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Abstract. IceBern2D is a vertically integrated ice sheet model to investigate the ice distribution on long

timescales under different climatic conditions. It is forced by simulated fields of surface temperature and precipi-

tation of the Last Glacial Maximum and present-day climate from a comprehensive climate model. This constant

forcing is adjusted to changes in ice elevation. Due to its reduced complexity and computational efficiency, the

model is well suited for extensive sensitivity studies and ensemble simulations on extensive temporal and spatial

scales. It shows good quantitative agreement with standardized benchmarks on an artificial domain (EISMINT).

Present-day and Last Glacial Maximum ice distributions in the Northern Hemisphere are also simulated with

good agreement. Glacial ice volume in Eurasia is underestimated due to the lack of ice shelves in our model.

The efficiency of the model is utilized by running an ensemble of 400 simulations with perturbed model pa-

rameters and two different estimates of the climate at the Last Glacial Maximum. The sensitivity to the imposed

climate boundary conditions and the positive degree-day factor β, i.e., the surface mass balance, outweighs the

influence of parameters that disturb the flow of ice. This justifies the use of simplified dynamics as a means to

achieve computational efficiency for simulations that cover several glacial cycles. Hysteresis simulations over 5

million years illustrate the stability of the simulated ice sheets to variations in surface air temperature.

1 Introduction

The understanding of the Earth’s climate on timescales

longer than about 100 000 years (100 kyr) critically depends

on the build-up and demise of continental ice sheets. Over the

past several million years, their number alternated between

the two that are present today on Greenland and Antarc-

tica and four, with two additional masses of ice over both

North America and Eurasia. Among other consequences, this

caused sea level to drop in excess of about 130 m during the

most recent glaciation (Austermann et al., 2013; Lambeck

et al., 2014), exposing currently submerged land that allowed

humans to first arrive and settle on the Americas (Dixon,

2001) and Australian continents (Forster, 2004).

Proxy records from deep sea sediments show that ice vol-

ume and temperature varied predominantly on timescales

of 41 kyr between 3 and 0.8 million years ago, and with

a 100 kyr periodicity over the past 800 kyr (Lisiecki and

Raymo, 2005). This is somewhat inconsistent with the pre-

vailing theory that ice sheet volume is dominated by the

intensity of Northern Hemisphere summer insolation caus-

ing ice to melt (Milankovitch, 1941), because summer in-

solation in the Northern Hemisphere varies predominantly

on the precessional timescale of 23 kyr (Berger, 1978). Sev-

eral ice sheet–climate interactions have been proposed to ex-

plain this nonlinear response of ice volume to the orbital

forcing. Besides the closure of ocean pathways mentioned

above, the rerouting of freshwater by ice sheets also has

a profound impact on the ocean circulation and sea ice distri-

bution (Stocker, 2013), potentially changing moisture avail-

ability for ice sheet growth (Gildor and Tziperman, 2001).

Similarly, meridional water transport from the tropics to high

latitudes, arguably controlled by insolation gradients instead

of absolute values, has been suggested as a limiting factor of

ice sheet growth (Raymo and Nisancioglu, 2003). Changes
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in topography due to the accumulation of ice alter the atmo-

spheric circulation on local (Merz et al., 2014a, b) and hemi-

spheric scales (Li and Battisti, 2008; Pausata et al., 2011;

Merz et al., 2013). As ice sheets are usually brighter than

the surface they replace, they impact the planetary radia-

tion balance in the short-wavelength part of the spectrum

(Cess et al., 1991). The long-wavelength radiation balance

also changes with the growth of ice sheets as the concentra-

tion of atmospheric greenhouse gases closely follows global

ice sheet volume (Loulergue et al., 2008; Lüthi et al., 2008;

Schilt et al., 2010). Probable causes include changes in the

ocean circulation (Archer et al., 2000; Fischer et al., 2010)

and terrestrial peatlands (Xu-Ri and Prentice, 2008; Spahni

et al., 2013). Lastly, ice sheets interact with the lithosphere,

sinking into their beds when growing and thereby shifting

their surface mass balance toward negative values (Oerle-

mans, 1981b).

Although these basic components are easily understood

at their individual level, the full picture is very complex;

therefore, comprehensive numerical modeling is necessary

to quantify the underlying physical processes. The often pro-

hibitive cost to run climate models over periods of several

millennia has limited such attempts to use of either somewhat

arbitrary methods to reduce simulation time (e.g., Herrington

and Poulsen, 2011; Abe-Ouchi et al., 2013; Heinemann et al.,

2014) or climate models of reduced complexity (Gallée et al.,

1992; Smith et al., 2003; Charbit et al., 2007; Bonelli et al.,

2009; Robinson et al., 2011; Ganopolski and Calov, 2011;

Stap et al., 2014). However, in spite of their focus on numer-

ical efficiency, the ice sheet models used in some of the latter

studies rival their climate model counterparts in complexity

and computational cost, which is not justified for all appli-

cations. The use of complex ice sheet and ice shelf dynam-

ics consumes resources that in specific cases would be better

allocated for a more detailed description of the ice sheet–

climate interface or a probabilistic analysis. Importantly, the

nonlinearities that might shape the response of global ice vol-

ume to insolation as outlined above do generally not postu-

late a major role for the complexity of the three-dimensional

flow of ice.

In this study, we present a vertically integrated ice sheet

model (IceBern2D) that is efficient enough to add only

a small computational overhead even to the fastest coarse-

resolution climate models. This enables simulations span-

ning several glacial cycles and exploration of nonlinearities

in the ice sheet–climate system. Similar models have suc-

cessfully been employed in the past on a hemispheric scale

(Neeman et al., 1988; Verbitsky and Oglesby, 1992) and for

regional applications (Oerlemans, 1981a; Siegert and Mar-

siat, 2001; Plummer and Phillips, 2003; Näslund et al., 2003).

However, vertically integrated ice sheet models have mostly

fallen into disuse in recent years in favor of more demanding

three-dimensional models. The dynamics of the IceBern2D

model are similar to early one-dimensional models (Oerle-

mans, 1981b, 1982) but are calculated on a two-dimensional

grid. This type of model has been found to produce re-

sults similar to three-dimensional thermomechanical models

(Calov and Marsiat, 1998).

The IceBern2D model is described in detail in Sect. 2. It is

found to perform well in idealized experiments (EISMINT;

Huybrechts et al., 1996, Sect. 3) as well as in simulations

under continuous Last Glacial Maximum (LGM) and prein-

dustrial climate forcing (Sect. 4). We take advantage of the

efficiency of the model by using a large ensemble of simula-

tions to estimate the best combination of model parameters

(Sect. 4.1). The multi-stability of the Northern Hemisphere

ice sheets is investigated in idealized experiments of 5 mil-

lion years duration (Sect. 4.3). These long simulations with

multiple starting conditions illustrate the high numerical per-

formance as one of the major features of the model. We sum-

marize and discuss these results in Sect. 5 and provide an

outlook on future directions in Sect. 6.

2 Model formulation

The IceBern2D model is designed to investigate the two-

dimensional flow of ice and its distribution in the Northern

Hemisphere under different climatic conditions. Therefore,

the physical basis of the model is reduced to the most impor-

tant processes. It is based on the conservation of mass and

simulates the flow of ice in two dimensions, the vertical flow

of ice is not simulated explicitly. The forcing of the model is

deliberately chosen to only include precipitation and temper-

ature in order to allow for a wide range of usage scenarios

with coupled and uncoupled climate models, observational

data, and possibly climate proxy reconstructions.

The model is based on different physical and empirical

constants. Empirical constants are primarily determined from

present-day conditions and may vary under different climates

and geographical locations. Therefore, these values are used

as tuning parameters for different simulations in a common

ensemble and marked in Table 1.

The IceBern2D model is discretized on a C grid (Arakawa

and Lamb, 1977) (Fig. 1). The staggered C grid is charac-

terized by a combination of calculated values at the center

and the border of the grid. This combination yields the most

stable results in our simulations.

2.1 Ice dynamics

The basis of the model is formed by the conservation of ice

volume in time (Oerlemans, 1981b; Huybrechts et al., 1996).

The rate of change in ice thickness h with time is formulated

as

∂h

∂t
=∇ ·D(∇Z)+M, (1)

where M represents the annual net surface mass balance,

which is described in Sect. 2.3. The flow of ice takes the

form of a diffusion with the nonlinear diffusivity D detailed
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Table 1. Values of constants used in the ice model. The parameters that are used to tune the model are highlighted with a checkmark and

therefore not constant between different members in the ensemble (Table 3). The values for the reference parameters set are given here.

Value Quantity Ensemble

n= 3 Flow-law exponenta

A= 10−16 Pa−3 yr−1 Flow-law parametera

E = 1 Flow enhancement parameter X
Tacc = 2◦C Accumulation temperature X

β = 6mmPDD−1 Melting factor X

g = 9.81ms−2 Gravitational acceleration

ρ = 910kgm−3 Ice density

τbr = 3000 yr Relaxation time for bedrock sinking X

Aocean = 3.6× 1014 m2 Ocean surface

SLoffset = 7.36m Sea level offset for an ice-free Greenlandb

0 = 6.5Kkm−1 Temperature lapse rate

λp = ln(2)km−1 Precipitation lapse ratec

aHuybrechts et al. (1996); bBamber et al. (2013); cBudd and Smith (1979)
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Figure 1. Schematic representation of the model grid. Ice thickness

h, bedrock elevation b and diffusivity D are calculated on regular

grid points (ix, iy). Halfway between these points, the lateral flux

(FN, FS, FW, FE) of ice is calculated on staggered grid points.

below and the gradient of the ice surface elevation Z above

sea level. Z is the sum of bedrock elevation B and ice thick-

ness h. The vector differential operator (∇) is defined for the

two lateral dimensions.

The diffusivity D is calculated from Glen’s flow law

(Glen, 1955) by assuming that longitudinal stresses can

safely be neglected over the much higher shearing of hori-

zontal planes. This is the so-called “shallow-ice approxima-

tion” (Hutter, 1983) that can be justified by the fact that the

grid spacing is at least a factor of 10 greater than the vertical

extension of the ice. This approximation is not valid for ice

shelves, which are therefore not included in this model. To

obtain the ice volume flow, the flow law is integrated over

the full height (Huybrechts et al., 1996) such that

D =
2EA(ρiceg)n

n+ 2
hn+2

[(
∂Z

∂x

)2

+

(
∂Z

∂y

)2
] (n−1)

2

, (2)

where A and n are two empirical parameters determined

from a power-law fit of strain rate and effective shear stress

(Table 1). A generally depends on the temperature of the ice,

which cannot be calculated here due to the missing vertical

coordinate. We therefore adopt a constant value. The plas-

ticity and hence its flow velocity can be modified by an em-

pirical enhancement parameter E, which is commonly used

to parameterize the softer, impurity-rich glacial ice (Fisher

and Koerner, 1986). ρice and g are the density of ice and the

gravitational acceleration, respectively (Table 1).

The discretization on the model grid is as follows. The ice

diffusivityD, Eq. (2), is calculated on the regular model grid,

for which the gradients in surface elevation ∂Z
∂x

and ∂Z
∂y

are

calculated from centered differences. Thereafter, the flow of

ice is calculated according to Eq. (1) on the staggered grid

points (FN, FS, FW, FE in Fig. 1). The diffusivity D is inter-

polated on these points. Lastly, the four ice fluxes surround-

ing one regular grid box are used to determine the ice thick-

ness on the regular grid for the next time step of 1 year.

2.2 Bedrock relaxation

Thick ice sheets exert a substantial mass load on the un-

derlying bedrock. This leads in equilibrium to an isostatic

sinking of the bedrock by about one-third, corresponding to

the inverse ratio of rock and ice density
ρrock

ρice
≈ 3, the hy-

drostatic equilibrium (Le Meur and Huybrechts, 1996). This

is an important mechanism because it influences the melt-
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Table 2. List of CCSM4 simulations of preindustrial (PI) and Last Glacial Maximum (LGM) climates (Hofer et al., 2012; Merz et al., 2013)

which are used as climate forcing in the ice model. Orbital parameters are calculated according to Berger (1978). Solar forcing is expressed

as total solar irradiance (TSI). The LGM simulation uses the ICE-5G topography reconstruction (Peltier, 2004). All simulations have a time

resolution of 1 day and a spatial resolution of 0.9◦× 1.25◦ which is bilinearly interpolated to the ice model resolution.

Simulation Orbital parameters SST/sea ice CO2 [ppm] CH4 [ppb] N2O [ppb] TSI [Wm−2] Ice sheets/topography

PD present PD 354 1694 310 1361.8 present

PI present PI 280 760 270 1360.9 present

LGM 21 ka 21 ka 185 350 200 1360.9 21 ka

ing of the ice. When the bedrock deforms under the load-

ing of the ice, the top of the ice sheet sinks to a lower and

warmer position. This temperature increase promotes melt-

ing and thereby feeds back to the surface mass balance.

A simple yet effective formulation of the bedrock adjust-

ment is the exponential sinking toward its hydrostatic equi-

librium (Oerlemans, 1981b):

∂B

∂t
=−τ−1

br

(
ρrock

ρice

h+B −B0

)
. (3)

B is the bedrock elevation, B0 is the elevation of the bedrock

without ice load, and h represents the ice thickness. The re-

laxation time τbr represents a characteristic time it takes to

restore equilibrium. A common value for τbr is 3000 years

(Huybrechts, 2002), but the value may vary locally. There-

fore τbr is used as a tuning parameter here (Table 3). Equa-

tion (3) is a simplified representation of mass flow in the

Earth’s upper mantle. It only affects the local grid point and

no surrounding fields which is considered sufficient for the

purpose of an ice sheet model of reduced complexity. This

is the “local lithosphere, relaxed asthenosphere” (LLRA)

model (e.g., Le Meur and Huybrechts, 1996)

For the elevation of the bedrock without ice load (B0),

ETOPO1 data are used (Amante and Eakins, 2009). ETOPO1

has a resolution of 1 arcmin and distinguishes between

bedrock and ice surface. For our application the resolution is

linearly interpolated to a stereographic grid of 40 km. It is as-

sumed that bedrock deformation in Greenland is in close iso-

static equilibrium with the ice sheet under present-day con-

ditions. Thus, B0 is estimated by adding one-third of the ice

thickness to the bedrock elevation which corresponds to the

mentioned inverse ratio of rock and ice density. This isostatic

correction is applied to compensate for an ice-free North-

ern Hemisphere at the beginning of the simulation. In the

model domain and at 40 km resolution, this adjustment of

the bedrock only affects Greenland.

2.3 Surface mass balance

The surface mass balance M , i.e., the accumulation minus

the ablation, determines where the ice sheet gains or loses

mass and thereby drives the flow of ice, i.e., Eq. (1). M is

calculated from daily surface air temperature and precipita-

tion fields. These data are obtained from simulations with the

atmosphere component of the Community Climate System

Model version 4 (CCSM4) (Gent et al., 2011; Neale et al.,

2013). We employ simulations of both preindustrial (PI) and

glacial (LGM) climates (Table 2, Fig. 2), which have been

analyzed and validated earlier by Hofer et al. (2012) and

Merz et al. (2013). The lower boundary conditions for the

sea surface are derived from fully coupled simulations with

the preceding model version, CCSM3, as outlined in detail in

the original publications. Each CCSM4 simulation ran for 33

years. Climatological daily fields of surface air temperature

and total precipitation of the last 30 years of the simulations

are extracted to force the ice sheet model. The spatial resolu-

tion is 0.9◦× 1.25◦.

All simulated climate variables are referenced to the con-

tinental surface in the relatively coarse grid of the climate

model. This does not concur with the more finely resolved

topography of the ice sheet model, in particular since the

growth of ice entails considerable changes in the surface el-

evation. Thus, after a bilinear interpolation from the climate

model to the ice sheet model grid, the climatological fields of

surface air temperature are corrected for altitude with a con-

stant lapse rate 0 =−6.5× 10−3 Km−1 (Table 1):

TISM(t)= TGCM+0 · (ZISM(t)−ZGCM), (4)

where ZGCM is the elevation of the interpolated climate

model grid and ZISM(t) is the time-dependent elevation of

the ice sheet model surface; the same applies for TGCM and

TISM(t). This correction is applied throughout the ice sheet

model simulation to account for changes in ice surface to-

pography.

Precipitation is corrected with a height-desertification ef-

fect. Where the ice surface ZISM exceeds an elevation of

Z0 = 2000m, the precipitation is halved every 1000 m (Budd

and Smith, 1979). However, where the elevation of the cli-

mate model input already accounts for a surface that is higher

than 2000m, the desertification only starts at this higher ref-

erence point. This is important because the high elevation in

the climate model already implies a decrease in precipitation

that must not be compounded with an additional reduction.

Thus, the precipitation rate PISM(t) at the evolving height of

the ice sheet ZISM(t) is derived from the precipitation of the
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(a) (b)

(c) (d)

Figure 2. Annual mean surface air temperature (a) and total annual precipitation (b) of the preindustrial (PI) climate forcing from CCSM4.

The anomalies of the LGM climate forcing with respect to PI (LGM−PI) are shown in (c) and (d). No correction for surface elevation or

temperature bias has been applied here.

general circulation model (GCM) PGCM as follows:

PISM(t)= PGCM · exp(−λp(max(ZISM(t),Z0)

−max(ZGCM,Z0))), (5)

with λp = ln(2)/1000m (Table 1). Note that this formulation

may lead to an amplification of precipitation at grid points

that have a lower elevation in the ice sheet model than in

the GCM. This is important for the central part of North

America at the beginning of the ice sheet simulations that are

forced with a LGM climate from a GCM. Here, the GCM

provides a very dry climate due to the presence of the North

American ice sheet (Fig. 2d). This dry climate together with

relatively high temperatures due to the still low elevation

in the ice sheet model effectively inhibits the accumulation

of ice in this region. While an amplification of precipita-

tion is acceptable in this limited framework, the large dif-

ference in elevation together with the doubling of the pre-

cipitation every 1000 m (for a negative difference in surface

elevation) could potentially lead to extremely high precipita-

tion rates, lacking physical justification. However, this case

is avoided by also referencing the amplification of precipi-

tation to Z0 = 2000 m, in accord with previous formulations

(Vizcaino et al., 2008).

These corrections of precipitation are fundamentally dif-

ferent from experiments that use a glacial index to interpo-

late between glaciated and ice-free climate states (Marshall

et al., 2000; Zweck and Huybrechts, 2005). There, the height-

desertification effect is assumed to be already included in

the climate simulations. It has also been proposed to esti-

mate precipitation rates from fields of surface air tempera-

ture and mid-troposphere wind fields, making assumptions

on how their interaction with changes in ice sheet topogra-

phy influences moisture availability and orographic uplifting

(Roe and Lindzen, 2001; Roe, 2002; de Boer et al., 2013).

While this approach takes into account the potentially highly

important localized precipitation near the slopes of the ice

sheet (Merz et al., 2014b), it is arguably better suited for pe-

riods for which direct climate simulations are not available.

Comparison of the present-day simulation of CCSM4 with

reanalyzed data from ERA-Interim (Dee et al., 2011) re-

veals considerable temperature biases. The CCSM3 simula-

tion which is used as ocean forcing for the CCSM4 simu-

lations overestimates the amount of sea ice in the Northern

Hemisphere (Collins et al., 2006), causing too cold tempera-

tures in these areas (Fig. 3). The anomalies range from−12.5

to +5.5 ◦C with an overall average of −3.0 ◦C.

To remove the bias of the present-day CCSM4 climate,

temperature of the surface of the CCSM4 simulations is sub-

tracted from the daily temperature fields after interpolation

to the ice sheet grid but before the lapse rate correction.
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Figure 3. Difference between the CCSM4 PD and ERA-Interim

temperature (CCSM4 PD−ERA-Interim) interpolated onto the ice

sheet model grid. A general cold bias with an average of −3.0 ◦C is

observed over the full domain. Largest offsets are found in regions

with excessive sea ice in the model as well as in the path of the

North Atlantic Current.

The influence of this correction is investigated by forcing the

ice sheet model with both the corrected (LGMbs, where bs

stands for bias subtracted) and uncorrected (LGMuc, where

uc stands for uncorrected) surface climate fields. The precip-

itation is not altered in any simulation concerning this tem-

perature bias. But note that the ratio of solid to liquid pre-

cipitation of the accumulation is affected by the temperature

change.

After the spatial interpolation and correction is performed

on the entire daily climatology of the climate forcing fields,

accumulation and ablation are calculated for 1 full year to

obtain the annual surface mass balance M . This is in accord

with the duration of the time step of 1 year for the flow of ice.

Accumulation is the cumulative daily precipitation on days

with an average temperature below 0 ◦C, integrated over 1

year. However, the use of daily averages does not account

for potentially lower temperatures during the night that may

be below freezing. Also, precipitation at temperatures above

the melting point might refreeze upon contact with the cold

snow surface. Thus, the sensitivity of the accumulation tem-

perature Tacc is tested and used to tune the model.

Melting of the ice is parameterized with the positive

degree-day method (Reeh, 1991). For each grid point, daily

average temperatures above 0 ◦C are integrated over 1 year to

obtain the positive degree days (PDD) as a simplified mea-

sure of the energy available for melting. This number is then

multiplied by the melting parameter β to calculate the mass

loss. β is an empirical constant that accounts for the effect of

the local climate and the surface radiation balance. Thus, it is

known to largely vary with changing surface conditions, in-

cluding the density of the surface snow or ice, the presence of

meltwater, and other effects on the local albedo (Braithwaite,

1995; Charbit et al., 2013). To partially account for these ef-

fects, many studies employ two individual melting parame-

ters for snow and bare ice (Huybrechts and T’siobbel, 1995;

Huybrechts and de Wolde, 1999). The extent and volume of

simulated ice sheets is very sensitive to the choice of melt-

ing parameters (e.g., Ritz et al., 1997). However, since the

present model emphasizes numerical efficiency and a min-

imum of external forcing data to be supplied, a representa-

tion of the snow layer is not available. Therefore, only one

melting parameter is used for ice. This reduces the degrees

of freedom to tune the model to observed or reconstructed

distributions of ice, but it also reduces the risk of overfitting

because the positive degree-day parameters are only weakly

constrained by physics and can be chosen over a wide range

of possible values. As with the accumulation temperature,

the sensitivity of the ice sheet to β is also tested and used for

tuning purposes (Table 3).

2.4 Model domain

The domain of the model is limited to the Northern Hemi-

sphere, where approximately 80 % of the changes in ice vol-

ume during the LGM took place (Clark and Mix, 2002).

A polar azimuthal projection is used as a grid base. The lat-

eral grid is identical to the one of SICOPOLIS (Greve, 1997;

Born et al., 2010).

The spatial resolution is 40km×40km. Each grid cell has

exactly one vertical layer which stores all information such

as ice thickness, accumulation, and ablation. An ice mask is

introduced to reduce cost-intensive ice flux calculations to

grid cells with ice instead of the entire model domain. The

temporal resolution is 1 year.

The surface mass balance of the Himalayas is not well rep-

resented in the current model version. The simplified ablation

scheme does not explicitly account for melting by shortwave

radiation at subzero temperatures and large intra-day and

intra-seasonal variations in both accumulation and melting.

Both effects are more important at the subtropical latitude

of the Himalayas than further north, where glacier growth

and decay are confined to two individual seasons. Thus, in

the Himalayas, the approach used here leads to an unrealis-

tically high accumulation rate, which destabilizes the model.

For this reason, the accumulation in this region is set to zero.

2.5 Sea level

The changing sea level during the simulations has a large in-

fluence on the ice flow, since some shallow bays fall dry and

provide the possibility for the ice to cover new areas, for ex-

ample the Baltic Sea or the Grand Banks of Newfoundland.

All simulations start without any ice in the Northern Hemi-

sphere, which leads to an offset in sea level compared to to-

day’s situation. This offset is the equivalent total ice volume

of the Greenland ice sheet of 7.36 m (Table 1) (Bamber et al.,
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Figure 4. Results of the EISMINTfixed (left) and EISMINTfreemargin (right) comparison at a steady state around 200 000 simulated years.

Both images show ice surface elevation of the IceBern2D model with contour lines of 200 m equidistance. The EISMINTfixed is identical

with the test from Huybrechts et al. (1996); the peak is in the center of the grid at an elevation of 3342.6 m. EISMINTfreemargin has a deviation

of 1 % from Huybrechts et al. (1996); the peak in the center is at 2925 m.

Table 3. Four tuning parameters with their used values. All possible combinations of parameter values result in 200 experiments which are

run with two different versions of LGM climate forcing.

Name Abbreviation Unit Values

Melting parameter β mm PDD−1 5; 6; 7; 8; 9

Flow enhancement parameter E % 75; 100; 125; 150

Accumulation temperature Tacc
◦C 0; 1; 2; 3; 4

Bedrock relaxation time τbr yr 3000; 6000

2013). The change in the global mean sea level is retrieved

by dividing the water equivalent of the total ice volume by

the ocean area of 3.625× 1014 m2. The global sea level and

corresponding land mask is a function of the simulated ice

volume and adjusted every 50 years for computational effi-

ciency. The initial positive offset of 7.36 m is added to all sea

level calculations; therefore an ice-free Northern Hemisphere

is not equal to 0 m sea level equivalent (ms.l.e.).

Ice shelves are not simulated. Ice is assumed to calve into

the ocean upon contact with the shoreline, approximated by

setting the ice thickness to zero at these points. This may re-

sult in less ice in the coastal areas if neglecting the buttress-

ing effect of ice shelves (Dupont and Alley, 2005). However,

to avoid overly rapid ice loss due to rising sea level, already

existing ice is allowed to persist unless it starts to float. If the

existing ice column with a density of 910kgm−3 is able to

displace the water column between the bedrock and sea level

(i.e., the hydrostatic equilibrium is not yet reached), the ice

is still treated as grounded and the grid point is equivalent to

land. As soon as the mass of the water column exceeds the

ice mass, all ice is removed and the grid cell is converted to

a water cell.

3 Idealized simulations using EISMINT and

conservation of mass

In order to test the present model formulation, we per-

form a series of benchmark experiments defined by the Eu-

ropean Ice Sheet Modelling INiTiative (EISMINT) (Huy-

brechts et al., 1996). To validate our model and their results,

both the fixed-margin (EISMINTfixed) and moving-margin

(EISMINTfreemargin) experiments are carried out.

EISMINTfixed uses a flat bed without relaxation. It pre-

scribes a constant surface mass balance of 0.3myr−1 in the

entire domain. The shape of the simulated ice sheet is sym-

metric, ruling out inconsistencies in the grid configuration

(Fig. 4, left). Our experiment EISMINTfixed is indistinguish-

able from the reference (Huybrechts et al., 1996). Both peaks

in the center of the area are 3342.6 m above the bed.

The second benchmark EISMINTfreemargin also uses a flat

rigid bed. Here, the surface mass balance linearly decreases

from the center of the grid toward the boundaries. This pat-

tern is point-symmetric around the central point so that the

surface mass balance function resembles an upright cone.

Thus, the IceBern2D simulation is also symmetric with re-

spect to the center of the model domain (Fig. 4, right). Again,

we find very close agreement with the results of Huybrechts

et al. (1996), with a deviation of less than 1 % in the elevation

of the central peak.
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Figure 5. (a) Integrated mass balance as a function of time for the

Northern Hemisphere domain. The upper panel shows the total ac-

cumulation integrated over the entire domain (upper boundary of

colored area) as well as the effect of ablation (green) and calving

(blue). The lower boundary of the colored area is the sum of all

three components, i.e., the estimate of the net integrated mass bal-

ance. The solid black line represents net changes in total ice volume

as diagnosed from the model directly. (b) Difference between the

sum of contributions and the true change in ice volume in the model,

which is at least 10 orders of magnitude smaller than the calculated

fluxes.

The idealized simulations confirm the validity of the for-

mulation and implementation of the IceBern2D model. How-

ever, since they significantly differ in their complexity from

the intended application in the Northern Hemisphere domain,

additional simulations are necessary to ensure that mass is

conserved. One simulation has been carried out that records

all relevant fluxes of volume in the model at every time

step (Fig. 5). It includes the full complexity of the model

with the calculation of the surface mass balance, ice loss

at the coasts (calving), interactive bedrock, and changes in

sea level. While the individual components of the mass bal-

ance are fluxes of the order of 1012 m3 yr−1, the difference

between the sum of these and the change in volume as cal-

culated by the model is less than 1000 m3 yr−1 at all times

during the simulation. In an ideal case this difference should

be zero, but small errors due to truncation at machine pre-

cision and numerically imprecise compiler optimizations to

achieve a minimal computational time add up to an expected

and irreducible mismatch. Consistent with this, the mismatch

grows with the size of the ice volume at the beginning of

the simulation. After about 140 000 years, the mass balance

reaches an equilibrium but the numerical error remains at the

same amplitude until 200 000 years into the simulation. This

suggests that internal adjustments in the ice sheet continue,

for example changes at the coastal margins that propagate as

waves toward other parts of the ice sheet, which in turn could

cause subsequent responses. Adjustments in the sea level as

a function of the captured ice on land are only calculated

every 50 years. A dropping sea level pauses the calving in

affected areas for some time steps until the ice reaches the

coast again. Calving is relatively high as soon as the water is

reached because additional ice could be accumulated in these

time steps, but a local equilibrium is reinstated shortly after.

This is observed in the intermittent peaks in the ice flux. Im-

portantly, none of these effects has a systematic influence on

the model error, which proves that the model conserves mass

even with radical and potentially unrealistically fast adjust-

ments during its spin-up from ice-free conditions. Moreover,

over the course of the entire simulation, the integrated error

stays centered around zero, so that the long-term average is

less than 1 L per year for the entire domain in the Northern

Hemisphere.

4 Northern Hemisphere ice volume in preindustrial

and glacial climates

4.1 Last Glacial Maximum climate forcing, model tuning

The sensitivity of the IceBern2D model to four empirical

model parameters is investigated by varying their values

within their respective ranges of uncertainty (Table 3). This

method is commonly used to find an optimal set of param-

eters for an ice sheet model or to explore the uncertainty

of physically reasonable parameter choices (Robinson et al.,

2011; Born and Nisancioglu, 2012; Stone et al., 2013). There

are two parameters that change the surface mass balance:

the melting parameter β and the accumulation temperature

Tacc. The other two influence the ice flow. The flow enhance-

ment parameter E linearly modifies the flow-law parameter

A (Eq. 2). τbr determines the relaxation time of the bedrock,

which influences the ice flow. If the bedrock stays longer

at its initial elevation, the elevation gradient ∇Z is higher

(Eq. 2). The bedrock relaxation τbr also has an indirect influ-

ence on the surface mass balance. The elevation and therefore

the temperature decreases at the surface when the elevation

yields under the ice. A shorter relaxation time leads to a de-

crease in the surface mass balance. All possible parameter

perturbations amount to a total of 200 combinations. Each

simulation is forced with the two versions of LGM forcing

outlined above.

The spread of the ice volume in meters of sea level equiv-

alent (ms.l.e.) depends significantly on the climate forcing.

For the climate forcing without temperature bias correction

(LGMuc), the spread of the ice volume is between −270 and

−65 ms.l.e., while the spread for the bias corrected climate

forcing (LGMbs) is much smaller, between−130 and−65 m

(Fig. 7, lower part).
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Figure 6. The dependence of the minimum sea level with respect to the different model parameters (rows) and climate forcing

(green = LGMuc, blue = LGMbs). The light colored boxes contain 95 % of the simulations; the darker box contains half of the total. The

median is drawn as a line, and the average as a black dot. The two columns of dots in one ensemble of panel (a) show the different values of

τbr. The columns of dots in panels (b–d) represent the five values of β from the first panel.

Table 4. Distribution of ensemble members that simulate a LGM sea level anomaly consistent with reconstructions (see horizontal gray bar

in Fig. 7, total 114 members). Mean values for all members listed below: β = 5.97 mmPDD−1, E = 111 %, Tacc = 2.09◦C, τbr = 4526 yr.

Variable Value No. members

β 5 mmPDD−1 39 E 75 % 30 Tacc 0◦C 20 τbr 3000 yr 56

6 mmPDD−1 40 100 % 30 1◦C 22 6000 yr 58

7 mmPDD−1 34 125 % 27 2◦C 24

8 mmPDD−1 1 150 % 27 3◦C 24

9 mmPDD−1 0 4◦C 24

Each tuning parameter (Table 3) has different influences

on the maximum volume. Figure 6 illustrates the tendency

and distribution of these tuning parameters. The melting pa-

rameter β has the strongest influence on ice volume in com-

parison with other parameters. The mean sea level, as well as

the 95th percentile, decreases with increases in β. This varia-

tion between different values of β is also seen in the other di-

agrams, where different values of β are shown as columns of

dots. Generally, the width of the distribution also decreases

with increasing β. A large jump in ms.l.e. is observed be-

tween 6 and 7 mm PDD−1, which is also visible in the den-

sity distribution (Fig. 7, lower part). Simulations with an ice

volume above 200 ms.l.e. tend to have a β lower or equal

than 7 mmPDD−1, with three exceptions.

Compared to the impact of β and the climate boundary

conditions, the influence of all other model parameters on ice

volume is relatively small. A weak influence of the flow en-

hancement parameter E on maximum ice volume is apparent

as faster ice flux leads to lower ice volumes. The lower bound

increases faster with larger E, while the upper limit is almost

fixed. Therefore, the group of isolated ensemble members

with a low β at the upper limit gets closer to the mean values

of E. The mean and median are closer at a higher ice flux.

The influence of the accumulation temperature Tacc maxi-

mum ice volume is very small. Higher Tacc results in slightly
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Figure 7. Structured parameter tree for the distribution of the minimum sea level with respect to the influence of each tuning parameter. Each

layer is represented by a tuning parameter; the number of different tuning parameter values is shown on the right y axis. The gray horizontal

bar corresponds to the sea level decrease in the LGM in the Northern Hemisphere from Clark and Mix (2002).

Table 5. Subset of tuning parameters with 18 members and their used values for a hysteresis ensemble (Fig. 11a).

Name Abbreviation Unit Values

Melting parameter β mm PDD−1 5; 6; 7

Accumulation temperature Tacc
◦C 2; 3; 4

Flow enhancement parameter E % 75; 100

Bedrock relaxation time τbr yr 3000

higher ice volumes because it leads to more accumulation.

No apparent difference is visible between the two bedrock

relaxation timescales τbr. This result is not unexpected be-

cause τbr only impacts the transient bedrock sinking during

the ice sheet build-up, not the maximum ice volume shown

here. The median and mean, as well as the percentile boxes,

are similar for both bedrock relaxation times.

Figure 7 is separated into two parts. Both share the hori-

zontal axis that represents the total ice volume in ms.l.e. The

upper part is a tree plot, where each layer represents one spe-

cific tuning parameter to illustrate the spread they cause. At

the bottom all individual simulations are shown. From bot-

tom to top, simulations are averaged parameter-wise at each

level. Thus, the ice volume range caused by variations in each

individual tuning parameter is shown by the divergent lines

from the top down. The highest point is the average of all

ensemble simulations. The two ensembles are shown in dif-

ferent colors to before. As an example, each of the 20 points

of one climate forcing at the third layer from the top repre-

sents the average of all combinations of Tacc and τbr. As this

level illustrates the impact of E, four points representing the

different considered values of this variable connect into one

single dot at their average position of the level above. This

yields five different dots, each representing one of the pos-

sible values of β. For better readability, the parameters have

been ordered so that the one with the greatest influence on

minimum ice volume is on top (β) and the least sensitive at

the bottom (τbr). With the information about the tendency of
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the ice volume change with respect to the parameter varia-

tions (Fig. 6) it is possible to address the individual values

(Table 3) at each parameter branch. The lower part of this

figure shows a density distribution of the ice volume for each

climate forcing. It is consistent with the points of the last row

in the upper part and distributes these among 100 classes over

the whole bandwidth.

The tree plot shows that the influence of the tuning param-

eter on the ice volume has a clear order. Nevertheless, there

are a few examples where the points change the position and

join a cluster of another branch. The most prominent exam-

ples are six simulations with different bedrock relaxations

which have a gap of more than 80 ms.l.e. and each of them

is positioned exactly on one side of the big split. A longer re-

laxation time leads to larger ice volumes, because ice sheets

can grow faster with a long relaxation time and may stabilize

at this larger volume because the surface elevation remains

longer at high altitudes with positive surface mass balance.

The density distribution shows a non-normal distribution

for every ensemble of different climate forcing. LGMuc has

two obvious groups with a gap of roughly 50 ms.l.e. The

group with the lower sea level consists of β configurations

with 5 and 6 mmPDD−1 (see Fig. 6), and the group with

the upper sea level includes all β greater than and equal to

7 mmPDD−1. Responsible for this gap is the North Ameri-

can ice sheet. During the build-up process of the North Amer-

ican ice sheet the Laurentide (eastern part) and Cordilleran

(western part) ice streams join together into a single ice body.

Simulations in the LGMuc ensemble with an ice volume

greater than 225 m s.l.e. consist of a single North American

ice sheet, while in simulations with a lower ice volume these

two streams are not in contact with each other. The LGMbs

is also separated into two groups, but the width of the gap

is only around 10 ms.l.e. Again, the two groups are mostly

defined by different values of β and the connection of the

Laurentide and Cordilleran ice stream to the North Ameri-

can ice sheet.

Figure 7 highlights potential LGM ice volumes (Clark

and Mix, 2002) as gray horizontal bars in the density dis-

tribution. The lower limit at −95 ms.l.e. is based on Peltier

(2002), while the upper limit at −132 ms.l.e. corresponds to

the maximum CLIMAP reconstruction (Denton, 1981) for

the Northern Hemisphere in both cases. The ICE-5G recon-

struction from Peltier (2004) with −117 ms.l.e. is located in

the center of the bar. This last reconstruction was used as a

topography boundary condition in the CCSM4 climate sim-

ulations that were used to force the ice sheet model. Addi-

tional reconstructions by Waelbroeck et al. (2002) and Peltier

et al. (2015) also fall within this range. Simulations within

the range of this bar are considered as suitable LGM simula-

tions for the further analysis. While the older reconstructions

are arguably less robust, we note that they are consistent with

the range of uncertainty of even the most recent ones. Thus,

we consider the range provided here suitable to constrain the

ensemble. Note that while the real-world ice sheets prob-

ably did not reach an equilibrium during the LGM (Clark

et al., 2009; Heinemann et al., 2014), the simulations here

are forced with an LGM climate until their volume equili-

brates. We assume that this uncertainty does not exceed the

range of reconstructions. The LGMuc ensemble has 50 possi-

ble LGM simulations, while 114 simulations are considered

from LGMbs climate forcing. The averages of these simula-

tions for each respective climate forcing look quite different

(Fig. 8), although these two ensemble composites differ in

their ice volume by only 3 ms.l.e.

The most obvious difference between the two composites

is the North American ice sheet. The ice flows from two dif-

ferent streams, the Laurentide and Cordilleran ice sheets, to-

wards the Great Plains. With the LGMuc forcing, these two

streams are not connected in any simulation. A gap in the

Great Plains remains. This is due to higher temperatures in

the Great Plains in the LGMuc ensemble than in the corrected

version (Fig. 3). Therefore, with LGMbs forcing, the Lau-

rentide and Cordilleran ice streams connect easier and faster

compared to the uncorrected ensemble but the two domes

remain separated. This is consistent with the ICE-5G recon-

struction that also suggests two distinct domes on the North

American ice sheet (Fig. 9, right). While the separation in

our simulations is stronger because the Hudson Bay remains

below sea level and therefore ice-free, a more pronounced

separation is consistent with the recent ICE-6G reconstruc-

tion (Peltier et al., 2015).

In the LGMbs simulations, the Eurasian ice sheet accu-

mulates less ice compared to the uncorrected version. The

British Isles and Scandinavia are covered by ice in both en-

sembles. The Eurasian ice sheet in the LGMuc ensemble

without the temperature bias correction consists of one large

ice sheet with a connected and distinct eastern part. Whereas

the ensemble LGMbs has two individual small Eurasian ice

sheets of almost equal expansion. The model accumulates

ice in the Alps in both ensembles which are discrete from

other ice masses. The LGMuc accumulates more ice in Eura-

sia and is therefore closer to ICE-5G. Nevertheless, both cli-

mate forcings underestimate the ice volume in Eurasia. The

constant and dry LGM climate forcing may be responsible

for the reduced Eurasian ice sheet.

The Bering Strait and the Asian far east region in LGMbs

ensemble are similar to the ICE-5G reconstruction (Fig. 9,

right). The LGMuc ensemble accumulates ice in the North

American part of the Bering Strait, whereas the ice in the

LGMbs ensemble and ICE-5G reconstruction is in this part

not that distinct. Ziemen et al. (2014) attribute the overes-

timated accumulation in this region to the missing albedo

variation in their model and moisture blocking of the atmo-

spheric forcing. The land around the New Siberian Islands

is covered by a small ice sheet in both ensembles, while this

area is ice-free in the LGM ICE-5G reconstruction.

Overall, the results with LGMbs forcing are closer to the

LGM reconstruction. Besides the relatively small Eurasian

ice sheet, the ice distribution is closer to ICE-5G in all con-
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Figure 8. Ensemble composite of all simulations within LGM ice volume range of −132 and −95 ms.l.e. (see gray horizontal bar in Fig. 7)

(Clark and Mix, 2002). Ensemble LGMuc (left, mean −111.9 ms.l.e.) consists of 50 simulations, and LGMbs climate forcing (right, mean

−114.7 ms.l.e.) has 114 members.
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Figure 9. Simulation with the best-guess tuning parameters proximate to the mean values from Table 4 of all considered LGMbs simula-

tions within the LGM ice volume range (gray horizontal bar in Fig. 7) on the left. Parameters: β = 6 mmPDD−1, E = 100 %, Tacc = 2◦C,

τbr = 3000 yr. Ice volume: −115 ms.l.e. ICE-5G from Peltier (2004) with an ice volume of 117 ms.l.e. in the Northern Hemisphere on the

right.

sidered LGMbs ensemble members than the ones from the

LGMuc ensemble. The spread of the maximum ice volume

(Fig. 6) is narrow, and more than half of all LGMbs simula-

tions are considered valid in terms of minimum LGM sea

level compared to only one-quarter of all LGMuc simula-

tions. Therefore, the following discussion focuses on the en-

semble LGMuc simulations.

Table 4 shows the distribution of all tuning parameters

from all 114 LGMbs simulations with an ice volume between

95 and 132 ms.l.e. (see Fig. 7). The average ice thickness

of these simulations is shown as an ensemble composite in

Fig. 8 (right). The average value for β for all 114 simu-

lations is 5.97 mm PDD−1, while their values are approxi-

mately evenly distributed between 5 and 7 mmPDD−1. For

the flow enhancement factor E, most simulations consistent

with reconstructions have values of 75 and 100 % with an av-

erage of 111 %. The accumulation temperature Atemp shows

a slight tendency towards warmer temperatures and the two

bedrock relaxations τbr are distributed almost equally.

Representing the average over a large number of poten-

tially very different simulations of ice distribution with dif-

ferent model parameters, the composites are not physically

consistent. Thus, the composite for LGMbs is now com-

pared with the equilibrium state of the simulation whose

parameters are closest to the mean value of the parameters

of the ensemble composite (β = 6 mmPDD−1, E = 100 %,

Tacc = 2 ◦C, τbr = 3000 yr; Table 4). The situation in Eura-

sia, Greenland and the Bering Strait is very similar between

this simulation (Fig. 9, left) and the ensemble composite

(Fig. 8, right). Nevertheless, there are small differences at

the North American ice sheet between these two results. The

single simulation consistent with the approximate mean val-

ues shows indications of a single-dome North American ice

sheet, whereas the two individual domes that merge to form

the North American ice sheet, consistent with reconstruc-
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Figure 10. Ice distribution in the Northern Hemisphere for uncorrected preindustrial conditions (PIuc, left) and with subtracted temperature

bias (PIbs, right). Simulated ice volumes correspond to −8.2 ms.l.e. −4.1 ms.l.e., respectively, where the difference is mainly due to ice

masses outside Greenland.

tions (Stokes et al., 2012; Kleman et al., 2013), are still vis-

ible in the ensemble composite. Both the single simulation

and the ensemble composite have a very similar total ice vol-

ume of approximately 115 ms.l.e. However, the former is in

overall better agreement with ICE-5G from Peltier (2004).

Therefore, these parameters are considered to be the best-

guess tuning parameters (Table 1). For further investigations,

only this parameter set is considered.

Simulations at the upper limit of the LGM sea level at

130 ms.l.e. have a similar ice distribution in Eurasia as

the simulation with the best-guess tuning parameters (not

shown). The additional ice volume is mainly due to thicker

ice in the same regions as in Fig. 9 (left) and does not add

to the ice sheet area. All simulations with realistic LGM sea

level underestimate the Eurasian ice sheet.

4.2 Preindustrial climate forcing

The IceBern2D is strongly dependent on the surface mass

balance and the tuning parameters β and Tacc directly related

to it. To benchmark the best-guess tuning parameters (values

in Table 1) from the LGMbs simulation, IceBern2D is ap-

plied in the Northern Hemisphere under preindustrial condi-

tions (Table 2). Furthermore, this allows for cross-validation

of the model performance with the best-guess tuning param-

eters and a different climate forcing.

Both versions of preindustrial forcing without the tem-

perature bias (PIuc and PIbs) do not accumulate significant

ice volumes in the Northern Hemisphere (Fig. 10) with

the best-guess tuning parameters (β = 6 mmPDD−1, Tacc =

2◦C,E = 100 % and τbr = 3000 years). The ice volumes cor-

respond to −8.2 m s.l.e., and −4.1 ms.l.e., respectively, with

the most suitable tuning parameters where the positive offset

of 7.36 ms.l.e. from Greenland is already subtracted from the

values. The most conspicuous difference between the two cli-

mate forcings is on Baffin Islands and Chukotka in far eastern

Siberia. The forcing without the temperature bias (PIbs) ac-

cumulates much less ice in this area, and the result is more

realistic. Both climate forcings result in very similar ice vol-

ume of Greenland with 10.0 ms.l.e. (PIuc) and 9.9 ms.l.e.

(PIbs). This exceeds the ice volume of Bamber et al. (2013)

by 2.6 ms.l.e. This difference is primarily due to the rela-

tively coarse resolution of the model, which does not resolve

the narrow ablation zone of the Greenland ice sheet with suf-

ficient detail. Moreover, a large part of the ice loss on Green-

land is due to calving through narrow outlet glaciers (van den

Broeke et al., 2009; Straneo and Heimbach, 2013). This ef-

ficient mechanism of ice discharge is also not represented

here because it requires both a high resolution of the narrow

coastal fjord landscape and higher-order ice dynamics that

are inconsistent with the shallow-ice approximation that our

model is based on. As a consequence, the margin of the sim-

ulated Greenland ice sheet is too close to the coast, which

accounts for the additional ice volume as compared to ob-

servations. These shortcomings are probably less important

for the simulation of the large continental ice sheets of the

LGM, because they are largely based on flat terrain and have

less steep slopes and therefore a broader ablation zone and a

smaller fraction of their margins is near the ocean.

4.3 Multiple equilibria in Northern Hemisphere ice

volume

One of the primary advantages of the ice sheet model is its

computational efficiency and hence the possibility for large

ensemble simulations and long integration times. Here, a re-

duced ensemble of 18 parameter combinations (Table 5) has

been forced with the LGMbs data and a slowly varying global

temperature offset. Temperature anomalies have been lin-

early decreased from+5 to−5 ◦C over 2.5 million years and

increased again to +5 ◦C in the same way. The maximum

temperature offset corresponds to the temperature difference

between the CCSM4 LGM and PI simulation of 4.97 K in the

Northern Hemisphere (Table 2). One simulation had numeri-
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Figure 11. Global (a, b) and regional (c, d) ice volume as a function of global temperature offset. Increasing temperatures are in blue, and

decreasing temperatures in red. On the top left (a) is an ensemble with 18 members (Table 5) indicating the robustness of the hysteresis

behavior in a range of parameter values. All other plots (b–d) are from the simulation with the best-guess parameter (same as in Fig. 9,

left). The dots denote (b) the ice volume in equilibrium at the specific temperature. Considered areas for North American and Eurasia are

highlighted in Fig. 12.

cal instabilities after 4.5 million years and was not considered

in the results.

To ensure that the rate of temperature change is slow

enough for the ice sheet to remain in continuous quasi-

equilibrium, seven simulations were carried out with the

best-guess parameter set in which the temperature change

was interrupted at different values. These simulations con-

tinued with a constant temperature offset for 100 000 years

(Fig. 11, black dots on the right). These interrupted runs con-

firm that the transient simulation is a good approximation to

a continuous equilibrium.

The ice volume as a function of the temperature offset de-

scribes a hysteresis (Fig. 11). There are two stable equilibria

for almost every temperature, depending on the initial value

of the ice volume. This is valid globally as well as for the

individual regions North America and Eurasia (Fig. 11c and

d). In contrast to the global ice volumes (a, b), the regional

ice volumes in Fig. 11c and d have no global sea level offset

of 7.36 m.

Different tuning parameters have a modest influence on

the overall shape of the hysteresis and major transitions

(Fig. 11a). A slight horizontal shift to a later or earlier ice

volume change is visible. Simulations with the same melting

parameter β are close together and identify as three individ-

ual groups at the build-up of the ice sheet. All six simula-

tions with a β of 5mmPDD−1 reach ice volumes greater than

500 ms.l.e. and are not in equilibrium at the cold extreme of

the forcing range. The reason for this additional ice growth

is a large region in central Siberia where surface mass bal-

ance becomes positive. This illustrates that the open southern

boundaries on both major land masses complicate the defini-

tion of the hysteresis loop, because the upper limit is not lim-

ited by continental boundaries. Nevertheless, the evolution of

all ensemble members is similar, which justifies limiting the

detailed discussion to the single hysteresis simulations with

the best-guess parameter set (Fig. 11b–d)

There are three processes which influence rapid ice vol-

ume changes. They can be seen in the hysteresis (Fig. 11) as

an almost vertical volume change. Firstly, the most impor-

tant influence is the positive ice elevation feedback. As soon

as the surface temperature reaches a certain level where the

surface mass balance turns positive, the ice sheet grows fast
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to higher and colder elevations and stabilizes itself. Adjacent

areas may be influenced by the ice flow from these newly

glaciated regions, so that the surface mass balance turns pos-

itive there too. A positive feedback is induced which is much

faster compared to the temperature change in the hysteresis

(Fig. 11c, at 2 ◦C).

Secondly, another strong influence during the build-up

process on the ice volume is the contact of two individual ice

sheets over eastern (Laurentide) and western (Cordilleran)

North America that combine to form the North American

ice sheet. Although we use an idealized forcing, this evo-

lution is consistent with reconstructions of the last glaciation

(Bintanja and van de Wal, 2008; Stokes et al., 2012; Kle-

man et al., 2013). The ice volume increases considerably as

soon as these two streams connect with each other (Fig. 11c,

at 0.5 ◦C) because ice flows from two different directions

into the center of the continent. The connection of these two

streams is responsible for the jump of roughly 40 ms.l.e. The

ice volume in North America decreases steadily and rela-

tively slowly on the descending branch of the hysteresis until

a positive temperature offset of 3 ◦C. At higher temperatures

the surface mass balance turns negative in the southern part.

The Laurentide ice sheet is not in equilibrium with the un-

derlying bedrock after this rapid ice loss. Therefore a small

rebound of the ice volume is visible after the ice volume de-

crease of almost 100 ms.l.e. (Fig. 11c).

Thirdly, the sea level change due to formation of ice on

land has an important indirect influence on the ice distri-

bution, especially in Europe. Ice sheets isolated by water

masses, i.e., the British Isles or Scandinavia, are not able to

bypass these barriers because IceBern2D does not include

floating ice shelves. However, if the water level drops below

a certain level, areas previously separated by water join and

ice can expand into new regions. The sea level change may

have an immediate effect if the ice sheet is already in contact

with the water barrier and can expand in regions that become

dry land, e.g., the Grand Banks of Newfoundland, in agree-

ment with previous studies (de Boer et al., 2013).

At the beginning of the hysteresis, at temperatures above

2.5 ◦C, the Northern Hemisphere apart from Greenland is

nearly ice-free. After one complete hysteresis loop, most of

the simulations reach a similar ice volume at the initial tem-

perature offset of 1+ 5 ◦C than at the ice-free beginning.

However, the simulation with the best-guess parameter set

does not become ice-free at the end of the hysteresis. The

North American ice sheet in particular still has some remark-

able volume, while the Eurasian ice sheet disappears around

4 ◦C (Fig. 11c and d).

The difference in ice volume between the ascending and

descending branches of the hysteresis at a temperature offset

of 1T = 0 ◦C, i.e., with the LGMbs forcing, is 123 ms.l.e.

The shape and distribution of the simulated ice sheets on

the lower branch of the hysteresis after 1.25 million years is

virtually indistinguishable from the equilibrium of the sim-

ulations with constant forcing shown in Sect. 4.1 (Fig. 9,
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Figure 12. Hysteresis after 3.75 million years at LGM tempera-

ture (1 0 ◦C) with an ice volume of 236.7 ms.l.e. The situation at

the same temperature at the build-up process of the ice sheet after

1.25 million years can be seen in Fig. 9 (left). Areas of North Amer-

ica and Eurasia from Fig. 11c and d are enclosed in purple and green

boxes, respectively.

left). Figure 12 shows the ice thickness for 1T = 0 ◦C after

3.75 million years on the upper branch of the hysteresis. All

ice masses but Greenland are considerably larger, amounting

to about 50 ms.l.e. in North America alone. The extent of the

North American ice sheet is mostly the same as on the lower

branch of the hysteresis as it does not extend further south.

The only major difference in ice is the fully ice-covered Hud-

son Bay due to the intermittently lower sea level. The ice vol-

ume difference in Eurasia is roughly 40 ms.l.e., but during

the build-up process Eurasia is nearly ice-free. Therefore, the

relative difference volume of the hysteresis in Eurasian ice is

very large (Fig. 11d). At the LGM temperature 1T = 0 ◦C

on the lower branch, only two small ice sheets are present in

Scandinavia and the British Isles. On the upper branch, the

Eurasian ice sheet stretches all the way from the British Isles

to far eastern Siberia.

A constant climate forcing is not representative of the en-

tire last glacial cycle, which partly explains the underrepre-

sented Eurasian ice sheet in the uninitialized LGM simula-

tions and on the lower branch of the hysteresis. During the

last glaciation, the climate over Europe continuously varied,

also in response to the growing North American ice sheet,

which had pronounced consequences for the temperature and

the path of moisture-bearing storms over Europe (Li and Bat-

tisti, 2008; Liakka et al., 2015). The LGM climate of CCSM4

is considerably dryer over Scandinavia and western Siberia

(Fig. 2), two key regions for the glacial inception over Eura-

sia (Svendsen et al., 2004). Thus, it is conceivable that the

Eurasian ice sheet would not have grown in a continuous

LGM climate but in fact accumulated most of its volume

during preceding colder or wetter periods. Such variations
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in temperature or precipitation are not included in the con-

stant LGM forcing employed here. However, the temperature

forcing that defines the hysteresis simulation does promote

ice growth over Eurasia and therefore partly recovers the ef-

fect of a variable glacial climate. This view is supported by

the large and stable Eurasian ice sheet on the upper branch

of the hysteresis that resembles the ICE-5G reconstruction

more closely (Figs. 12 and 9, right). The additional 30 ms.l.e.

of ice to explain the lower to upper hysteresis difference at

1T = 0 ◦C is found in Siberia but outside the region that

was covered by the Eurasian ice sheet in reconstructions (see

Fig. 12) (Svendsen et al., 2004). At the same temperature

offset, this area is nearly ice-free on the lower branch of the

hysteresis.

Besides the hysteresis of equilibrium ice volume, interest-

ing additional information is obtained from simulations with

rapid temperature transitions (Fig. 13). For each long-term

equilibrium simulation on both branches of the hysteresis at

{−3, 0, +3} ◦C, two simulations are started with a relatively

fast temperature increase or decrease, respectively. This tran-

sient anomaly is imposed at a rate of 1 ◦C 1000 yr−1, so that

a 3 ◦C change in temperature is applied over 3000 years, the

bedrock relaxation timescale. This rate of change is compara-

ble to the general pace of the last deglaciation (Buizert et al.,

2014). Nevertheless, as seen in the almost horizontal lines in

Fig. 13, the change is quasi-instantaneous for the ice sheets.

A second set of experiments with instantaneous temperature

jumps yields identical results (not shown). After the transient

change in temperature, all six simulations are run into equi-

librium for 100 000 years.

All decreases in the temperature anomaly that start on the

lower branch of the hysteresis find their new equilibria on the

hysteresis again, coinciding with the long-term equilibrium

simulations that do not include a rapid temperature change.

However, all but one of the simulations of rapid warming

find new steady states that are below that of their correspond-

ing equilibrium simulation on the hysteresis. This result does

not depend on whether the warming starts from the upper

or lower branch of the hysteresis. This is the effect of the

slow adjustment of the bedrock. Starting with a relatively

large ice volume, the bedrock is depressed below the steady

state that corresponds to the new temperature offset after the

rapid warming. This entails that the ice surface is also lo-

cated at a lower elevation, which makes the rapid warming

of the transition more effective. Interestingly, although this

effect pushes the new steady state of the transient tempera-

ture perturbation to below the upper branch of the hysteresis,

it is not enough to stabilize the transient simulation on the

lower branch of the hysteresis either. In fact, new equilibria

are found between the two original branches. This illustrates

that the response to a transient warming from a larger ice

volume is influenced by two counteracting mechanisms: the

destabilizing bedrock effect due to the initially large ice mass

and the stabilizing effect of that large mass of ice itself.
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Figure 13. Global ice volume of simulations with a rapid tempera-

ture transitions of 1 ◦C per 1000 years. The base of the transition

simulations is the hysteresis simulation from Fig. 11 (b), which

is shown in the background in pale colors. The large black dots

are identical to the dots in Fig. 11 and mark the equilibrium state

at the specific temperature. Simulations are started from {−3, 0,

+3} ◦C with temperature increase (red) or decrease (blue) of 1 ◦C

per 1000 years and a runtime of 100 000 years (small black dots ev-

ery 1000 years) until equilibrium (asterisks). The temperature dif-

ference of 3 ◦C is constantly applied in the first 3000 years and held

stable thereafter.

The bedrock effect is of secondary importance for simula-

tions that impose a rapid cooling, because here a lag in the

sinking does not result in a loss of ice. In fact, it would ac-

celerate the growth of ice, but since this process is generally

much slower than melting, the bedrock has sufficient time

to react to the increasing ice load and is generally closer to

its equilibrium position than in the simulation with a rapid

warming. Thus, an increase in global ice volume is the re-

sult. In two out of these three cases of cooling from the up-

per branch of the hysteresis, the new steady state is found on

the upper branch of the hysteresis again. However, with the

3 ◦C cooling from an initial temperature offset of +3 ◦C, the

endpoint is located between the two branches of the original

hysteresis, close to that of the warming from −3 ◦C. As for

the equilibrium hysteresis, these preferred points are defined

by geographical characteristics.

In summary, the simulations with rapid temperature

changes suggest that the one-dimensional hysteresis does not

fully describe the complexity of the transient response of the

ice volume. Additional equilibria are found that probably de-

pend on the rate of warming and might be sensitive to the spe-

cific climate forcing that favors glaciation of certain regions.

A generally higher stability of large ice volumes cannot be
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corroborated from these experiments because the ice loss of a

relatively small ice volume can be substantial when the tem-

perature offset after the rapid increase is near the threshold

of destabilization of a regional ice mass, as observed in the

warming from 0 to +3 ◦C. In this case, the rapid warming

destabilizes a large part of the North American ice sheet even

though this occurs only at slightly higher temperatures in the

equilibrium hysteresis (Fig. 11c). It has been shown that such

rapid ice loss events can happen even for relatively small ice

sheets (Gregoire et al., 2012).

5 Summary and discussion

In this study, we present a model for continental-scale ice

sheets that simplifies the dynamics of ice flow into a single,

vertically integrated layer. The resulting two-dimensional

flow is simulated on a rectangular domain that covers most of

the land mass of the Northern Hemisphere. The surface mass

balance uses the positive degree-day method (Reeh, 1991),

based on daily fields of surface air temperature and total

precipitation from the comprehensive global climate model

CCSM4 (Gent et al., 2011; Merz et al., 2013). Global mean

sea level is prognostically adjusted as a function of the sim-

ulated ice volume.

The simplified dynamics of the ice flow compare favorably

in the standardized tests of the EISMINT project (Huybrechts

et al., 1996). Similar models have been used to study the

last glacial inception in Europe (Oerlemans, 1981a; Siegert

et al., 1999) and the sensitivity of climate–ice sheet inter-

actions during the last glacial cycle (Neeman et al., 1988).

To obtain similar results that compare well with LGM recon-

structions (e.g., Svendsen et al., 2004) with a present-day cli-

mate forcing, substantial adaptations are necessary (Siegert

and Marsiat, 2001). Vertically integrated ice sheet models

showed good results for applications on small regional scales

(Näslund et al., 2003) and on a semi-hemispheric coarse grid

(Neeman et al., 1988). Nevertheless, simulations on a fine

grid over the Northern Hemisphere usually employ compu-

tationally more expensive three-dimensional models (Bonelli

et al., 2009; Ganopolski and Calov, 2011; Robinson et al.,

2011; de Boer et al., 2013) that often rival the climate mod-

els used to provide the external forcing in computational cost.

This is not justified for all applications, because changes in

climate and the resulting surface mass balance might domi-

nate the influence of ice dynamics. We propose the combi-

nation of cost-efficient two-dimensional ice dynamics with a

realistic domain of relatively high resolution, a tool that does

not current exist. This enables the analysis of physically or

stochastically seeded ensembles and probabilistic estimates

of past and future ice sheet volumes.

Taking advantage of the computational efficiency of the

model, a large set of simulations with perturbed parameters

is used to optimize the simulation of Northern Hemisphere

ice volume during the Last Glacial Maximum (Peltier, 2004).

Results show a reasonable agreement for North America,

while the Eurasian ice sheet is too small. This is likely due to

the lack of ice shelves in our model that does not allow the

Barents Sea to be covered by ice and delays the development

of an ice sheet on the Baltic and North Seas until the sea

level is low enough for grounded ice to locally grow or ad-

vance into the area. This could be a problem as the marine ice

sheets of the Barents and Kara seas have been shown to play

a pivotal role early during the last glaciation (Svendsen et al.,

2004). On regional scales the missing ice shelf may influ-

ence the results – i.e., the Hudson Bay would be covered by

shelf ice, while it remains ice-free in IceBern2D LGM sim-

ulations. Furthermore, ice shelves buttress the ice sheet flow

(Dupont and Alley, 2005). While the fundamentally different

stress balance of ice shelves cannot be included in our model

at this point, one possible solution is to allow the grounded

ice to grow into deep water down to a certain water depth

(Siegert et al., 1999; Tarasov and Peltier, 1999; Abe-Ouchi

et al., 2013). Aside from these shortcomings, the optimized

model version yields a realistic modern ice distribution when

forced with simulated preindustrial climate from the same

model.

The overestimated sea ice in the CCSM3 simulations

(Collins et al., 2006) and the associated temperature bias in-

fluence the global ice sheet volume and its distribution. Sim-

ulations forced with the colder uncorrected climate (LGMuc)

have a lower and a wider distribution of the ice volume. The

temperature of the corrected ensemble (LGMbs) is on aver-

age 3 ◦C warmer. The simulated density distribution of ice

volumes is therefore limited to a smaller bandwidth of a 3 ◦C

warmer climate with an ice-free Northern Hemisphere as the

lower limit. Local temperature corrections in the LGMbs en-

semble overall lead to results which are comparable to LGM

reconstructions such as ICE-5G.

Although the ice sheets during the LGM were not in equi-

librium (Clark et al., 2009; Heinemann et al., 2014), all sim-

ulations are forced until an equilibrium is achieved. It takes

around 120 kyr with a constant climate forcing until a steady

state of all ice sheets is reached. LGM cycles in the past

500 kyr are around 100 kyr (Hays et al., 1976; Imbrie and Im-

brie, 1980); nevertheless, cycles between 80 and 120 kyr are

not unusual (Huybers and Wunsch, 2005). During LGM the

North American ice sheet was known to be dry (Bromwich

et al., 2004); therefore, a constant LGM climate forcing be-

ginning at an ice-free hemisphere takes longer to establish

a fully grown North American ice sheet.

Owing to the focus on simplicity and numerical efficiency,

the thermal coupling of the ice dynamics and basal melting

are neglected. However, Calov and Marsiat (1998) showed

that vertically integrated models yield results of compara-

ble quality as thermomechanical models. They also conclude

that the representation of surface mass balance is more im-

portant to simulate the last glacial cycle than the accurate

description of ice dynamics. Nevertheless, Johnson and Fas-

took (2002) state that basal melting can have a dramatic ef-
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fect on the glaciation cycle. It is theoretically possible to ap-

proximate melting at the bottom of the ice sheet by a func-

tion based on accumulation rate, temperature, and geother-

mal heat flux. However, this could be the subject of future

model development.

An additional concession to the numerical efficiency is the

use of a local isostasy model instead of the common “elas-

tic lithosphere, relaxing asthenosphere” (ELRA) model that

takes into account non-local effects of the ice load (Le Meur

and Huybrechts, 1996). Test simulations with the ELRA

bedrock model are qualitatively similar to the results shown

here, which is expected as the effect of a non-local litho-

sphere is mostly limited to small ice caps (Greve and Blat-

ter, 2009). This makes it difficult to justify the computa-

tional overhead of the ELRA model, because due to the influ-

ence of remote grid locations, the local deformation of each

grid location must be calculated from the ice load of about

600 neighboring boxes. This adds significant overhead to the

comparatively lightweight ice dynamics, so that it runs ap-

proximately 100 times slower.

In long simulations we find multiple equilibria in ice vol-

ume, as evidenced by the hysteresis. A global temperature

offset is applied to the LGMbs forcing. Starting at+5 ◦C, ap-

proximately the difference between the simulated LGM and

preindustrial climates in CCSM4 in the ice sheet model do-

main, the offset linearly decreases to −5 ◦C over the course

of 2.5 million years. The very slow transient temperature

change ensures that the simulated ice sheet remains in con-

tinuous quasi-equilibrium. Subsequently, temperature is in-

creased slowly back to +5 ◦C. Both the North American and

Eurasian ice sheets are found to have at least two stable states

over almost the entire temperature offset range.

Ice volume increases and decreases abruptly at several

points on the temperature scale. As soon as temperatures

are low enough for the local mass balance to become pos-

itive, the ice sheet quickly grows to higher, colder eleva-

tions and thereby stabilizes itself. This mechanism is consis-

tent with similar simulations of the Cenozoic Antarctic ice

sheet (Pollard and DeConto, 2005). Importantly, the individ-

ual jumps in ice volume depend on the local mass balance

and the ice sheet geometry alone, which are both closely re-

lated to the bed topography. Variations in the model parame-

ters play a secondary role as they may shift these glaciation

and deglaciation events on the temperature scale but do not

affect their existence or individual height.

Our hysteresis experiments are similar to simulations by

Abe-Ouchi et al. (2013), although they employed more com-

prehensive representations for both climate variations and

ice sheet dynamics and consequentially cannot continuously

vary temperature offsets. We confirm that the hysteresis of

the North American ice sheet is located at warmer tempera-

ture offsets than the hysteresis of the Eurasian ice sheet. Also,

the retreating North American ice sheet is most sensitive to

temperature increase when its volume is between 120 and

50 ms.l.e. Disagreement is found for the Eurasian ice sheet,

as our model does not find a rapid retreat for rising temper-

atures. The simulated volume is generally lower here. This

is likely due to the inadequate representation of marine ice

sheets in our model.

The insufficient glaciation over Northern Europe shelf seas

and the correct LGM ice volume over Eurasia may be recov-

ered if the model is initialized with an ice-covered state like

on the descending branch of the hysteresis. Initialization with

a large global ice volume and corresponding low sea level al-

lows ice to cover shelf seas and to grow thicker and more

stable. However, the simple hysteresis initialization yields an

ice volume of 45 ms.l.e. for the Eurasian ice sheet, consid-

erably more than the 13–25 ms.l.e. in reconstructions (Clark

and Mix, 2002). Note that this effect somewhat undermines

the ensemble optimization that uses the LGM total ice vol-

ume as a target but initializes all simulations without ice.

Transient simulations from different starting points on

both branches of the hysteresis highlight how this concept

of ice sheet dynamics is robust and where it is incomplete.

Rapid warming, similar to the warming rates ending the Last

Glacial Maximum, generally does not lead to a new equilib-

rium on the hysteresis but produces a new equilibrium with a

geographic distribution of ice that does not correspond to ei-

ther of the two branches of the hysteresis. This is the result of

the nonlinear response of the bedrock and its interaction with

the surface mass balance, in its essence described by Oerle-

mans (1981b). To extend the present study, future versions of

our efficient ice sheet model could be used to systematically

explore and quantify the effect of different mechanisms on

the stability of glacial ice sheets on a grid point level.

6 Conclusions and outlook

Ice sheet models of reduced complexity may complement

comprehensive models of ice dynamics and thus close the

gap that exists for climate simulations over many glacial cy-

cles and over the next centuries to millennia. Their computa-

tional efficiency enables research questions that are not pri-

marily concerned with the detailed stress balance inside the

ice but rather benefit from a more detailed representation of

the surface mass balance, a better coupling with the climate

system, probabilistic analyses based on multiple simulations

and parameter perturbations, or extremely long integration

times. Several of these points arguably apply to the uncer-

tainties and remaining questions related to the succession

of ice ages over the last million years. The simulations of

the Eemian interglacial are one recent example. Although

different studies have used models with a similar three-

dimensional representation of ice dynamics, in some cases

even the same model, the simulations of the Eemian mini-

mum ice volume over Greenland diverge widely (Fig. 5.16

in Masson-Delmotte et al., 2013), probably due to the dif-

ferent representations of the climate forcing and the surface
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mass and energy balances (Robinson et al., 2011; Born and

Nisancioglu, 2012; Quiquet et al., 2013; Stone et al., 2013).

We conclude that our model achieves a reasonable agree-

ment for the ice distribution and volume of the Last Glacial

Maximum and today in spite of its simplicity. Future simu-

lations will benefit from a comprehensive surface mass and

energy balance model (Greuell and Konzelmann, 1994; Rei-

jmer and Hock, 2008; van den Berg et al., 2008; de Boer

et al., 2013) that is currently being adapted for use on very

long timescales. This will allow a fully bidirectional coupling

of the ice sheet model with the Bern3D climate model (Ritz

et al., 2011).

Investigations of climate change on orbital timescales have

in the past been limited by computational constraints to sta-

tistical (Raymo and Nisancioglu, 2003; Huybers, 2006) or

conceptual models (Paillard, 1998). With the increase in

computational resources, coupled, physics-based ice sheet–

climate models may be used to address this problem

(Ganopolski and Calov, 2011; Stap et al., 2014). The present

study contributes to this effort, taking a different approach

than these previous studies.
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