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Abstract

This work presents a derivation of the energy density and energy flux of surface waves
modeled by the so-called Kaup system, a variant of the Boussinesq system. The derivation
is based on reconstruction of the velocity field and the pressure in the fluid column below
the free surface, and is an extension of a method recently proposed in [2]. In the present
note, it is shown that the total energy of the wave system is equal to the Hamiltonian
function found by Craig and Groves [7].

1 Introduction

The object of this note is the derivation of expressions for the energy density and the energy
flux associated to an integrable system of evolution equations modeling the propagation of
weakly nonlinear long waves on the surface of an incompressible, inviscid fluid. In particular,
the focus is on the so-called Kaup system

ηt + h0wx + (ηw)x +
h30
3
wxxx = 0,

wt + gηx + wwx = 0,

(1.1)

where η(x, t) describes the deflection of the free surface from the rest position at a point x
and time t, w(x, t) is the horizontal velocity of the fluid at the free surface, g represents the
gravitational acceleration, and h0 denotes the undisturbed depth of the fluid.

The Kaup system belongs to the family of long-wave models developed by Boussinesq [5],
extended by Peregrine [14] and Nwogu [12], and represents a special case of the general system
of long-wave models derived recently in [3]. These models describe the propagation of surface
gravity waves of small amplitude and long wavelength in a horizontal channel of uniform depth,
and under the assumption that the flow is irrotational, and essentially two-dimensional. Even
though this system is not well posed in the Hadamard sense [4], it is important because it
has an integrable Hamiltonian structure [11]. Moreover, (1.1) appears naturally when the
derivation of the long-wave system is based on approximating the Hamiltonian function of the
full surface water-wave problem. As explained in detail in [7], this formulation is given in terms
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of the evaluation of the velocity potential at the free surface, and relies on the Hamiltonian
structure of the full water wave problem found by Zakharov [18]. A version of this system also
appears in the context of interfacial waves if it is required that an approximate Hamiltonian
function be conserved [8]. In the context of surface waves, the Hamiltonian function is given
by

H = ρ

∫ ∞

−∞

{

g
2
η2 + 1

2
(h0 + η)w2 − h3

0

6
w2
x

}

dx, (1.2)

and the system (1.1) is the corresponding Hamiltonian dynamical system. As shown in [11],
the system (1.1) is actually a completely integrable dynamical system.

Since the derivation of (1.1) presented in [7] is based on approximating the total energy of
the fluid system governed by the Euler equations, the integral (1.2) appears naturally as the
total energy of the system in the approximation leading to (1.1). On the other hand, for some
purposes it can also be of value to have knowledge of the energy contained in a smaller section
of the fluid, and in particular of the local energy flux. These quantities can be important in
various situations of practical significance, such as the modeling of tsunamis [9], undular bores
[17, 1], and in the analysis of shoaling waves [10]. It is the purpose of the present paper to
shed light on the conservation of energy in the context of the Kaup system, and to provide
expressions for the local energy flux and density in terms of a solution η, w of (1.1).

The derivation of Boussinesq models for surface water waves is based on the assumption that
there is an approximate balance between nonlinear steepening effects and dispersive spreading
[3, 17]. Supposing that a is a representative amplitude, and ℓ represents a dominant wavelength,
the Boussinesq scaling regime describes waves for which the two small parameters α = a/h0 ≪
1 and β = h20/ℓ

2 ≪ 1 are approximately equal. The system (1.1) consists of an approximate
mass balance equation (first equation), and an approximate horizontal momentum balance
equation (second equation), and is obtained by neglecting terms of order αβ and β2. In order
to obtain a corresponding approximation for the energy density E and energy flux qE, one may
stipulate that the differential energy balance equation

∂

∂t
E +

∂

∂x
qE = 0

hold to the same order in α and β as the evolution equations.
A related development was presented in [6] for the single second-order Boussinesq equa-

tion. However, the expressions found in [6] are quite different from the formulas developed
here, and the method is based on requiring exact energy conservation instead of approximate
conservation. In [2], a method was developed to derive mass, momentum and energy densities
and fluxes associated to the family of Boussinesq systems found in [3]. The expressions were
then compared to the corresponding quantities in the shallow-water theory. In the present
note, we use the same method, but a different definition for the potential energy in order to
show that the Hamiltonian function associated to (1.1) represents exactly the total energy of
the system. We expect that similar considerations will yield information about the
energy density and flux for internal waves modeled by the Kaup equation [8], but
the details have not been carried out yet.

2 Preliminaries

The surface water-wave problem is generally described by the Euler equations with no-flow
conditions at the bottom, and kinematic and dynamic boundary conditions at the free surface.
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Since the fluid is incompressible and the flow is assumed irrotational, the problem may be
formulated in terms of the velocity potential φ(x, z, t) and the surface elevation η(x, t). The
pressure is eliminated with help of the Bernoulli equation, the potential φ satisfies Laplace’s
equation, and the free-surface boundary conditions are formulated in terms of the potential
and the surface excursion by

ηt + φxηx − φz = 0,
φt +

1

2

(

φ2
x + φ2

z

)

+ gη = 0,

}

on z = η(x, t).

To set the stage for approximating the energy density and flux, we briefly recall the deriva-
tion of the Kaup system. In order to identify the relevant terms in the equations, the variables
are non-dimensionalized in the following way.

x̃ =
x

ℓ
, z̃ =

z + h0
h0

, η̃ =
η

a
, t̃ =

c0t

ℓ
, φ̃ =

c0
gaℓ

φ,

where c0 =
√
gh0. The free-surface boundary conditions then take the form

η̃t̃ + αφ̃x̃η̃x̃ − 1

β φ̃z̃ = 0,

η̃ + φ̃t̃ +
1

2

(

αφ̃2
x̃ +

α
β φ̃

2
z̃

)

= 0,

}

on z̃ = 1 + αη̃. (2.1)

The standard approach consists of developing the potential φ in an asymptotic series, and
using the Laplace equation and Neumann boundary condition at the bottom to write the
non-dimensional velocity potential φ̃ in the form

φ̃ = f̃ − z̃2

2
f̃x̃x̃β +O(β2). (2.2)

Substituting this expression into the second boundary condition at the free surface yields the
relation

η̃ + f̃t̃ −
β

2
f̃x̃x̃t̃ +

α

2
f̃2
x̃ = O(αβ, β2). (2.3)

To find a closed system of two evolution equations, we insert the asymptotic expression for φ̃
in the first equation in (2.1), and collect all terms of zeroth and first order in α and β. Then,
we differentiate (2.3), and express the equations in terms of the non-dimensional horizontal
velocity at the bottom fx̃ = ṽ. This procedure yields the equations

η̃t̃ + ṽx̃ + α(η̃ṽ)x̃ −
1

6
βṽx̃x̃x̃ = O(αβ, β2),

η̃x̃ + ṽt̃ −
1

2
βṽx̃x̃t̃ + αṽṽx̃ = O(αβ, β2).

(2.4)

Now if w̃ denotes the nondimensional velocity at a nondimensional height z̃ = 1 in the fluid
column, then ṽ may be expressed in terms of w̃ as

ṽ = w̃ +
1

2
βw̃x̃x̃ +O(β2). (2.5)

Writing (2.4) in terms of w, the Kaup system appears in the non-dimensional form

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ +
1

3
βw̃x̃x̃x̃ = O(αβ, β2),

η̃x̃ + w̃t̃ + αw̃w̃x̃ = O(αβ, β2).
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Figure 1: The schematic elucidates the geometric setup of the problem. The undisturbed water depth
is h0, and the x-axis is aligned with the free surface at rest. The free surface is described by a function
η(x, t). The figure shows a control interval delimited by x1 and x2 on the abscissa, and the arrows
indicate pressure force FP and energy flux qE .

If terms of order O(αβ, β2) are disregarded, and dimensional variables are used, the Kaup
system (1.1) is recovered.

As the aim here is to find expressions for the energy density and flux, it is essential to
derive an approximation for the pressure associated to the (1.1), and we follow the method
laid down in [2]. With the help of the Bernoulli equation, the dynamic pressure can be written
as

P ′ = P + ρgz = −ρφt −
ρ

2
|∇φ|2,

where atmospheric pressure has been set as the reference pressure, and ρ denotes the density
of the fluid. Converting to non-dimensional variables, using the asymptotic expansion for
the velocity potential (2.2), and using the identity (2.3), the second-order dynamic pressure
emerges in the form

P̃ ′ = η̃ +
1

2
β(z̃2 − 1)w̃x̃t̃ +O(αβ, β2).

Converting to dimensional variables, it may be confirmed that this agrees with the expression
for the pressure associated to the so-called ’classical’ Boussinesq system given in [15]. Similar
considerations as in [2] were also used in [13] to derive the pressure associated to the Green-
Naghdi system which models higher-order effects in surface waves.

3 Energy balance

In order to derive the energy density and flux we consider the total mechanical energy inside
a control volume in the fluid and above the interval [x1, x2], as shown in Figure 1. The total
energy in this control volume is

E =
1

2

∫ x2

x1

∫ η

−h0

ρ|∇φ|2dzdx+

∫ x2

x1

∫ η

0

ρgz dzdx,

where the first term represents the kinetic energy, and the second term the potential energy.
The potential energy has been normalized in such a way that a particle located at the level of
the undisturbed free surface has zero potential energy, and such that the total potential energy
is zero when no wave motion is present. Following [16], conservation of total mechanical energy
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is written as

d

dt

∫ x2

x1

∫ η

−h0

ρ

2
|∇φ|2 dzdx+

d

dt

∫ x2

x1

∫ η

0

ρgz dzdx

=

[
∫ η

−h0

{

ρ
2
|∇φ|2 + ρgz

}

φx dz +

∫ η

−h0

φxP dz

]x1

x2

.

We convert to non-dimensional variables, and compute the left and right hand sides individ-
ually. Substituting the expressions for φ̃x̃ and φ̃z̃, recalling that fx̃ = ṽ is the velocity at the
bottom, and using (2.5), there appears

d

dt̃

∫ x2/ℓ

x1/ℓ

∫

1+αη̃

0

{

α2

2

(

φ̃2
x̃ +

1

β φ̃
2
z̃

)}

dz̃dx̃+
d

dt̃

∫ x2/ℓ

x1/ℓ

∫

1+αη̃

1

(z̃ − 1) dz̃dx̃

=
d

dt̃

∫ x2/ℓ

x1/ℓ

{

α2

2

(

f̃2
x̃(1 + αη̃)− β

3
f̃x̃f̃x̃x̃x̃ +

β
3
f̃2
x̃x̃

)

+ α2

2
η̃2
}

dx̃+O(α3β, α2β2).

=
d

dt̃

∫ x2/ℓ

x1/ℓ

{

α2

2
(1 + αη̃)w̃2 + α2β

3
w̃w̃x̃x̃ +

α2β
6
w̃2
x̃ +

α2

2
η̃2
}

dx̃+O(α3β, α2β2).

After integrating and using the substitution for f̃x̃, the energy flux and work done by the
pressure force on the right hand side of the energy balance reduce to

∫

1+αη̃

0

α3

2

(

φ̃3
x̃ +

1

β φ̃
2
z̃φ̃x̃

)

dz̃ + α2

∫

1+αη̃

0

P̃ ′φ̃x̃ dz̃

=

∫

1+αη̃

0

{

α3

2
f̃3
x̃ + α2

(

f̃x̃η̃ − z̃2

2
f̃x̃x̃x̃η̃β + β

2
(z̃2 − 1)w̃x̃t̃f̃x̃

)}

dz̃ +O(α3β, α2β2).

= α3

2
f̃3
x̃ + α2f̃x̃η̃(1 + αη̃)− α2β

6
f̃x̃x̃x̃η̃ − α2β

3
w̃x̃t̃f̃x̃ +O(α4, α3β, α2β2)

= α3

2
w̃3 + α2w̃η̃(1 + αη̃) + α2β

3
η̃w̃x̃x̃ − α2β

3
w̃w̃x̃t̃ +O(α4, α3β, α2β2).

Thus the energy balance equation transforms to

d

dt̃

∫ x2/ℓ

x1/ℓ

{

α2

2
η̃2 + α2

2
(1 + αη̃)w̃2 + α2β

3
w̃w̃x̃x̃ +

α2β
6
w̃2
x̃

}

dx̃

=

[

α3

2
w̃3 + α2w̃η̃(1 + αη̃) + α2β

3
η̃w̃x̃x̃ − α2β

3
w̃w̃x̃t̃

]x1

x2

+O(α4, α3β, α2β2). (3.1)

A differentiation in x finally yields the differential energy balance equation in the form

∂

∂t̃
Ẽ +

∂

∂x̃
q̃E = O(α2, αβ, β2). (3.2)

Taking the appropriate terms in the energy density and flux in (3.1) which are of order zero or
one in the differential energy balance (3.2), we find the non-dimensional energy density to be

Ẽ = α2

2
η̃2 + α2

2
(1 + αη̃)w̃2 + α2β

3
w̃w̃x̃x̃ +

α2β
6
w̃2
x̃.

The non-dimensional energy flux (corrected for the work done by pressure force) is given by

q̃E = α3

2
w̃3 + α2w̃η̃(1 + αη̃) + α2β

3
η̃w̃x̃x̃ − α2β

3
w̃w̃x̃t̃.

5



Using the natural scalings E = ρh0c
2
0Ẽ and qE = ρh0c

3
0q̃E, the dimensional forms of the energy

density and energy flux are obtained in the form

E = ρ
{

g
2
η2 + 1

2
(h0 + η)w2 +

h3

0

3
wwxx +

h3

0

6
w2
x

}

,

and
qE = ρ

{

h0

2
w3 + gηw(h0 + η) +

gh3

0

3
ηwxx − h3

0

3
wwxt

}

.

In particular, qE(x, t) gives the energy flux due to the wave motion at a point x and a time
t. Integrating E(x, t) over an interval [x1, x2] yields the energy due to the wave motion in the
control interval shown in Figure (1) at a time t, and to the same order of approximation as
the system (1.1) is valid. If the surface disturbance is localized, so that η and w decay to zero
at infinity, and the integration of E is taken over the entire real line, an integration by parts
shows that the total energy is equal to the Hamiltonian function derived by Craig and Groves
[7]:

H =

∫ ∞

−∞

E(x, t) dx.
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