Thus, we reach a state where the dissolved nutri-
ent is at a low level and the phytoplankton growth is
severely limited by low nutrient concentration. The dis-
solved nutrient concentration is set by the level where
the production of phytoplankton is matched by
zooplankton grazing. The zooplankton is, as in the ear-
lier cases, set internally from “self grazing”. For high
enough phytoplankton growth rates, zooplankton is not
able to control the phytoplankton population and this state
becomes the only existing solution (Figs 3 and 4).

The cases with m = 2 (Figs 3 and 4) show some very
different behaviours from the m = 1 case (Fig. 2) at low
total nutrient concentration. For m = 1 the phytoplankton
concentration is set at a constant level whereas for m =

Fig. 4. As Fig. 3, but for n = 2, m = 2. Multiple solutions exist above N
T
 = 4 µmol/kg for γ

P
 = 0.7 day–1, and

between γ
P
 ≈ 0.3 day–1 and γ

P
 ≈ 0.8 day–1 for N

T
 = 10 µmol/kg. Note that the model is particularly sensitive to

small changes in γ
P
 around the value γ

P
 = 0.8 day–1.
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2, the concentrations for N, P and Z depend almost lin-
early on the total nutrient concentration up to, say, N

T
 ≈

2 µmol/kg (Steele & Henderson 1981, 1992, 1995).
Burkill & al. (1993) noted that there was a linear rela-
tion between the microzooplankton biomass and the
phytoplankton biomass during the U.K. Biogeochemical
Ocean Flux Study giving some credit to the m = 2 model
case. However, with or without direct empirical evidence
we may conclude that the linear relation between phyto-
and zooplankton is an attractive feature of the model case
with m = 2 (Steele & Henderson 1995).

5. INVESTIGATING THE STABILITY OF THE SYSTEM

The stability of the steady state solutions is found by
investigating the time-development for small pertur-
bations in the phyto- and zooplankton concentrations.
This may be achieved by describing the properties of the
equations in the vicinity of the steady-state solution us-
ing a Taylor series expansion of the basic equations (May
1975; Murray 1989). This method allows us to keep the
general formulation of the flow formulations to the final
stage of the stability analysis, which is advantageous for
a thorough understanding of the system.

THE PERTURBATION EQUATIONS

We will now investigate how small changes from the
steady state solutions, denoted δP and δZ, affect the time
dependence of the phyto- and zooplankton concentra-
tions. The Taylor expansion of Eqs 9 can to the lowest
order be written as (using the definition of the steady
state solution Eqs 10 to remove the steady state solution
from the expression)
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(16 a, b)

where G
P
 = G

P
(N

T
 – P – Z, P), and where the differentia-

tion on the right-hand side are evaluated at P = P
0
, Z =

Z
0
. The solutions to the equations are in the form (for

instance Braun 1983, Chap. 3.6)

    ( , )δ δP Z Ae Be
q t q t= ++ − , (17)

where A and B are constants and
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The system is stable if q
+
 and q

–
 take on negative values,

it is unstable if either q
+
 or q

–
 is positive, and we get

oscillatory solutions if q
+
 and q

–
 have an imaginary part.

We see that q
+
 represents the most unstable solution, that

a positive value of the first four terms always makes the
system unstable, whereas a negative value of these terms
implies that the magnitude of the root must be evaluated
before the stability of the system can be found. As al-
ready stated, q

+
 is the most unstable part and the real and

the imaginary parts of q
+
 for the different model cases

are shown in Figs 6 and 7 . To explain the value of q
+
 for

the different cases, we will discuss the different terms
on the right-hand side of Eq. 18.

The net growth of phytoplankton G
P
 tends to de-

stabilise the system. The net growth rate depends on the
dissolved nutrient concentration, which is low at low total
nutrient concentrations. The system is therefore most
stable at low total nutrient concentrations. Even the n =
m = 1 case, which otherwise is the most unstable case,
shows stable properties if the total nutrient concentra-
tion is below 2 µmol/kg (Fig. 6a). However, at small N

T

concentrations, the root function becomes positive and
its root will contribute to the stability (i.e., the imagi-
nary part disappears and becomes a real part). To ana-
lyse the system with a positive root is rather complicated
but we may notice that the stability of the system de-
creases rapidly as the total nutrient concentration is be-
low the breaking point, say 1-2 µmol/kg.

The functions ∂G
Z
/∂Z and ∂G

Z
/∂P are shown in Fig. 8.

Starting with ∂G
Z
/∂Z, which represents a destabilising

factor, we see that there is a switch in the magnitude of
the derivative at the phytoplankton concentration P = κ

P
.

Below this concentration the function with n = 1 is larger
than the function with n = 2, whereas the opposite holds
for P larger than κ

P
. Thus, from the view of the ∂G

Z
/∂Z

function, the n = 1 case is “more stable” for phytoplankton
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+
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The concentrations needed to evaluate Eq. 22 are taken from Fig. 2 for the n = 1 case. For the n = 2 case we use
a steady state solution that is similar to Fig. 2.
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concentrations above κ
P
, and the n = 2 case is “more

stable” below this concentration.
For n = 1, the ∂G

Z
/∂P function, which represent a sta-

bilising factor, has a high value at small concentrations
and decreases monotonically with increasing value of P.

With n = 2 the function is small at low concentrations
and it increases fast until it reaches a maximum value at
P ≈ 0.5κ

P
, above this value the function decreases with

increasing P. Comparing the two cases, the n = 1 case
has highest values, and thereby the most stabilising ef-
fect, for concentrations below approximately 0.5κ

P
.

Above this concentration, the n = 2 function has higher
values and, notably, it has significantly higher values
between, say P = 0.6κ

P
 and P = 1.5κ

P
, which represent

the phytoplankton concentrations that are normally found
in the productive season.

We can see the stabilising effect of ∂G
Z
/∂P on the sys-

tem when comparing the n = m = 1 case with the n = 2, m
= 1 case (Fig. 6) (the function ∂G

Z
/∂Z does not depend

significantly on n for the given steady solution where P
0

≈ κ
P
). Although both cases are generally unstable we see

that the n = 2 case has smaller values on the real part of
q

+
. The case with n = 2 simply has larger derivatives at

the given concentrations showing the importance of the
form of the G

Z
 function for the stability. We also note

that the low P solution in the n = m = 2 case is more
stable than the low P solution in the n = 1, m = 2 case
which is unstable in the main part of the illustrated pa-
rameter domains (Fig. 7).

The zooplankton metabolism appears in the fourth term
and it acts to stabilise the system. Given the parameter
set up and steady state solutions of the model, the sys-
tem becomes more stable with increasing value of m.
The stabilising effect of the m = 2 case can be seen when
comparing the stability factors in Fig. 7 with those in
Fig. 6. However, the m = 2 case also trigger new solu-
tions of the model. Fig. 7 shows that the solution with

the highest phytoplankton concentrations is always sta-
ble whereas the middle solution is always unstable. The
stability of the solution with the lowest phytoplankton
concentration depends on the value of n and the param-
eter values. For n = 1 and γ

P
 = 0.7 day–1 it is stable below,

say N
T
 = 1.8 µmol/kg (Fig. 7a) and for N

T
 = 10 µmol/kg

it is stable below γ
P
 = 0.5 day–1. For n = 2 the low P

solution is stable in the entire parameter regime.

6. SIMULATING THE SEASONAL CYCLE AT STATION M

Of the four different model cases, we will restrict the
investigation to the n = m = 1, the n = 1, m = 2, and the n
= m = 2 cases. We start the integration at beginning of
May (day 110), and initialise the model with observed
nitrate and phytoplankton concentrations. The value of
the zooplankton concentration is more uncertain, and the
model is initialised with a concentration of 0.7 µmol/kg.

The high zooplankton concentration at the start of the
spring bloom is assumed to be the result of vertical zoo-
plankton movements that occur in early spring (Østvedt
1955; Lie 1968; Wiborg 1978; Bathmann & al. 1990).
The zooplankton concentration in the early part of the
spring bloom is an important model parameter, possibly
controlling if there will be a strong bloom of phyto-
plankton or not. The model is able to reproduce the ob-
served nitrate and phytoplankton concentrations, indi-
cating that the initial zooplankton concentration is rea-
sonable.

The growth rate for phytoplankton is fixed to γ
P
 = 0.7

day–1 (see Fig. 1 for a more realistic time development
of γ

P
), and the time development for the first 130 days is

shown in Fig. 9. All model compartments in the n = m = 1
and n = 1, m = 2 cases show strong oscillations as pre-
dicted by the stability analysis. The oscillations have no
counterpart in the observations and we conclude that the
oscillations are an unwanted feature of the model for-
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mulation. The model with n = m = 2 has a stable time
development and model concentrations that are in fair
agreement with data.

The agreement between data and the model experi-
ment with n = m = 2 illustrates that model parameters
can be achieved as discussed in Sec. 3. However, the m
= 2 case also has a solution with high phytoplankton
concentration that is stable. Although this solution is not
reached in Fig. 9, it may be reached if we encounter high
phytoplankton concentrations in the system. Let us im-
agine a calm sunny period, say 5 days long, giving high
growth rates for phytoplankton. This situation is de-
scribed in Fig. 10 where we force the model with a spike
in the phytoplankton growth rate located around day 120.
The time-development of the system is drastically
changed from the case without the spike, illustrating that
the system may switch to the “high phytoplankton con-
centration” solution given a small disturbance of the sys-
tem. This may also be seen as an example of the excit-
able nature of the marine plankton system (Truscott &
Brindley 1994).

The possibility of the model to switch from one to
another state clearly illustrates the need and importance
of appropriate description of the vertical mixing proc-
esses in coupled physical-biochemical models. In fact,
over-simplified mixing schemes may lead to switching
from low to high phytoplankton concentration solutions,
or vice versa, compared to more sophisticated mixing
schemes.

Without doubt, there are fluctuations in the time de-
velopment of the system creating random disturbances
in the concentrations. These small changes in the con-
centration distribution of the compartments may lead to
abrupt changes in the solution regime. Such feature of
the model behaviour cannot, in general, be found from
infinitesimal perturbation theory. To give an idea of the
sensitivity of the system, we perform a set of experi-
ments with a closed system where all exported material
is returned to the dissolved nutrient pool and where S =
0. Further, we assume that the total nutrient concentra-
tion in the system is 10 µmol/kg. The experiments are
started with different initial conditions, and the solution
trajectories in the P, Z-space are presented in Fig. 11. We
see that small changes in the P and Z concentrations can
lead to very different time developments. Note that two
pairs of initial conditions are indistinguishable in the fig-
ure (marked with two circles), albeit that, the system
develops to different steady state solutions. Under con-
stant conditions, solution trajectories can never cross each
other and the trajectories in Fig. 11 may be used to evalu-
ate how the different steady state points attract solutions
in P, Z-space. We see that the main part of the P, Z space
shown in Fig. 11 ends up in the high P concentration
solution. Nevertheless, there is a distinct area in P, Z

space, centred around the low P concentration solution,
where the system ends up in the low P concentration
solution implying that this solution is relatively stable
against finite disturbances. However, if some random
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fluctuation moves the system over any of the trajecto-
ries separating the different solution regimes, the sys-
tem will have a switch in the steady state behaviour.

7. RESULT AND DISCUSSION

In this study we examine some properties of a mathemati-
cal formulation of the marine ecosystem known as the
NPZ system, implying that we use the variables dissolved
nutrient, phyto- and zooplankton concentrations to de-
scribe the system. Although such a system represents a
very crude description of the real ecosystem, this kind
of model can reproduce the major features of the sea-
sonal cycling of biomass and nutrient concentration in
the ocean. However, to formulate an ecosystem model,
several choices have to be made. First, model variables
and the flow structure must be described. Further, the
formulations of the flows and the parameters that deter-
mine the strength of the flows must be quantified.

In this study we use a fixed model structure and in-
vestigate how different flow structures and parameter
values influence the time evolution of the model. In do-
ing so, it is important to realise that different flow for-
mulations give different time evolution of the model and
are therefore not directly comparable. To overcome this
problem we use parameters that have been chosen to give
a similar time evolution of the model. However, it must
be noted that not all model cases are able to reproduce
the characteristic features of the developing ecosystem
(actually, only one of the proposed model formulations
can reproduce measurements).

The way we have estimated the parameters is power-
ful and arises from the fact that there is a direct connec-

tion between the parameters of the model and the model
solution. Thus, it is possible to analyse the behaviour of
the equations over a given period and insert the observa-
tions directly into the equations. With this method, it is
possible to derive numerical value of the (poorest known)
model parameters. Further, if there are observations of
the seasonal cycle under various conditions, it may be
possible to make some predictions on the model formu-
lation as well as on the model parameters, although this
hypothesis remains to be tested.

An important aspect of the model is the sensitivity to
changes in the value of model parameters. An example
is provided by the model behaviours with m = 1 and m =
2 at low total nutrient concentrations. For m = 1, the
model predicts that the phytoplankton concentration is
constant down to a total nutrient concentration of ap-
proximately 0.6 µmol/kg. The case with m = 2 predicts
that N, P and Z depend linearly on the total nutrient con-
centration for low concentrations. Intuitively we may
expect that the case with m = 2 describes the natural eco-
system more accurate than the m = 1 case, although it is
hard to find empirical evidences for such a statement.

Further, it is necessary to look for the stability of the
system and the possibility that the system has multiple
solutions. Although the model cases with m = 1, n = 1,
and m = 2, n = 1 have quasi-steady state solutions that
should give reasonable results for the annual cycle, these
model cases are not realised; instead the model solution
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Fig. 10. The time development for the n = m = 2 model case
with a “spike” in the phytoplankton growth rate at day 120.

Fig. 11. The time development for the n = m = 2 model for five
initial values (marked with a circle of initial P and Z concentra-
tions). Note that two pairs of trajectories start with almost simi-
lar initial conditions that cannot be distinguished in the figure
(shown with two circles). Solution trajectories cannot cross each
other and it is possible to find how the different steady state
points attract solutions. The areas “belonging” to each steady
state point are given in the figure.
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is characterised by strong oscillations. The oscillations
have no counterpart in the data, illustrating that the ac-
tual choices of model flows and model parameter values
should be carefully examined. In this study we have only
analysed the stability of the system from a rather practi-
cal point of view and for a more general discussion on
stability properties of a similar system we refer to other
more complete studies (May 1975; Steele & Henderson
1981, 1992; Murray 1989; Truscott & Brindley 1994;
Edwards & Brindley 1996, 1999).

The model with n = m = 2 shows good agreement with
data. However, this model case has a stable solution with
high phytoplankton concentration that may be reached
if the phytoplankton growth rate is high enough or if the
system is significantly disturbed from the quasi steady
state solutions. An important model feature is therefore
the parameter regimes in which multiple solutions exist.
Especially important is the point where the solution with
low phytoplankton concentration disappears. The switch-
ing point is related to the parameter 2χ (Eq. 15b) which
can be used to analyse the system. It should be men-
tioned that it is also possible to describe the zooplankton
metabolism as a combination of a linear and a quadratic
term (Broström 1998). With such a model formulation,
the parameter regime for the multiple solutions may move
to higher values of the phytoplankton growth rates. For
the combined case, the linear term reflects the direct
metabolism of zooplankton, and the quadratic term re-
flects the effect of internal grazing in the zooplankton
pool.

More advanced models may easily be developed from
the NPZ system. An example is to divide the nutrient N
into nitrate NO

3
–, and ammonia NH

4
+. Depending on how

phytoplankton use NO
3
– and NH

4
+ there can be slightly

different phytoplankton growth rates for the same amount
of dissolved nitrogen (Wroblewski 1977). If there are
only small changes in the phytoplankton growth rate for
different combinations of nitrate and ammonium, the
general properties of the system will probably not change
in any important way from the simple NPZ model. How-
ever, if different combinations of nitrate and ammonium
concentrations imply that the phytoplankton growth rate
changes considerably, a thorough investigation of its sta-
bility, both for infinitesimal disturbances and for small
disturbances, may be need.

The divisions of P and Z into different categories, i.e.,
different taxonomic species, imply that the system can-
not be described as a NPZ system. However, the charac-
teristic behaviour of the more complex model, e.g., its
stability and the possible existence of multiple solutions,
can in many regards be analysed from the results of the
NPZ model. The same conclusion is valid if we include
a microbial loop to the NPZ model (Taylor & Joint 1990).
However, it is important to check that the microbial loop
does not have a cyclic solution.
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