Minus edge k-subdomination numbers in graphs

A.N. Ghameshlou
Department of Mathematics
University of Mazandaran
Babolsar, I.R. Iran

R. Saei and S.M. Sheikholeslami*
Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Tabriz, I.R. Iran
s.m.sheikholeslami@azaruniv.edu

Abstract

The closed neighborhood $N_G[e]$ of an edge e in a graph G is the set consisting of e and of all edges having a common end-vertex with e. Let f be a function on $E(G)$, the edge set of G, into the set $\{-1, 0, 1\}$. If $\sum_{x \in N[e]} f(x) \geq 1$ for at least k edges e of G, then f is called a minus edge k-subdominating function of G. The minimum of the values $\sum_{e \in E(G)} f(e)$, taken over all minus edge k-subdominating functions f of G, is called the minus edge k-subdomination number of G and is denoted by $\gamma'_k(G)$. In this note we initiate the study of minus edge k-subdomination numbers in graphs and present some (sharp) bounds for this parameter.

Keywords: minus edge dominating function; minus domination number; minus edge k-subdominating function; minus edge k-subdomination number.

1 Introduction

Let G be a simple graph with the vertex set $V(G)$ and the edge set $E(G)$. We use [8] for terminology and notation which are not defined here. The minimum and maximum vertex degrees in G are respectively denoted by $\delta(G)$ and $\Delta(G)$. The line graph of a graph G, written $L(G)$, is the graph whose vertices are the edges of G, with $ef \in E(L(G))$ when $e = uv$ and $f = vw$ in G. It is easy to see that $L(C_n) = C_n$ and $L(P_n) = P_{n-1}$.

Two edges e_1, e_2 of G are called adjacent if they are distinct and have a common endvertex. The open neighborhood $N_G(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its closed neighborhood is $N_G[e] = N_G(e) \cup \{e\}$. For a function $f : E(G) \rightarrow \{-1, 0, 1\}$ and a subset S of $E(G)$ we define $f(S) = \sum_{e \in S} f(e)$. If $S = N_G[e]$ for some $e \in E$, then we denote $f(S)$ by $f[e]$. For each vertex $v \in V(G)$ we also define $f(v) = \sum_{e \in E(v)} f(e)$, where $E(v)$ is the set of all edges at vertex v. A function $f : E(G) \rightarrow \{-1, 0, 1\}$ is called a minus edge k-subdominating function (MEkSDF) of G, if $f[e] \geq 1$ for at least k edges e of G. The minimum of the values $f(E(G))$, taken over all minus edge k-subdominating

*Corresponding author
functions f of G, is called the minus edge k-subdomination number of G and is denoted by $\gamma'_{km}(G)$. The minus edge k-subdominating function f of G with $f(E(G)) = \gamma'_{km}(G)$ is called $\gamma'_{km}(G)$ - function. For any minus edge k-subdominating function f of G we define $P = \{ e \in E(G) \mid f(e) = 1 \}$, $M = \{ e \in E(G) \mid f(e) = -1 \}$, $Z = \{ e \in E(G) \mid f(e) = 0 \}$ and $X = \{ e \in E(G) \mid f[e] \geq 1 \}$.

If $k = m$, then the minus edge k-subdomination number is called the minus edge domination number. The minus edge domination number was introduced by Xu and Zhou in [9] and denoted by $\gamma'_m(G)$.

A function $f : E(G) \to \{-1, 1\}$ is called a signed edge k-subdominating function (SEkSDF) of G, if $f[e] \geq 1$ for at least k edges e of G. The minimum of the values $f(E(G))$, taken over all signed edge k-subdominating functions f of G, is called the signed edge k-subdomination number of G and is denoted by $\gamma'_k(G)$. The signed edge k-subdominating number was introduced by Khodkar et al. in [6]. Since every signed edge k-subdominating function of G is a minus edge k-subdominating function for G, we have

$$\gamma'_k(G) \geq \gamma'_m(G). \quad (1)$$

A minus k-subdominating function (MkSF) for G is defined in [1] as a function $f : V(G) \to \{-1, 0, 1\}$ such that $f(N[v]) \geq 1$ for at least k vertices of G where $N[v]$ is the closed neighborhood of v. The minus k-subdomination number of a graph G, denoted by $\gamma_{ks}^{-101}(G)$, is equal to $\min \{ f(V(G)) \mid f \text{ is a } MksF \text{ of } G \}$. The minus k-subdomination number has been studied by several authors (see for example [3, 4, 5]).

If $k = m$, then the minus k-subdomination number is called the minus domination number. The minus domination number was introduced by Dunbar et al. in [2].

In this note we initiate the study of the minus edge k-subdomination in graphs and present some (sharp) bounds for this parameter. Here are some well-known results on $\gamma'_m(G), \gamma'_{ks}(G)$ and $\gamma_{ks}^{-101}(G)$.

Theorem A. ([7]) Let G be a connected graph of order $n \geq 2$ and size m. Then

$$\gamma'_m(G) \geq n - m.$$

Theorem B. ([9]) For any connected graph G of order $n \geq 2$, $\gamma'_m(G) \geq \frac{(4-n)\Delta}{4}$.

Theorem C. ([9]) For any connected graph G of order $n \geq 2$ and size m,

$$\gamma'_m(G) \geq \frac{4m - (\Delta - \delta)n^2}{4(2\Delta - 1)}.$$

Theorem D. ([6]) Let G be a connected graph of order $n \geq 3$, size m and $1 \leq k \leq m - 1$. Then

$$\gamma'_{ks}(G) \geq n + k + 1 - 2m.$$

Theorem E. ([6]) Let $\Psi(m) = \min \{ \gamma_s'(|G|) \mid G \text{ is a graph of size } m \}$. Then for any simple graph G of order $n \geq 3$, size m and integer $1 \leq k \leq m$,

$$\gamma'_{ks}(G) \geq \Psi(t) - (m - t),$$

for some integer $k \leq t \leq m$.

Theorem F. ([2])

2
1. For the path P_n, $\gamma_{ns}^{-101}(P_n) = \lceil \frac{n}{3} \rceil$.

2. If $n \geq 3$, then $\gamma_{ns}^{-101}(C_n) = \lceil \frac{n}{3} \rceil$.

Theorem G. ([1]) For $n \geq 2$ and $1 \leq k \leq n - 1$, $\gamma_{ks}^{-101}(P_n) = \lceil \frac{k}{3} \rceil + k - n + 1$

Theorem H. ([4]) If $n \geq 3$ and $1 \leq k \leq n - 1$, then

$$\gamma_{ks}^{-101}(C_n) = \begin{cases} \lceil \frac{n-2}{3} \rceil & \text{if } k = n - 1 \text{ and } k \equiv 0, 1 \pmod{3} \\ 2 \lceil \frac{k+4}{3} \rceil - n & \text{otherwise.} \end{cases}$$

The proof of the following theorem is straightforward and therefore omitted.

Theorem 1. For or any graph G of order $n \geq 2$ which has no isolates,

$$\gamma'_{km}(G) = \gamma_{ks}^{-101}(L(G)).$$

Theorems 1, F, G and H lead to:

Corollary 2. For $n \geq 2$ and $1 \leq k \leq n$,

$$\gamma'_{km}(P_n) = \begin{cases} \lceil \frac{n}{3} \rceil & \text{if } k = n \\ 2 \lceil \frac{k}{3} \rceil + k - n + 1 & \text{otherwise.} \end{cases}$$

Corollary 3. For $n \geq 3$ and $1 \leq k \leq n$,

$$\gamma'_{km}(C_n) = \begin{cases} \lceil \frac{n}{3} \rceil & \text{if } k = n \\ \lceil \frac{n-2}{3} \rceil & \text{if } k = n - 1 \text{ and } k \equiv 0, 1 \pmod{3} \\ 2 \lceil \frac{k+4}{3} \rceil - n & \text{otherwise.} \end{cases}$$

2 Lower bounds on the MEkSDNs of graphs

Let f be an MEkSDF of G. An edge e is said to be a $+1$ edge if $f(e) = 1$, a 0 edge if $f(e) = 0$ and it is said to be a $−1$ edge if $f(e) = −1$. In this section we first present a lower bound for $\gamma'_{km}(G)$ in terms of k, the size of G, the minimum degree and the maximum degree of G and then we find a lower bound for $\gamma'km(G)$ in terms of k, the order and the size of G. Finally, we generalize Theorem E to the minus edge k-subdomination number.

Theorem 4. Let G be a simple graph of size m, minimum degree δ, maximum degree Δ and no isolates. Then

$$\gamma'_{km}(G) \geq \frac{2k\delta}{2\Delta - 1} - m.$$

Proof. Let (d_1, \ldots, d_n) be the degree sequence of G where $d_1 \leq d_2 \leq \ldots \leq d_n$. Assume g is a $\gamma'_{km}(G)$-function of G and let $g[e] \geq 1$ for k distinct edges e in $\{ e_{j_1} = u_{j_1}v_{j_1}, \ldots, e_{j_k} = u_{j_k}v_{j_k} \}$. Define $f : E(G) \rightarrow \{ 0, \frac{1}{2}, 1 \}$ by $f(e) = \frac{g(e) + 1}{2}$ for each $e \in E(G)$. We have

$$\sum_{i=1}^{k} f(N_G[e_{j_i}]) \geq \sum_{i=1}^{k} \frac{g(N_G[e_{j_i}]) + \deg(u_{j_i}) + \deg(v_{j_i}) - 1}{2} \geq k\delta + \sum_{i=1}^{k} \frac{g(N_G[e_{j_i}]) - 1}{2} \geq k\delta + \sum_{i=1}^{k} \frac{g(N_G[e_{j_i}]) - 1}{2} \geq k\delta.$$

(2)
On the other hand,
\[\sum_{i=1}^{k} f(N_{G[e_i]}) \leq \sum_{e \in E} f(N_{G[e]}) = \sum_{e=uv \in E} (\deg(u) + \deg(v) - 1)f(e) \]
\[\leq \sum_{e \in E} (2\Delta - 1)f(e) \]
\[= (2\Delta - 1)f(E(G)). \]

By (1) and (2), \(f(E(G)) \geq \frac{k\delta}{2\Delta - 1}. \) Since \(g(E(G)) = 2f(E(G)) - m, \)
\[\gamma'_{km}(G) = g(E(G)) \geq \frac{2k\delta}{2\Delta - 1} - m, \]
as desired. \(\square \)

As an immediate consequence of Theorem 4 we have:

Corollary 5. For every \(r \)-regular \((r \geq 1)\) graph \(G \) of size \(m \), \(\gamma'_{km}(G) \geq \frac{2rk}{2r - 1} - m. \)
Furthermore, this bound is sharp when \(r = 1. \)

Now we prove that for any simple connected graph \(G \) of size \(m \geq 2 \) and any integer \(1 \leq k \leq m - 1 \), \(\gamma'_{km}(G) \geq n + k + 1 - 2m. \)

Theorem 6. Let \(G \) be a simple connected graph of order \(n \geq 3 \), size \(m \) and \(1 \leq k \leq m - 1. \) Then
\[\gamma'_{km}(G) \geq n + k + 1 - 2m. \]
Furthermore, the bound is sharp for each odd \(k \geq 7. \)

Proof. The proof is by induction on \(m. \) Obviously, the statement is true for \(m = 2, 3. \)
Assume the statement is true for all simple connected graphs of size less than \(m, \) where \(m \geq 4. \) Let \(G \) be a simple connected graph of size \(m \) and let \(f \) be a \(\gamma'_{km}(G) \)-function.
We may assume \(Z \neq \emptyset, \) for otherwise we have \(\gamma'_{km}(G) = \gamma'_{ks}(G) \) and the result follows by Theorem D. We consider two cases.

Case 1. There exists a pendant edge \(e = uv \in E(G) \) for which \(f(e) = 0. \)
Let \(\deg(u) = 1 \) and \(G' = G - u. \) First let \(e \notin X. \) If \(k \leq m - 2, \) then obviously \(f, \) restricted to \(G', \) is an MEkSDF of \(G' \) and by the inductive hypothesis, we have
\[f(E(G)) = f(E(G')) \geq (n - 1) + k + 1 - 2(m - 1) = n + k + 2 - 2m. \]
If \(k = m - 1, \) then by Theorem A we have
\[f(E(G)) = f(E(G')) \geq (n - 1) - (m - 1) = n + k + 1 - 2m. \]
Now let \(e \in X. \) If \(k = 1, \) then \(f \) must assign +1 to an edge incident to \(v \) and so
\[f(E(G)) \geq 3 - m \geq n + k + 1 - 2m. \]
We therefore assume \(k \geq 2. \) Then \(f, \) restricted to \(G', \) is an ME(k-1)SDF of \(G' \), and by the inductive hypothesis we have
\[\gamma'_{km}(G) = f(E(G)) = f(E(G')) \geq (n - 1) + (k - 1) + 1 - 2(m - 1) \geq n + k + 1 - 2m. \]
Subcase 2.2

For any pendant edge \(e \) in \(G \), \(f(e) \neq 0 \).

Since \(Z \neq \emptyset \), there exists a non-pendant edge \(e = uv \in E(G) \) for which \(f(e) = 0 \). First let \(e \) be a non-bridge edge. If \(e \notin X \), then \(f \), restricted to \(G - e \), is an MEkSDF of \(G - e \). If \(k \leq m - 2 \), then by the inductive hypothesis

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G - e)) \geq n + k + 1 - 2(m - 1) = n + k + 3 - 2m.
\]

If \(k = m - 1 \), then \(f \), restricted to \(G - e \), is an MEDF of \(G - e \) and by Theorem A we have

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G - e)) \geq n - (m - 1) = n + m + 2 - 2m.
\]

Let \(e \in X \). If \(k = 1 \), then an argument similar to that described in Case 1 shows that \(\gamma'_{km}(G) \geq n + k + 1 - 2m \). Assume that \(k \geq 2 \). Then \(f \), restricted to \(G - e \), is an ME(k-1)SDF of \(G - e \), by the inductive hypothesis,

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G - e)) \geq n + (k - 1) + 1 - 2(m - 1) = n + k + 2 - 2m.
\]

Now assume \(e \) is a bridge and \(G_1 \) and \(G_2 \) are the connected components of \(G - e \) and \(u \in G_1 \). We consider two subcases.

Subcase 2.1 For \(i = 1, 2 \), \(X \cap E(G_i) \neq \emptyset \). Let \(|X \cap E(G_1)| = k_1 \) and \(|X \cap E(G_2)| = k_2 \). Then for \(i = 1, 2 \), the function \(f \), restricted to \(G_i \), is an MEkSDF for \(G_1 \). Hence, \(\gamma'_{km}(G_i) \leq f(E(G_i)) \) for \(i = 1, 2 \). First let \(E(G_i) \subseteq X \) for \(i = 1, 2 \). By Theorem A,

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G_1)) + f(E(G_2)) \geq n - (m - 1) \geq n + k + 2 - 2m.
\]

Now without loss of generality we assume \(E(G_1) \not\subseteq X \). If \(E(G_2) \not\subseteq X \), then by the inductive hypothesis and Theorem A

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G_1)) + f(E(G_2)) \geq n + k + 3 - 2m.
\]

If \(E(G_2) \not\subseteq X \), then by the inductive hypothesis

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G_1)) + f(E(G_2)) \geq n + k + 3 - 2m.
\]

Subcase 2.2 \(X \cap E(G_1) = \emptyset \) (the case \(X \cap E(G_2) = \emptyset \) is similar). First let \(e \notin X \) and \(G' = G_2 + uv \). We claim that \(f \) assigns \(-1\) to all edges of \(G_1 \). If \(E(G_1) \cap P \neq \emptyset \), where \(P = \{ e \in E(G) \mid f(e) = 1 \} \), then we define \(g : E(G) \rightarrow \{-1, 0, +1\} \) by \(g(e) = -1 \) if \(e \in E(G_1) \) and \(g(e) = f(e) \) if \(e \in E(G) \setminus E(G_1) \). Then \(g \) is a MEkSDF of \(G \) of weight less than \(f \), a contradiction. This proves our claim. Then \(k \leq k_2 < |E(G')| \) and by the inductive hypothesis we have

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G_1)) + f(E(G')) \geq -|E(G_1)| + |V(G')| + k_2 + 1 - 2|E(G')| \geq n + k_2 + 1 - 2m.
\]
Now assume \(e \in X \). We may assume \(k \geq 2 \) for otherwise the result follows as in Case 1. If \(E(G') \notin X \) and \(f(v) \geq 1 \), then by inductive hypothesis we have

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G_1)) + f(E(G')) \\
\geq |E(G_1)| + |V(G')| + k - 1 - 2|E(G')| \\
= -2m + (n + 1) + k + 1 + |E(G_1)| + |V(G_1)| \\
\geq n + k + 1 - 2m.
\]

If \(E(G') \notin X \) and \(f(v) \leq 0 \), then \(f \) restricted to \(G' \) is an ME\((k - 1)\)SDF of \(G' \) and by inductive hypothesis we have

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G_1)) + f(E(G')) \\
\geq |E(G_1)| + |V(G')| + (k - 1) - 2|E(G')| \\
= -2m + (n + 1) + k + 1 + |E(G_1)| - |V(G_1)| \\
\geq n + k + 2 - 2m.
\]

If \(E(G') \subseteq X \) and \(f(v) \geq 1 \), then \(f \) restricted to \(G' \) is an MEDF of \(G' \) and by Theorem A we have

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G_1)) + f(E(G')) \\
\geq |E(G_1)| + |V(G')| - |E(G')| \\
= n + k + 1 - 2m + (m - k - |V(G_1)|) \\
\geq n + k + 2 - 2m.
\]

Finally, if \(E(G') \subseteq X \) and \(f(v) \leq 0 \), then \(f \) restricted to \(G' \) is an ME\((k - 1)\)SDF of \(G' \) and by inductive hypothesis we have

\[
\gamma'_{km}(G) = f(E(G)) = f(E(G_1)) + f(E(G')) \\
\geq |E(G_1)| + |V(G')| + (k - 1) - 2|E(G')| \\
= n + k + 1 - 2m + |E(G_1)| - |V(G_1)| \\
\geq n + k + 1 - 2m.
\]

To prove sharpness, we consider two cases.

- \(k \geq 7 \) is odd and \(k = m - 1 \). Let \(G \) be obtained from star \(K_{1,k-3} \) with vertex set \(\{v,v_1,\ldots,v_{k-3}\} \) and edge set \(\{vv_i \mid 1 \leq i \leq k - 3\} \) by adding three pendant edges \(v_1v_1',v_2v_2',v_3v_3' \) and an edge \(v_1v_2 \). Define \(f : V(G) \rightarrow \{-1,0,1\} \) by \(f(v_1v_2) = 1 \), \(f(vv_i) = 1 \) if \(1 \leq i \leq \frac{k-1}{2} \) and \(f(e) = -1 \) otherwise. Then \(f \) is an ME\(k\)SDF of \(G \) with \(f(E(G)) = n + k + 1 - 2m \).

- \(k \geq 7 \) is odd and \(k \leq m - 2 \). Let \(G \) be obtained from star \(K_{1,k-2} \) with vertex set \(\{v,v_1,\ldots,v_{k-2}\} \) and edge set \(\{vv_i \mid 1 \leq i \leq k - 2\} \) by adding pendant edges \(v_1v_i',v_2v_i',v_3v_i' \) for \(j = 1,2,\ldots,m - k - 1 \) and \(v_1v_2 \). Define \(f : V(G) \rightarrow \{-1,0,1\} \) by \(f(v_1v_2) = 1 \), \(f(vv_i) = 1 \) if \(1 \leq i \leq \frac{k-1}{2} \) and \(f(e) = -1 \) otherwise. Then \(f \) is an ME\(k\)SDF of \(G \) with \(f(E(G)) = n + k + 1 - 2m \).

This completes the proof. \(\square \)

Xu and Zhou in [9] defined \(\eta(m) = \min \{ \gamma'_m(G) \mid G \text{ is a graph of size } m \} \) for any positive integer \(m \). The proof of the following Lemma is straightforward and therefore omitted.

Lemma 7. Let \(\eta \) be as above. Then
1. \(m \geq \eta(m) \) for every positive integer \(m \), and

2. \(\eta(a) + \eta(b) \geq \eta(a + b) \) for each pair of positive integers \(a \) and \(b \).

The proof of the following theorem is essentially similar to the proof of Theorem 6 of [6].

Theorem 8. For any simple graph \(G \) of order \(n \geq 3 \), size \(m \) and integer \(1 \leq k \leq m \),

\[
\gamma'_{km}(G) \geq \eta(t) - (m - t),
\]

for some integer \(k \leq t \leq m \). Furthermore, this bound is sharp when \(t = k \).

Proof. The statement holds for all simple graphs of size \(m = 1, 2, 3 \). Now assume \(m \geq 4 \).

Let, to the contrary, \(G \) be a simple graph of size \(m \geq 4 \) such that \(\gamma'_{km}(G) < \eta(t) - (m - t) \) for every integer \(k \leq t \leq m \). Choose such a graph \(G \) with as few edges as possible for which \(\lambda(G) + |T(G)| \) is maximum, where \(\lambda(G) \) denotes the number of components of \(G \) and \(T(G) = \{ u \in V(G) \mid \deg(u) \leq 2 \} \). Without loss of generality we may assume \(G \) has no isolated vertices. Let \(f \) be a \(\gamma'_{km}(G) \)-function. We may assume \(Z \neq \emptyset \), for otherwise we have \(\gamma'_{km}(G) = \gamma_{ks}(G) \) and the result follows by Theorem E. Let \(G_1, \ldots, G_{\lambda(G)} \) be the connected components of \(G \). If \(G_i \simeq K_2 \) for each \(1 \leq i \leq \lambda(G) \), then obviously

\[
\gamma'_{km}(G) = k - (m - k) \geq \eta(k) - (m - k).
\]

Let \(G \) have component \(H \) of size at least 2.

Claim 1. \(E(H) \cap (M \cup Z) \subseteq X \).

Let \(e \in E(H) \cap M \) (the case \(e \in E(H) \cap Z \) is similar). Suppose that, to the contrary, \(e \notin X \). Assume \(G' \) is obtained from \(G - e \) by adding a new component \(u_0v_0 \). Define \(g : E(G') \mapsto \{-1, 0, 1\} \) by \(g(u_0v_0) = -1 \) and \(g(x) = f(x) \) if \(x \in E(G) \setminus \{e\} \).

Obviously, \(g \) is an MEkSDF of \(G' \) with \(g(E(G')) = f(E(G)) \) and \(\lambda(G') + |T(G')| > \lambda(G) + |T(G)| \). This contradicts the assumptions on \(G \). Thus \(e \in X \).

Claim 2. There is no non-pendant edge \(e = uv \in E(H) \cap Z \).

Let \(e = uv \in E(H) \cap Z \) be a non-pendant edge. Since \(e \in X \), \(f(u) \geq 1 \) or \(f(v) \geq 1 \). Let without loss of generality \(f(u) \geq 1 \) and let \(G' \) be obtained from \(G - e \) by adding a pendant edge \(uv' \). Then obviously \(g : E(G') \mapsto \{-1, 0, 1\} \), which is defined by \(g(uv') = 0 \) and \(g(x) = f(x) \) if \(x \in E(G) \setminus \{e\} \), is an MEkSDF of \(G' \) with \(g(E(G')) = f(E(G)) \) and \(\lambda(G') + |T(G')| > \lambda(G) + |T(G)| \). This contradicts the assumptions on \(G \).

Claim 3. For every non-pendant edge \(e = uv \in E(H) \cap M \) we have \(\deg(u) = \deg(v) = 2 \).

If \(f(u) \geq 1 \) (the case \(f(v) \geq 1 \) is similar), then an argument similar to that described in claim 2 leads to a contradiction. Hence, \(f(u) = f(v) = 0 \). Since \(e \) is a non-pendant edge, \(\deg(u), \deg(v) \geq 2 \). Let \(\deg(u) \geq 3 \) (the case where \(\deg(v) \geq 3 \) is similar). Then there is a +1 edge \(e' = uv \) at \(u \). Assume \(G' \) is obtained from \(G - \{e, e'\} \) by adding a new vertex \(z \) and two new edges \(vz \) and \(wz \). Define \(g : E(G') \mapsto \{-1, 0, 1\} \) by \(g(vz) = -1 \), \(g(wz) = 1 \) and \(g(x) = f(x) \) if \(x \in E(G) \setminus \{e, e'\} \). Obviously, \(g \) is an MEkSDF of \(G' \) with \(g(E(G')) = f(E(G)) \) and \(\lambda(G') + |T(G')| > \lambda(G) + |T(G)| \), a contradiction. Hence, \(\deg(u) = \deg(v) = 2 \).

7
Claim 4. Let \(e = uv \in E(H) \cap M \) be a non-pendant edge and \(uu', vv' \in E(G) \). Then \(uu', vv' \in X \).

Let, to the contrary, \(uu' \notin X \) (the case \(vv' \notin X \) is similar). Since \(e \in X \), \(f(uu') = f(vv') = 1 \). Suppose that \(\text{deg}(u') = 1 \) and \(G' \) is obtained from \(G - \{e, uu'\} \) by adding a pendant edge \(vv_1 \) and a new component \(u_0v_0 \). Define \(g : E(G') \rightarrow \{-1, 0, 1\} \) by \(g(vv_1) = -1 \), \(g(u_0v_0) = 1 \) and \(g(x) = f(x) \) if \(x \in E(G) \setminus \{e, uu'\} \). Then \(g \) is an MEkSDF of \(G' \) with \(g(E(G')) = f(E(G)) \) and \(\lambda(G') + |T(G')| > \lambda(G) + |T(G)| \), a contradiction. Therefore \(\text{deg}(v') \geq 2 \).

First let \(u' = v' \). Since \(uu' \notin X \), we have \(vv' \notin X \). Suppose that there exists a -1 or 0 pendant edge \(u'z \) at \(u' \). By Claim 1, \(u'z \in X \), which implies that \(f(u') \geq 1 \).

Let \(G' \) be the graph obtained from \(G - \{e\} \) by adding a new component \(u'v' \). Define \(g : E(G') \rightarrow \{-1, 0, 1\} \) by \(g(u_0v_0) = -1 \) and \(g(x) = f(x) \) if \(x \in E(G) \setminus \{e\} \). Obviously, \(g \) is an MEkSDF of \(G' \) with \(g(E(G')) = f(E(G)) \) and \(\lambda(G') + |T(G')| > \lambda(G) + |T(G)| \), a contradiction. Therefore, there is no -1 or 0 pendant edge at \(u' = v' \). If there exists a -1 non-pendant edge at \(u' \), then an argument similar to that described in Claim 3 shows that \(\text{deg}(v') = 2 \), a contradiction. Thus every edge at \(u' \) is +1 edge. This forces \(uu' \notin X \), a contradiction.

Now let \(u' \notin v' \). Since we have assumed \(uu' \notin X \), it follows that \(f(u') \leq 1 \). If there is a -1 or 0 pendant edge \(u'w \) at \(u' \), then by Claim 1 we have \(u'w \in X \) and hence, \(f(u') = f(N[u'w]) \geq 1 \). If there is a -1 non-pendant edge at \(u' \), then \(\text{deg}(u') = 2 \) by Claim 3 and hence, \(f(u') = 0 \). It follows that \(f(u') = 0, 1 \).

When \(f(u') = 1 \), define \(G' \) to be the graph obtained from \(G - \{e\} \) by adding a new component \(u_0v_0 \). Then \(g : E(G') \rightarrow \{-1, 0, 1\} \) defined by \(g(u_0v_0) = -1 \) and \(g(x) = f(x) \) if \(x \in E(G) \setminus \{e\} \) is an MEkSDF of \(G' \) with \(g(E(G')) = f(E(G)) \) and \(\lambda(G') + |T(G')| > \lambda(G) + |T(G)| \), a contradiction. Therefore \(f(u') = 0 \) and hence, there exists a -1 edge \(u'u'' \) at \(u' \). By claim 1 we have \(\text{deg}(u'') \neq 1 \). Hence, \(\text{deg}(u'') = 2 \) (see Claim 3). Let \(G' \) be obtained from \(G - \{e, uu', uu''\} \) by adding a new component \(u_0v_0 \) and a new vertex \(z \) along with two edges \(u''z, vz \). Then \(g : E(G') \rightarrow \{-1, 0, 1\} \) defined by \(g(u_0v_0) = -1 \), \(g(u''z) = -1 \), \(g(zv) = 1 \) and \(g(x) = f(x) \) if \(x \in E(G) \setminus \{e, uu', uu''\} \) is an MEkSDF of \(G' \) with \(g(E(G')) = f(E(G)) \) and \(\lambda(G') + |T(G')| > \lambda(G) + |T(G)| \), a contradiction. Therefore \(uu' \notin X \), a contradiction.

Claim 5. \(E(H) \cap P \subseteq X \).

Let \(e = uv \in E(H) \cap P \). If there is a -1 non-pendant edge at \(u \) or at \(v \), then by Claim 4 we have \(e \in X \). If there exists a -1 or 0 pendant edge \(e' \) at \(u \) and no 0 or -1 pendant edge at \(v \), then since \(e' \in X \), \(f(u) \geq 1 \). Since there is not any -1 edge at \(v \), \(f(v) \geq 1 \). Hence \(f(N[uw]) \geq 1 \) and \(e \in X \). If there exist -1 or 0 pendant edges at \(u \) and \(v \) then \(f(u), f(v) \geq 1 \). Thus \(e \in X \). Obviously, if there is not any -1 or 0 pendant edges at \(u \) and \(v \), we see that \(e \in X \).

Let \(G_1, \ldots, G_s \) be the connected components of \(G \) for which \(E(G_i) \subseteq X \). Thus, \(f|_G \) is a \(\gamma_{m}^{i} \)-function on \(G_i \) for each \(1 \leq i \leq s \). Now by Claims 1 and 5, \(X \cap \bigcup_{i=s+1}^{\infty} E(G_i) = \emptyset \).
Let $|E(G_i)| = m_i$ for each $1 \leq i \leq \lambda(G)$. Then $|X| = \sum_{i=1}^{s} m_i \geq k$ and $\sum_{i=s+1}^{\lambda(G)} m_i \leq m - k$. Then by Lemma 7,

$$\gamma_{k\text{m}}'(G) = \sum_{i=1}^{s} \gamma_{k\text{m}}'(G_i) - \sum_{i=s+1}^{\lambda(G)} m_i$$

$$\geq \sum_{i=1}^{s} \eta(m_i) - \sum_{i=s+1}^{\lambda(G)} m_i$$

$$\geq \eta(\sum_{i=1}^{s} m_i) - \sum_{i=s+1}^{\lambda(G)} m_i$$

$$= \eta(t) - (m - t).$$

Where $t = \sum_{i=1}^{s} m_i \geq k$

In order to prove that the lower bound is sharp when $t = k$, let H_1 be a graph of size k with $\gamma_{k\text{m}}'(H_1) = \eta(k)$ and let H_2 be a graph of size $m - k$ such that $V(H_1) \cap V(H_2) = \emptyset$. Suppose $G = H_1 \cup H_2$ and f is a $\gamma_{k\text{m}}'(H_1)$-function. Then $g : E(G') \rightarrow \{-1, 0, 1\}$ defined by $g(e) = f(e)$ if $e \in E(H_1)$ and $g(e) = -1$ if $e \in E(H_2)$, is an MEkSDF of G with $g(E(G)) = \eta(k) - (m - k)$. This completes the proof.

\section*{References}

