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The energy loss in the shallow-water theory for an undular bore is thought to be due
to oscillations that carry away the energy lost at the front of the bore. Using a higher-
order dispersive model equation, this expectation is confirmed through a quantitative study
which shows that there is no energy loss if dispersion is accounted for.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La perte d’énergie dans la théorie des mascarets en eau peu profonde est considérée
comme dûe aux oscillations qui transportent l’énergie à l’avant du mascaret. En utilisant
une équation modèle d’ordre supérieur pour la dispersion, nous confirmons cette assertion
par une analyse quantitative qui montre qu’il n’y a pas de perte d’énergie lorsqu’on prend
en compte la dispersion.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consideration is given to energy conservation properties of different model equations describing the evolution of an
undular bore. In its simplest description, a bore is a transition between two uniform flows with different flow depths. River
bores are generally created by tidal forcing if the surrounding conditions such as the bathymetry, the river mouth and the
tidal flows are favorable. Bores occur regularly in many rivers around the globe, and some of the better known bores appear
in the Severn river in England, the Dordogne river in France, and the Qiantang river in China.

According to experimental studies by Favre [1] and Binnie and Orkney [2], bores appear in two types. If the ratio between
the difference in flow depth to the undisturbed water depth is smaller than 0.28, then the bore tends to exhibit an undular
character, in other words, the bore will feature oscillations in the downstream part. If this ratio is greater than approximately
0.75, a so-called turbulent bore may be seen. If the ratio is between 0.28 and 0.75, the bore will be turbulent, but also
feature some oscillations.

Quite commonly, the bore is studied in the context of shallow-water theory. In this case, a shock-wave solution may be
given in exact form, and an analysis using conservation of mass and momentum shows that energy must be lost at the front
of the bore. In the case of the turbulent bore, the energy appears to dissipate through turbulent motion at the front of the
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bore. In an undular bore, the energy is thought to be disseminated through an increasing number of oscillations behind the
bore, though dissipation may also have an effect here [3].

In this Note, it is shown that if dispersion is included into the model equations, then the energy loss experienced by
an undular bore can be accounted for. Indeed, monitoring the energy Edisp in the dispersive theory shows that the rate of
change of Edisp is exactly equal to the net influx of energy. Thus it may be said that the part of the net influx of energy
which is lost at the bore front in the shallow-water theory is carried away by the oscillations developing behind the front.

In previous works [3,4], a steady version of the Korteweg–de Vries equation was used to study the same problem. While
taking account of dispersion, it is clear that these studies focused on the time-independent problem, thus neglecting dy-
namical effects. Moreover, the Korteweg–de Vries equation used in these works is limited to unidirectional propagation, and
therefore only includes waves propagating in the same direction as the bore. As a result, it is not possible to set boundary
conditions for the surface excursion and the horizontal velocity independently, and a comparison with the shallow-water
theory appears problematic. In contrast, we use a time-dependent system of equations allowing for counterpropagating
waves. A similar system was studied in [5], but no information on the development of the energy was provided.

2. Shallow-water theory

In the case of a purely undular bore, the transition from low to high surface elevation is rather gentle, so that a long-
wave (shallow-water) approximation is justified [6]. Therefore, the problem may be studied using the Saint-Venant system
of equations given by

ηt + h0ux + (uη)x = 0
ut + gηx + uux = 0

}
(1)

Here η is the deflection of the free surface from its rest position, h0 is the undisturbed water depth, and u represents
the horizontal flow velocity. The constant g denotes the gravitational acceleration, and the width of the fluid domain and
density of the fluid are assumed to be unity. Eqs. (1) describe the conservation of mass and momentum, and the assumption
is made that the horizontal velocity u is independent of the depth.

Smooth solutions of this system conserve mass, momentum and energy of an initial state, as well as an infinite number
of higher-order integrals that do not have an obvious physical interpretation. Let h be the total depth of the water, given by
h(x, t) = h0 + η(x, t). The conservation equations for mass and horizontal momentum in a section x1 < x < x2 are

d

dt

x2∫
x1

h(x, t)dx = u(x1, t)h(x1, t) − u(x2, t)h(x2, t) (2)

and

d

dt

x2∫
x1

u(x, t)h(x, t)dx = u2(x1, t)h(x1, t) − u2(x2, t)h(x2, t) + 1

2
gh2(x1, t) − 1

2
gh2(x2, t) (3)

respectively. The mechanical energy associated to the shallow-water approximation is given by the integral

Esw = 1

2

x2∫
x1

{
u2(x, t)h(x, t) + gh2(x, t)

}
dx (4)

while the energy flux at xi is given by

Fi = 1

2
u3(xi, t)h(xi, t) + gu(xi, t)h2(xi, t) (5)

for i = 1,2. To model a bore in the context of the shallow-water theory, one may find a shock-wave solution of (1) taking
prescribed values upstream and downstream, and with a discontinuity fitted in at the bore front. As indicated in Fig. 1,
one may choose a reference frame in which the transition is from the undisturbed water level h0 upstream of the bore to
a prescribed water level h0 + a0 downstream of the bore, and such that the upstream velocity is zero. Since river bores
generally move upstream, we take upstream to mean in the direction of increasing values of x. The conservation equations
(2) and (3) give the following shock conditions [6]:

−U [h]x2
x1 + [hu]x2

x1 = 0, −U [uh]x2
x1 +

[
hu2 + 1

2
gh2

]x2

x1

= 0 (6)

It is well known that these equations define the downstream velocity u0 and the velocity of the front of the bore U .
Moreover, it is common knowledge that this discontinuous solution cannot conserve the energy, and the loss of energy
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Fig. 1. Schematic of a discontinuous solution of (1). The velocity u jumps from 0 to u0, and the flow depth jumps from h0 to h0 + a0. The front of the bore
moves upstream at a velocity U .

across the bore may be computed exactly. Denoting the downstream and upstream energy fluxes by F1 and F2, respectively,
we find the equation

−dEsw

dt
+ (F1 − F2) = a3

0

4

√
1

2
g3

(
1

h0
+ 1

a0 + h0

)
(7)

The right-hand side of this equation represents the energy lost due the approximate nature of the governing equations (1),
and the discontinuous solution shown in Fig. 1.

3. Dispersive theory

To incorporate dispersion into the equation, we drop the assumption that the horizontal velocity is uniform across the

depth. Let w(x, t) denote the horizontal velocity at a height
√

2
3 h0. Now instead of η and u, we use η and w as the primary

dependent variables of the flow. If this is done, the system of dispersive evolutionary partial differential equations

ηt + h0 wx + (wη)x + h3
0

6
wxxx = 0

wt + gηx + w wx + gh2
0

6
ηxxx = 0

⎫⎪⎪⎬
⎪⎪⎭ (8)

appears [7]. The system (8) is a variant of the original Boussinesq system [8]. An additional assumption necessary for the
derivation of this system is that the amplitude of the waves is small when compared to the depth of the fluid. In the context
of bores, the natural ratio to consider is a0

h0
, and we see that this is indeed small for undular bores. It is also observed that

for very long waves, the terms wxxx and ηxxx are nearly zero, so that the system reduces to (1). The associated mechanical
energy which can be found by the same asymptotic analysis which yields the system (8), is given by the expression

Edisp = 1

2

x2∫
x1

{
(h0 + η)w2 + g

(
h2

0 + 2h0η + η2) + h3
0

3
w wxx + h3

0

3
w2

x

}
dx (9)

Also here, it is evident that for very long waves the last two terms in the integral disappear, and the expression reduces
to Esw , the energy associated with the Saint-Venant system (1). Note that Edisp is not the Hamiltonian function for (8), and
there is no exact conservation law connected with Edisp . Indeed, in the same way as solutions of (8) approximate solutions
of the full surface water-wave problem, so does Edisp approximate the energy of the full problem.

To study the bore development, solutions of (8) are approximated numerically. The numerical treatment is based on a
finite-difference approximation, and will not be detailed here. It suffices to say that we have done some convergence and
stability studies, and are confident that our numerical approximation is sound. In all the numerical experiments the depth
h0 is taken to be equal to 1 m and the gravitational acceleration is g = 9.8 m s−2. The initial bore front is taken to be at the
origin, and we take x1 � 0, and x2 � 0. The initial water surface and the initial velocity are given by

η(x,0) = 1

2
a0

[
1 − tanh(kx)

]
, w(x,0) = 1

2
u0

[
1 − tanh(kx)

]
(10)

where the parameter k denotes the steepness of the initial bore slope, and u0 is given from the shock conditions (6).
A typical wave profile is shown in Fig. 2 (left), which shows the creation of a wavetrain following the bore front. The net
energy flux for a situation in which a0 = 0.25 m is shown in Fig. 2 (right). As can be seen, the rate of change of Edisp is
equal to the net influx of energy, while the rate of change of Esw is different by the amount given in (7). The parameter k
does not seem to have a strong influence on the data shown in Fig. 2 (right). Computations with increasing steepness were
done, and it was found that the results were all approximately equal.
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Fig. 2. Left: Development of an undular bore for total time T = 14 s, with initial amplitude a0 = 0.1 m. Right: A comparison of the rate of change of energy
in the dispersive and the shallow-water system, vs. the net energy flux through the boundaries at x1 and x2. The initial bore amplitude was a0 = 0.25 m.

Table 1
Column 1 shows the bore amplitude a0 in m. The net energy flux is shown in column 2. Column 3 displays the rate of change in the energy in the
shallow-water theory. Column 4 shows the percentage difference when compared to the net energy flux. Columns 5 and 6 show the rate of change in the
energy in the dispersive theory and the percentage difference, respectively. The dispersive theory gives the correct result to within less than 0.1% error.

a0 F1 − F2
dEsw

dt % Difference
dEdisp

dt % Difference

0.1 3.64 3.635 0.2 3.64 0.00
0.2 8.59 8.53 0.7 8.58 0.00
0.3 15.08 14.88 1.3 15.08 0.06
0.4 23.36 22.90 1.9 23.36 0.04
0.5 33.69 32.82 2.6 33.69 0.00
0.6 46.36 44.87 3.2 46.35 0.00
0.7 61.64 59.29 3.8 61.63 0.00
0.8 79.83 76.36 4.3 79.84 0.03
0.9 101.24 96.36 4.8 101.30 0.06
1.0 126.20 119.56 5.3 126.28 0.06

Table 1 shows the calculation of the energy rates for undular bores with increasing initial amplitudes, including some
that strictly speaking fall outside of the range of purely undular bores. Nevertheless, the agreement between the net energy
flux and the change in Edisp is striking. While the energy loss experienced by the shallow-water theory is not dramatic in
relative terms, it is strongly dependent on the bore amplitude. The dispersive theory on the other hand can easily handle
cases up to a ratio a0/h0 ∼ 1. In conclusion, it appears that the model (8) successfully captures the energy loss incurred by
the shock-wave solution of the Saint-Venant system.
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