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Abstract

Within the European DIADEM project, a data assimilation system for coupled ocean circulation and
marine ecosystem models has been implemented for the North Atlantic and the Nordic Seas. One objective
of this project is to demonstrate the relevance of sophisticated methods to assimilate satellite data such as
altimetry, surface temperature and ocean color, into realistic ocean models. In this paper, the singular
evolutive extended Kalman (SEEK) filter, which is an advanced assimilation scheme where three-
dimensional, multivariate error statistics are taken into account, is used to assimilate ocean color data into
the biological component of the coupled system. The marine ecosystem model, derived from the FDM
model [J. Mar. Res. 48 (1990) 591], includes 11 nitrogen and carbon compartments and describes the
synthesis of organic matter in the euphotic zone, its consumption by animals of upper trophic levels, and
the recycling of detritic material in the deep ocean. The circulation model coupled to the ecosystem is the
Miami isopycnic coordinate ocean model (MICOM), which covers the Atlantic and the Arctic Oceans
with an enhanced resolution in the North Atlantic basin. The model is forced with realistic ECMWF
ocean/atmosphere fluxes, which permits to resolve the seasonal variability of the circulation and mixed
layer properties. In the twin assimimation experiments reported here, the predictions of the coupled model
are corrected every 10 days using pseudo-measurements of surface phytoplankton as a substitute to
chlorophyll concentrations measured from space. The diagnostics of these experiments indicate that the
assimilation is feasible with a reduced-order Kalman filter of small rank (of order 10) as long as a suf-
ficiently good identification of the error structure is available. In addition, the control of non-observed
quantities such as zooplankton and nitrate concentrations is made possible, owing to the multivariate
nature of the analysis scheme. However, a too severe truncation of the error sub-space downgrades the
propagation of surface information below the mixed layer. The reduction of the actual state vector to the
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surface layers is therefore investigated to improve the estimation process in the perspective of sea-viewing
wide field-of-view sensor (SeaWiFS) data assimilation experiments. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Three-dimensional models of the marine ecosystems are being used with increasing interest to
better understand the space-time distribution of the primary biological properties in the ocean.
The basic phenomenology described by these models is the synthesis of organic matter from in-
organic materials by autotrophic organisms (i.e., primary production), its consumption by ani-
mals of the lower trophic levels, and the recycling of detritic material. The coupling with realistic
models of the ocean circulation allows one to take leading factors of the physical environment
into account, such as horizontal and vertical mixing processes, upwelling, horizontal advection,
and thermodynamic conditions.

The development of high-resolution marine ecosystem models is justified by the need to capture
the variability of biological activities at scales which could not be resolved by conventional in situ
measurements, and also to predict the evolution of the marine environment at short or medium
range. Besides coastal applications, basin-scale ecosystem models are useful to investigate, among
others, the role of the phytoplankton in the control of atmospheric carbon dioxide via oceanic
uptake in a global change perspective (Sarmiento et al., 1993; Oschlies and Garcon, 1998; Drange,
1996).

The response of a numerical model depends on a large variety of factors: the parameterization
of the biological processes, the specification of external forcing functions and the associated
hydrodynamic constraints, the discretization of the numerical system in space, the coupling
mechanisms between the physical and the biological processes which are sometimes resolved with
different time steps, etc. As a result of the many degrees of freedom in the model setup, errors can
occur in the numerical simulations which lead to imperfect representations of the reality, and
consequently mismatches with observations.

The observation of some facets of the marine ecosystem at the basin scale is now possible with
ocean color measurements, which can be made available from satellite missions. For most oceanic
regions, the color of the sea is determined primarily by the abundance of phytoplankton and their
associated pigments (e.g., chlorophyll «@): as the phytoplankton concentration increases, ocean
color shifts from blue to green. The first space instrument used to measure ocean color was the
coastal ocean color scanner (CZCS) operated by NASA from 2 November 1978 to 22 June 1986,
with the objective to obtain a better understanding of the temporal and spatial distribution of
phytoplankton biomass and primary production. The sea-viewing wide field-of-view sensor
(SeaWiFS) project was then developed by NASA as a follow-on sensor to the CZCS; it has de-
livered ocean color data continuously since July 1997.

The comparison of a model response with those data provides a first opportunity for assess-
ment, validation, and more generally for model refinement. A next step is the assimilation of these
data with the aim to improve the consistency between observations and model simulations, to
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dynamically extrapolate and interpolate the data in space and time, and to make comprehensive
interpretation of ocean color measurements from satellites.

The theoretical framework of data assimilation in meteorology and physical oceanography is
now well established: variational methods seek to minimize the misfit between data and model
simulations by optimization of well-chosen control variables (numerical parameters, initial con-
ditions, forcings, ...) while sequential methods proceed by intermittent blending of observations
and model solutions according to their respective accuracy. In spite of their theoretical equiva-
lence in a linear framework, significant differences exist between sequential and variational
methods concerning implementation issues and algorithmic solutions.

Advanced algorithms have been developed recently to tackle the oceanic assimilation problems
specifically. Reduced-order Kalman filters, for instance, have been developed and applied to
academic ocean models, exploring how simplified representations of the estimation error statistics
can reduce the computational burden of the conventional Kalman filter while preserving the
optimal nature of the method (e.g., Fukumori and Malanotte-Rizzoli, 1995; Cane et al., 1996;
Pham et al., 1998). Similarly, ensemble Kalman filters have been proposed, which represent the
error statistics by simulating a limited set of model trajectories simultaneously (Evensen, 1994;
Burgers et al., 1998).

By contrast, data assimilation into coupled systems is still in its infancy. A review of methods
suitable for biogeochemical models can be found in Kasibhatla et al. (2000). A popular approach
to assimilate data into marine ecosystem models is by determining poorly known parameters in
the biological process equations. Inverse techniques have been applied, quite often in a one-di-
mensional context, to optimize their values according to local observations, and improve by this
way the consistency between the simulated and the observed quantities (e.g., Fasham and Evans,
1995; Matear, 1995; Hurtt and Armstrong, 1996; Prunet et al., 1996). Due to the scarcity of the
data, a small number of control variables are optimized in most cases.

These works are all relying on the same hypothesis that a coupled model with a unique pa-
rameter set can reproduce the observations, neglecting the possibility of other error sources.
Gunson et al. (1999) assimilate ocean color data with a coupled physical-biological model of the
North Atlantic ocean, and analyze the sensitivity of the different parameters using twin experi-
ments. Fennel et al. (2000) apply a similar optimization procedure to real measurements of nitrate
and chlorophyll at the Bermuda station. Their results indicate that the strong sensitivity of the
method can be explained in part by unresolved processes of the model formulation. In principle, it
is possible to account for errors in the model formulation with variational algorithms based on a
weak constraint or generalized inverse formalism (Natvik et al., 2001). However, the minimization
of the cost function of a full 3-D application may give considerable problems with convergence
and computer capacity, and sequential algorithms are therefore of interest to assimilate data with
imperfect models.

Armstrong et al. (1995) employ the simple nudging method to assimilate monthly averaged
CZCS chlorophyll estimates in a circulation model of the Atlantic coupled with the FDM (Fas-
ham et al., 1990) ecosystem model. In spite of its sub-optimal nature, their scheme is able to adjust
the phytoplankton concentration over the euphotic zone with some success, demonstrating the
interest of an approach which aims at compensating for a variety of possible error sources at once.

Within the EC MAST-III DIADEM project, a data assimilation system for coupled ocean
circulation and marine ecosystem model is being implemented for the North Atlantic and the
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Nordic Seas. Several novel and advanced assimilation schemes, where proper error statistics is
taken into account, are being examined and refined. These involve the ensemble Kalman filter
(EnKF) by Evensen (1994), the ensemble Kalman smoother (EnKS) by Evensen and van Leeuwen
(2000), and the singular evolutive extended Kalman (SEEK) filter by Pham et al. (1998). The
circulation model is the Miami isopycnic coordinate ocean model (MICOM) by Bleck et al.
(1989), which has been coupled to the FDM marine ecosystem model by Drange (1994). The
DIADEM project is a first attempt to examine these state-of-the-art assimilation methods with the
coupled model system in a realistic context, and to lay a foundation for future operational as-
similation systems for the North Atlantic and Nordic Seas. This particular paper presents the first
results of the SEEK filter implementation to assimilate ocean color data in preparation to those
collected from the NASA SeaWIFS program. Focusing on the biological segment of the assim-
ilation system, several key ideas are addressed in this work.

First, the feasability of a sequential, reduced-order updating scheme is investigated, with the
underlying assumption that the mismatch between model predictions and observations can be
caused by the combination of several error sources simultaneously (e.g., errors in initial condi-
tions, missing processes, inappropriate forcing functions, inaccurate parameterizations, poorly
resolved hydrodynamic constraints, etc.). The reduction of the control dimension is achieved in a
multivariate error sub-space describing the dominant modes of the system variability.

Second, the capacity of an observing system based on surface chlorophyll measurements only,
to control other biological compartments through a multivariate assimilation scheme, is exam-
ined. Such observing systems are fairly novel at this time and will be developed in the coming
years. Assessments in terms of observability and controllability properties are thus needed to get
practical experience and retrieve a maximum benefit from their use.

Finally, sensitivity assimilation experiments are performed to determine the best possible im-
plementation options of the SEEK filter in the DIADEM configurations, in the perspective of real
data assimilation experiments and pre-operational exercises. The definition of a suitable multi-
variate state vector is a particularly delicate issue with the present system, as two distinct eco-
system formulations are present in the coupled model: the FDM dynamical model in the upper,
euphotic layers, and the diagnostic regeneration model proposed by Sarmiento et al. (1993) in the
deep ocean. A twin experiment approach is considered as a first step to tackle the main difficulties
of the sequential assimilation problem. These simplified experiments, however, will not allow us to
be conclusive about the capacity of the method to compensate for errors in the model formula-
tion, and the effectiveness of the scheme to assimilate real data.

The paper is organized as follows: in Section 2, we describe the physical and ecosystem sectors
of the coupled system as it is implemented in the DIADEM configurations; the basic elements of
the SEEK assimilation scheme are discussed in Section 3; the protocol of the twin assimilation
experiments set up to validate the concept is given in Section 4; the analysis of these experiments is
reported in Section 5, and a final discussion concludes the paper with Section 6.

2. Model description

The numerical code used in the assimilation experiments described in Section 5 is an Atlantic
version of the MICOM coupled to the FDM ecosystem model of the seasonal nitrogen cycle
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derived from Fasham et al. (1990) and further modified by Drange (1994) to include a description
of the carbonic acid system in sea water. We first provide an overview of the model setup, with
some emphasis on the novelties introduced in the DIADEM implementations.

2.1. The ocean circulation model

The circulation model is based on MICOM, the isopycnic coordinate ocean circulation model
developed and described by Bleck and Boudra (1986), Bleck et al. (1990), Smith et al. (1990) and
Bleck et al. (1992). MICOM is designed using advanced numerical techniques and advection
routines, and can be run with arbitrary bottom topography and fairly low diffusion. It handles
stratification over steep bottom topography, a feature which poses problems in conventional level
models such as the GCM model employed by Sarmiento et al. (1993) or in models based on sigma
coordinates in the vertical. In this particular version, the vertical discretization is achieved on 17
1sopycnic layers. A mixed layer model based on the Kraus—Turner bulk formulation (Bleck et al.,
1989) is implemented in the upper layer, which is treated specifically to permit horizontal varia-
tions of temperature and salinity. A minimum thickness of 20 m is specified for this layer. In all
sub-surface layers, the temperature is chosen as the prognostic variable while the salinity is di-
agnosed according to the prescribed density.

From a dynamical point of view, the advantage of using the density as vertical coordinate is
justified by the fact that eddy mixing in the ocean mainly takes place along neutral surfaces, while
diapycnal mixing is several orders of magnitude lower. With an isopycnic coordinate system, the
numerical diffusion associated with the advection scheme will be directed along density surfaces
too. The benefit of this approach for physical tracers such as temperature and salinity, also holds
for the advection and diffusion of the biological variables of the ecosystem model. Another
advantage of the isopycnic formulation is its capacity to resolve sharp vertical density gradients
at the base of the mixed layer: when the mixed layer gets deeper during winter, the density
surfaces are deepened too, and the model can maintain large density gradients over the pycno-
cline.

The model domain covers the Atlantic ocean, with an enhanced focus of the orthogonal cur-
vilinear grid (Bentsen et al., 1999) to better resolve the areas of strong biological activity in the
northern hemisphere (Fig. 1). The Arctic basin is included in the model domain too, where a
dynamic-thermodynamic ice model is implemented (Lis@ter, 2000). The use of a variable grid
resolution over the domain extented to the South Atlantic allows the prescription of closed
boundaries far from the area of interest, where relaxation to climatology is enforced. There are
four additional open-sea boundaries: the Bering Strait, the Gibraltar Strait, a cut in the Gulf of
Mexico and the Kattegat Strait excluding the Baltic Sea. The bathymetry has been prepared by
interpolation of the ETOPOS data set onto the model grid. There are currently two versions of the
DIADEM model, one coarse resolution which has been used during the testing phase of the
project, and another version on exactly the same domain but with double resolution which will be
used in the pre-operational experiment. The version used here is the coarser one, with a resolution
of approximately 1/2° in the regions of interest in the North Atlantic.

The circulation model is initialized using the Levitus (1994) climatology redistributed onto the
model grid. In the context of twin experiments, the atmospheric forcing fields of heat, freshwater
and momentum are derived from the ECMWF climatological data sets using bulk formulation
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Fig. 1. Orthogonal curvilinear grid of the DIADEM North Atlantic model.

(Drange and Simonsen, 1996). For real data assimilation experiments that will be conducted later,
high frequency data sets (e.g., four times a day) will be chosen rather than climatological averages
to synchronize the temporal response of the model with atmospheric events, and to respect in this
way the synopticity between the observations and the model forcings. In order to avoid a long-
term drift of the model simulations, the sea surface salinity is relaxed toward the Levitus cli-
matological fields in the mixed layer. The model has been spun-up from rest during a five year’s
period before coupling with the biological model, using a baroclinic time step of 1600 s. A five
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year’s spin-up is a good compromise between the dynamical adjustment of the circulation and the
limitation of the climatological drift from initial conditions.

The seasonal cycle of the upper ocean circulation is the dominant constraint imposed to the
functioning of the marine ecosystem, and the ventilation of sub-surface layers plays a particular
role in the cycling of organic matter that one seeks to simulate. Fig. 2 illustrates the seasonal
variability in the vertical distribution of isopycnic layers along a vertical section crossing the
North Atlantic at 57 N. During winter, the signature of the mixed layer extends from east to west
at a mean depth of about 400 m, with a series of outcropping layers below. From spring to
summer, detrainment takes place, the stratification is restored and the mixed layer depth reaches a
minimum value.

2.2. The marine ecosystem model

The ecosystem model is originally based on the one dimensional, seven nitrogen-compartments,
ecosystem model developed by Fasham et al. (1990) and modified by Fasham (1993). In this work,
we follow the approach of Sarmiento et al. (1993), and split the ecosystem into two parts: one part
that describes the exchange of nitrogen between the compartments in the euphotic zone, as il-
lustrated in Fig. 3, and one part that parameterizes the decay of particulate and dissolved organic
nitrogen below the euphotic zone. It is therefore, only the ecosystem in the euphotic zone that is
explicitely modeled; below the euphotic zone the organic matter is gradually turned over to
ammonium, and then to nitrate.

The model has seven nitrogen compartments, i.e., the phytoplankton P, the zooplankton Z, the
bacteria B, nitrate NO;, ammonium NH;, dissolved organic nitrogen (DON) and particulate
organic nitrogen (PON) (the concentrations of the nitrogen species are all expressed in mmol-N
m~* units). In order to simulate the carbon cycling in the ocean, four additional variables have
been coupled to the flow of nitrogen, yielding a total of 11 biogeochemical compartments: dis-
solved organic carbon (DOC), particulate organic carbon (POC), dissolved inorganic carbon
(DIC) and total alkalinity (ALK). The concentration of the carbon species are expressed in mmol-
C m3, and total ALK is expressed in mmol equiv-N m~.

The transport equations that govern the flow of the components of the ecosystem all take the
form

0=T(C) +hFMF(C), i=1,...,11 (1)
with
OhC; 0 0hC; ohC;
ot 0z 0z Ot/ diap

and where the layer thickness / (in meters) for the examined layer is deduced from the mass
continuity equation

Oh 0 oh oh

Those equations are solved in the same isopycnic layers as the circulation model, with the ex-
ception of the uppermost layer which is split into two sub-layers to better resolve the attenuation
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Fig. 2. Vertical distribution of isopycnic and biological layers along a vertical section crossing the North Atlantic at
57 N: winter (upper) and summer (lower) situations. Solid lines denote the interface between layers. The two uppermost
layers (in white) correspond to the physical mixed layer which includes two biological sub-layers.

of light with depth in the euphotic zone. Thus, the vertical discretization in our implementation is
achieved with a total of 18 biological layers (Fig. 2).

In practice, C;, the concentration in mmol m~* of nitrogen or carbon of the ecosystem com-
ponent in question, is calculated by dividing 2C; from Eq. (2) by /& from Eq. (3). &.# % symbolizes
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Fig. 3. Schematic diagram of the 11-compartment marine ecosystem model in the euphotic zone.

the source minus sink terms, thus .%.# % (C;) represents the biochemical interaction terms within
the compartment i. u = (u, v) is the horizontal velocity obtained from the physical model. Both V
and u are defined along the isopycnic surfaces. The subscript diap refers to exchanges across the
isopycnic surfaces. Kj, and K, are the isopycnal and diapycnal diffusivities. K, is constant in the
interior of the model domain. K, depends on the local buoyancy frequency given by the physical
model, and takes two forms: one in the mixed physical layer, another in the interior ocean
(Drange, 1994). Instead of a perfect mixing as assumed in a Krauss—Turner model, the vertical
mixing between the upper two biological sub-layers is computed explicitely based on a vertical
diffusion coefficient of 0.05 m?/s. This value is consistent with earlier modeling studies of the
mixed layer (Gaspar et al., 1990).

In this simplified implementation, the partitioning between the FDM and Sarmiento models
takes place at 180 m depth, a large enough value to include the entire euphotic zone in normal
oceanic conditions. In general, the prescribed isobaric surface does not coincide with an isopycnal
surface. At each time step, a check is performed in the code to determine which biological layers
have an upper interface less deep that 180 m, and the FDM model then computes the SMS terms
in these upper layers. In the deeper layers, the regeneration model computes the corresponding
SMS terms of the biological equations to simulate the recycling of detritic material. The daily
averaged surface irradiances are determined as a function of space and time using standard as-
tronomical parameters. The extinction of light with depth is then computed explicitely in the
upper layers for use in the FDM model. In particular, the phytoplankton light-limited growth rate
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is evaluated within each layer by computing the effective irradiance with self-shading effects in-
cluded (Fasham et al., 1990).

Fig. 3 illustrates the various . #.% exchange processes between the compartments in the FDM
model. The phytoplankton, which is the only carbon fixing compartment, grows if the water is il-
luminated and the water contains ammonium and/or nitrate; its concentration decreases due to
grazing by zooplankton and mortality losses. The zooplankton is included in the model formulation
partly because it acts as a dynamic switch on the phytoplankton concentration, and partly because
it produces heavy particulate material that rapidly sinks out of the euphotic zone. Zooplankton
grazes on phytoplankton, bacteria and particulate organic matter (or detritus), excretes dissolved
organic matter, and a fraction of the pool dies or is grazed by higher predators. The grazing
functions are defined in such a way that the zooplankton compartment grazes on the most abundant
of the phytoplankton, bacteria and particulate organic matter according to specified preferences.

Detritus is the result of dead phytoplankton and zooplankton grazing (or sloppy feeding) on
phytoplankton, bacteria and particulate organic matter. A fraction of the detritus pool is con-
verted to dissolved organic matter, and a fraction sinks vertically in the water column. Bacteria
participate to the decomposition of dead organic matter and liberate inorganic nutrients, which
can then be recycled back to the primary producers. The bacteria model compartment obtains its
carbon from dissolved organic matter (which is exuded by phytoplankton and zooplankton, and
formed through breakdown of particulate organic matter), and takes up ammonium to obtain
sufficient nitrogen to synthesize cell protein.

Dissolved inorganic carbon is removed from seawater by formation of soft tissue and calcium
carbonate shells, and is produced through bacterial and zooplankton excretion. In addition, as
CO, concentration changes due to evaporation, precipitation, river input, freezing/melting of ice
and gas exchange across the air-sea interface, the compartment of dissolved organic carbon is
adjusted in the two uppermost biochemical layers assuming that the composition of the dissolved
salts in seawater does not change with salinity.

In the layers below 180 m depth, we follow the parameterization used by Drange (1996), and let
the biogenic compartments P, Z, B and DON decay to ammonium, and then to nitrate, with a
constant rate. In a similar way, DOC decays to DIC with the same rate.

2.3. The coupled system

The partial differential equations of the ecosystem model are integrated on the same grid as
described before, but using a time step of 3 h. The advective velocities, layer thicknesses and
thermodynamic variables are computed from a prior simulation of the ocean circulation model
forced with climatological atmospheric conditions. As there is no feedback from the biology to the
physics, the ecosystem can be driven off-line without particular restriction. No assimilation has
been applied yet to the ocean circulation model, but it is planned to consider an assimilated so-
lution at a later stage of the DIADEM project in order to improve the representation of the
hydrodynamic constraints on the ecosystem dynamics.

Initial conditions are similar to those used by Drange (1996). The initial distributions of nitrate
are derived from the climatology of Levitus interpolated onto the model grid, while total inor-
ganic carbon and total alkalinity are initialized from data sets obtained during several field ex-
periments.
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For the biological compartments, constant initial values are specified as follows:
P =0.14 mmol-N m, Z=B=0.014 mmol-N m>, N, = DON = 0.1 mmol-N m™ in the up-
per biochemical layer, with exponential decrease at depth with a scale length of 100 m. The
variables DOC and POC are set to 0.7 mmol m* of carbon in the upper layer. The concentration
of DOC also decreases exponentially with depth, but the concentration of POC variable is set to
zero below the first layer; in a same way, the concentration of PON is set to 0.1 mmol-N m~ in
the upper layer and to zero below.

Fig. 4 illustrates the phytoplankton distribution in the mixed layer during spring, obtained after
a spin-up of three years of the coupled system. At this period of the year, the spring bloom occurs,
first in the mid-latitudes and then later in the sub-polar regions, showing a general agreement
between the model and historical sets of CZCS data. A detailed analysis of the run, however,
reveals unrealistic features in specific areas such as in coastal zones.

3. The SEEK data assimilation scheme

The method used to assimilate ocean color data in the coupled model is the SEEK filter, which
is a non-linear, reduced-order assimilation scheme described in several earlier publications (e.g.,
Pham et al., 1998; Verron et al., 1999; Brasseur et al., 1999). The state vector of the problem is
composed of all biological variables represented on the model grid. We will come back later on the
possible choices concerning the definition of the state vector of this particular assimilation
problem.

In essence, the conventional Kalman filter consists of sequential corrections of the model
trajectory, taking into account the balance between the confidence in the model prediction and the
accuracy of the observed quantities (Kalman and Bucy, 1961; Gelb, 1974). However, the con-
ventional Kalman filter cannot be implemented by brute force because of the excessive amount of
computations required by the error propagation equation, and also because of the lack of
knowledge in the prescribed error statistics.

The SEEK filter introduced by Pham et al. (1998) is a sequential estimation method of reduced-
order, based on some relevant decomposition of the error covariance matrix. The initial error
covariance is specified in a way which subsequently simplifies the computation of the error
propagation: a finite number of directions are selected in the state space to intermittently reset the
consistence between the model and the observations. In the optimal case, the dynamical propa-
gation of the error covariance from one analysis step to the next is performed according to the KF
equations, using either the non-linear model operator or its tangent linearization (Verron et al.,
1999). In the numerical experiments described in Section 5, however, the error sub-space will not
be updated using the model dynamics (as it is done in the generic SEEK filter) in order to avoid
expensive calculations and dedicate more attention to the statistical analysis updates.

In order to preserve the rank of the error covariance matrix, the model error is parameterized
by means of a so-called compensation technique that amplifies the pre-existing error modes during
the forecast. As the dimension of the sub-space is much smaller than the dimension of the state
vector, the computational burden of the filter is substantially reduced.

In practice, the first-guess error covariance matrix is initialized with a limited number of three-
dimensional, multivariate, empirical orthogonal functions (EOFs) describing the dominant modes
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of the system variability and defining by this way the structure of the error sub-space at the initial
time. A key-point of the method is in the three-dimensional, multi-variate nature of the analysis,
which is essential to spread the information from the observed quantities to the whole state vector

(b)

10°N < 4 0
90°W 70°W 50°W 30°W 10°W

Fig. 4. Distribution of phytoplankton in the mixed layer (in mmol-N m™> units): (a) February, (b) April, (c) June,
(d) August (third year spin-up of the coupled model before assimilation).
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Fig. 4. (Continued).

(e.g., to specify how phytoplankton observations are used to correct the other biological vari-
ables). With such an algorithm, it is always possible to represent the error covariance matrix of the
background state in reduced form, as:
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P=S"4"S, (4)

where S is a simplification operator (of dimension » x n) related to the r directions {S}, of the
error sub-space, and A~ is related to their amplitude (Cane et al., 1996; Pham et al., 1998). The
reduced-rank approximation allows the analysis step of the SEEK filter to be written as:

x; =x; + K[y — H(xj), (5)

in which x is the forecast state vector (of dimension 1) obtained by model integration up to time
t;; x¥ is the state vector after the analysis step and y; is the vector of observed quantities (in our case
study, maps of phytoplankton concentrations) of dimension p. The observation operator H is of
dimension p x n and relates the data to the model variables. The gain matrix K is expressed in
terms of the simplification operator S as:

K =S"[p(A")"' + SH'R 'HS"] 'SH'R ', (6)

where R is the observation error covariance matrix. Following the same approach as Pham et al.
(1998), the model error is globally taken into account by means of a forgetting factor p in (6),
expressing that the main contribution of an imperfect model is to amplify the already existing
modes of the background error.

Combining (5) and (6), the correction of the forecast can further be expressed as a weighted
combination of the r error modes:

X =xr+STw (7)
with

w=ATSH'R [y, — H(x!)] (8)
and

AT =[p(A7)"" + SH'R'HS"] . (9)

The error of the analysis state vector is now equal to:
P* =S"A'S. (10)

Eq. (10) expresses the error reduction due to the addition of new information into the system: the
error decreases as a function of the accuracy (i.e., R™') and quantity (i.e., dim H) of observations
available at each analysis cycle. A requirement for optimal weighting of the data vs. model so-
lution when cycling several forecast/analysis steps is to properly update the error covariance
according to (10). If this operation is neglected, a too strong weight is eventually given to the data,
and the estimation process becomes sub-optimal. In Section 5, we will examine the importance of
carefully considering the error update in the assimilation sequence.

Another determining element of the SEEK algorithm is r, the dimension of the error sub-space.
As the error structure is expressed in terms of statistical data, a series of modes are needed to
approximate the dominant components of the error covariance. The number of modes needed in
this particular problem will be assessed on the basis of sensitivity experiments with respect to the
truncation of the EOF analysis of the model variability.
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4. The twin experiment strategy

The main objective of this work is the validation of the assimilation system with the coupled
model based on a twin experiment approach. The assimilation of pseudo-measurements of a state
variable such as surface phytoplankton, allows the assessment of the multi-variate properties of
the scheme, examining the assimilation impact on non-observed variables (e.g., zooplankton)
sampled from a previous model run and considered as the truth.

The twin experiments are conducted in a similar way as described by Brasseur et al. (1999).
First, the coupled model is integrated during two years after the spin-up of the physical model in
order to adjust the seasonal cycling of the ecosystem. The last annual cycle is selected as the
reference to compute empirical orthogonal functions of the biological model variability during
that period. In addition to the layer thicknesses, the biological state vector includes all discretized
variables of the 11-compartment ecosystem distributed in the 18 biological layers. As the nu-
merical grid has 70 points in the zonal direction, and 65 points in the meriodional direction, the
dimension of the estimation space is equal to n = 11 x 18 x 70 x 65 = 900900.

The model history is then sampled every 10 days, so that 36 biological model states are available
to build a sample covariance matrix representative of the variability during the reference annual
cycle. The eigenvectors associated with the positive eigenvalues of this matrix define the possible
directions of the initial error sub-space of our assimilation problem. These multivariate, empirical
orthogonal functions are ordered according to the magnitude of their eigenvalues, and the series is
truncated to the first dominant modes in order to initialize the assimilation scheme with a reduced-
rank error covariance matrix such as (4). Sensitivity experiments have been conducted with 3, 9 or
11 modes to investigate the impact of the truncation on the assimilation results.

The pseudo-measurements considered for the twin experiments consist of basin-scale snapshots
of surface phytoplankton generated every 10 days by the model simulation from June to Sep-
tember. One important difference with real data lies in the absence of clouds masking the ocean
surface (especially at high latitudes), and also in the fact that synoptic pictures of the ocean color
taken from satellites only cover small regions at a time. Another problem arises when using real
ocean color data, as the measured quantities (i.e., irradiances) must be converted into chlorophyll
and then to phytoplankton concentrations. The observation operator corresponding to real data
is therefore a highly complex function of the model variables. With a twin-experiment approach,
we skip the uncertainties in the specification of this observation operator, and so, we dedicate
more attention to the assimilation mechanisms.

The length of an assimilation cycle corresponds to 10 days, i.e. 60 time steps of the ecosystem
model or 540 baroclinic time step of the circulation model. The observation error specified in (6) is
assumed to be homogeneous and uncorrelated in space, and is accordingly parameterized as a
diagonal matrix of the form ¢’I. In order to determine the observation error variance o2, the
standard deviation of phytoplankton around its mean distribution has been calculated from the
36 samples of the reference run, assuming that observation errors represent a small fraction (10%)
of the natural variability. A value of 0.007 mmol-N m has eventually been prescribed for ¢. An
observational error of 10% is highly optimistic compared to the ultimate error budget expected for
SeaWiFS data. However, our goal here with twin experiments is primarily to examine the mul-
tivariate properties of the scheme and the relevant estimation space. A small value for the ob-
servation error is thus preferable in this context.
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A final element to be prescribed in the assimilation scheme is the model error, i.e. the error
generated by the imperfect model between two successive analysis steps. With a coupled eco-
system model, a significant part of the error arises from inadequate process parameters of the
biological equations. As these parameters are kept constant in space and time, it is unlikely that
their values adjusted to particular biological species found in specific areas, be adequate for the
whole model domain. Errors in the forcings (e.g. solar radiation), circulation model (e.g., mixed
layer dynamics), numerical discretization (e.g., limited number of sub-layers in the euphotic zone),
and non-linear interactions should also be considered in the error budget, but their statistical
characterization remains basically unknown. After a series of empirical trials, the forgetting factor
used to parameterize the model error was set to 0.5, which corresponds to doubling the error
covariance from one analysis step to the next.

In order to initialize the twin experiments, the model state of a previous run corresponding
to 1st January is selected as a first guess. The choice of a winter situation is made with the
intention to introduce an explicit mismatch between the biological state and the summer forcing
conditions, such as solar radiation and mixed layer properties, encountered at the beginning of
the assimilation period. Thus, the misfit between the first guess and the reference run is large at
the initial time, and is expected to decrease afterwards. The efficiency of the assimilation sys-
tem will be evaluated in terms of RMS misfit between the reference and the assimilated so-
lutions.

5. Assimilation experiments

In this section, we discuss the results of the twin experiments performed during seven assimi-
lation cycles to validate the assimilation system into the coupled model and get practical expe-
rience before starting the assimilation of real data. The first series of experiments has been set up
to investigate the possibility of using a state vector limited to the mixed layer for the analysis step,
instead of the full state vector defined in Section 4. In the second set of experiments, the effect of
considering a truncated EOF decomposition to initialize the error covariance matrix is examined,
with the aim to determine the dimension of the error sub-space needed to control the state
variables efficiently. Finally, the impact of carefully computing the statistical evolution of the
error covariance in the reduced-space as expressed by (9) is evaluated, by comparing the assim-
ilation performances with the previous experiments in which the background error covariance is
kept unchanged from one analysis to the next.

Due to the prospective nature of this work, the statistics illustrated in the figures will be pri-
marily focused on the phytoplankton, which is the observed quantity, and also on the other bi-
ological variables directly related to the evolution of the phytoplankton in the food web, i.e.,
zooplankton, bacteria, nitrate and ammonium.

5.1. Reduced-state vector in the mixed layer
In essence, the Kalman filter is a multivariate assimilation method which statistically prop-

agates the information from the observed quantities to the rest of the state vector. This prop-
agation takes place at every analysis step according to the background error covariance used to
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compute the gain matrix. In a reduced-order Kalman filter like SEEK, the multivariate cor-
rection depends critically on the representativeness of the modes defining the error sub-space, as
shown by Eq. (7). In practical assimilation problems, however, our capacity to characterize the
error structure with a sufficient degree of robustness is often limited by the lack of statistical
data.

In the ecosystem model examined in this work, one can assume that the covariances between
surface properties will be more robust than the covariances between surface and deep variables.
This is especially the case with an “hydrid” ecosystem model which consists of different dynamical
equations in the euphotic zone and in the deep ocean. Instead of considering the full biological
state vector defined in the 18 biological layers, we have tested the idea to reduce the state vector to
the two uppermost levels of the mixed layer, and to use this reduced-state vector to statistically
correct only the surface biological variables at the analysis step. While the lower layers are left
unchanged by the Kalman gain, the biological variables in the sub-surface layers are then adjusted
dynamically by the model forecast up to the next analysis. In order to validate this idea, we need
to verify if the physical and ecosystem dynamics which couple the mixed layer to the other layers,
are efficient enough to transmit the observed information at the analysis step to the rest of the
water column.

Fig. 5 compares the results in the mixed layer of two assimilation experiments which differ by
the use of a full vs. reduced-state vector as described above. The solid curves of Fig. 5 show the
RMS misfit, expressed in mmol-N m~3, in the mixed layer between the true states and the analyses
obtained when the biological variables are updated in the mixed layer only; the dotted curves
identify the same quantity in the assimilation experiment with the full state vector. The simulation
without assimilation (dashed line), initialized from the same conditions as the assimilation ex-
periments, exhibits large model/data misfits which remain of the same order of magnitude during
the 70 days of the experiment. By contrast, the error of the first assimilated state is strongly re-
duced with respect to the initial misfit. As expected, the first analysis in the mixed layer is strictly
the same in the two experiments, while the subsequent analyses differ slightly. The control on the
phytoplankton is fairly good, with a misfit below 0.1 mmol-N m ™ during the seven assimilation
cycles, while the control on the non-observed variables (e.g., zooplankton or ammonium) suffers
from some lack of stability.

Below the mixed layer, the two experiments differ strongly (Fig. 6). The RMS error for the first
day is left unchanged in the reduced-state vector experiment as there is no statistical correction in
layer 3 (and below). However, the misfit 10 days later has decreased significantly to the same level
as in the full state vector experiment, illustrating that some dynamical adjustment has occurred
with the analyzed variables in the mixed layer. The following assimilation cycles amplify the
difference between the two assimilation methods for all biological variables except for bacteria
and phytoplankton. The pure simulation always exhibits larger errors than in the assimilation,
with the exception of the final ammonium analysis in the experiment where all layers are updated
statistically.

These results indicate that, relying on the model adjustment to correct sub-surface layers is
preferential to making statistical updates based on poorly known surface to sub-surface corre-
lations. The truncation of the error sub-space to nine modes (in these experiments) has obviously
a more severe impact on the vertical than on the horizontal direction. We have therefore adopted
the reduced-state approach for the remaining experiments.
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Fig. 5. Reduced-state vector experiments: RMS misfit in the mixed layer (expressed in mmol-N m™) between the true
states and the analyses with the full state vector (dotted line), and with the biological variables updated in the mixed
layer only (solid line). The dashed line represents the free simulation, without assimilation.

5.2. Sensitivity to the dimension of the error sub-space

Sensitivity experiments are performed afterwards to determine the most appropriate rank for
the error sub-space of the SEEK filter. The initial EOF decomposition of the model variability
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during one annual cycle includes 35 modes. The three dominant modes explain more than 80% of
the model variance, while six additional modes are needed to explain 99% of the total variance.

Additional experiments have thus been conducted to assess the relevance of an EOF
decomposition truncated to nine or three modes to initialize the background error sub-space.
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In spite of the simplified assimilation context, it is important indeed to determine if the model
trajectory can be controlled with a few error directions only as the computational burden of
the method increases with the dimension of the error sub-space. It is worth noting, how-
ever, that these twin experiments will not address the question of the representativeness
error arising from the difference between the model and the actual variability of the eco-
system.

The RMS error of the free run, the assimilation run with three modes, and the assimilation run
with nine modes referenced to the true states are illustrated on Figs. 7 and 8. One can first notice
that the model without assimilation conserves its initial error level over a 70-day period or even
exhibits some drift (e.g., for the nitrate). In the mixed layer (Fig. 7), the assimilation run with three
modes efficiently reduces the error on all variables at the first analysis step, but the control on all
but phytoplankton variables is progressively lost in the subsequent analyses. The assimilation run
becomes even worse than the free run for ammonium. The residual error left on the missing modes
introduces inconsistencies which tend to amplify as a result of the complex, non-linear interac-
tions between the ecosystem compartments. By contrast, the assimilation with nine modes im-
proves the analyses quite well. The error on the phytoplankton is stabilized below
0.1 mmol-N m* during the whole assimilation experiment, while the drift of the error on the
other variables has been reduced interestingly. However, some signs of instability still persist for
some variables such as zooplankton.

Below the mixed layer (Fig. 8), the same general behavior is observed. The impact of six ad-
ditional modes is mostly visible on nitrate and ammonium, which are better adjusted by the model
dynamics than with three modes only. However, the stability of the filter is not achieved, as all
curves exhibit an increase of the error after the initial convergence.

5.3. Statistical evolution of the background error

The experiments discussed so far have been all conducted with a constant background error
covariance expressed in terms of the original EOFs. The last experiment demonstrates the rele-
vance of updating the error covariance after each analysis step according to (9). It is worth re-
membering that, like in the previous experiments, the simplification operator does not evolve with
the model dynamics. A final assimilation experiment is thus achieved, using nine modes to ini-
tialize the error covariance matrix.

The RMS error statistics are superimposed to those of the previous experiments to make the
comparison easier. Figs. 7 and 8§ demonstrate that the convergence and stability of the assimi-
lation is now achieved for all variables, both in the mixed layer and below. An interesting element
to note is the similar misfit obtained for a given analysis and the forecast 10 days later (not shown
in the figures), suggesting that the new information introduced by the assimilation process is well
accepted by the model. The quality of the estimates is in agreement with the standard deviation of
the measurement error.

In order to give an idea of the geographic distribution of the correction made at a particular
analysis step, we finally compare maps of the absolute misfit of the data vs. the free run in Fig. 9,
and the data vs. the assimilated run on Fig. 10 over the Atlantic domain. These maps show that
the work of the assimilation dominates at mid- and high-latitudes, i.e., where the ecosystem ac-
tivity is mostly significant.
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error modes (circle-solid line); the solid line is for the analyses with statistical update of the error sub-space.

6. Conclusions

A data assimilation system for coupled ocean circulation and marine ecosystem model has been
implemented for the North Atlantic and the Nordic Seas. The originality of the work discussed in
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similation with nine error modes (circle-solid line); the solid line is for the assimilation with statistical update of the
error sub-space.

this paper lies in the sequential assimilation method — the singular evolutive extended Kalman
filter — which has been used for the first time with a three-dimensional model of primary pro-
duction. Our strategy significantly differs from the more conventional approaches based on the
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Fig. 9. Absolute difference of phytoplankton concentration in the mixed layer (in mmol-N m~> units) between the free
run and the observations at the beginning of June.

optimization of poorly known biological model parameters, which is most often found in the
current practice.

Twin experiments have been performed to validate the assimilation system into the coupled
model and get practical experience before starting the assimilation of real data. These numerical
results demonstrate that a sequential updating scheme can efficiently correct the multiple com-
ponents of a complex ecosystem with measurements of one single biological variable only. This is
due to the multivariate character of the error sub-space which contains the dominant modes of the
system variability, and therefore permits the transfer of information from observed to non-ob-
served quantities in the euphotic zone.

However, our experiments also indicate the need to discriminate the behavior of the as-
similation scheme between the upper layers in the euphotic zone where the FDM model is
integrated, and the deeper layers where simple regeneration equations are applied. The
diagnostics suggest that a reduced-order initial error covariance matrix is primarily damaging
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Fig. 10. Absolute difference of phytoplankton concentration in the mixed layer (in mmol-N m™ units) between the
assimilation run and the observations, beginning of June.

the covariances on the vertical direction, at least for specific variables such as nitrate, zoo-
plankton and ammonium. It may therefore be preferential to explicitely analyze the ecosys-
tem in the upper layers only and let the model adjust the deeper distributions dynamically,
rather than to correct the three-dimensional system statistically. Of course, some care must be
given to these conclusions which may be biased by the simplified context of the twin exper-
iments.

The stability of the filter after the first analyses has been examined in a final experiment,
demonstrating the need to carefully update the error covariance of the analysis according to the
statistical equations of the Kalman filter. Optimal interpolation schemes may thus be inappro-
priate to this kind of assimilation problems, and there is also an issue to consider a dynamical
SEEK filter that would explicitely update the error sub-space according to the model dynamics.
This question is also related to the necessity to further examine the dynamical consistency of the
sequential updates in the system trajectory.
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In order to develop the system further and consider it for more realistic experiments, a number
of dedicated studies will be needed, especially to better represent the model error and the back-
ground error statistics, to account for the error structure associated with real ocean color data
measured from space, and also to make intrinsic improvements in the ocean dynamics and
thermodynamics as the physical environment of the marine ecosystems.
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