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Abstract In this article, consideration is given to weak bores in free-surface flows.
The energy loss in the shallow-water theory for an undular bore is thought to be due
to upstream oscillations that carry away the energy lost at the front of the bore. Using
a higher-order dispersive model equation, this expectation is confirmed through a
quantitative study which shows that there is no energy loss if dispersion is accounted
for.

Keywords Undular bore · Energy loss · Dispersion

1 Introduction

The bore is a well known phenomenon in fluid mechanics, describing the transition
between two uniform streams with different flow depths. Depending on the strength
of the bore, it may feature oscillations, breaking waves, or fully developed turbulence.
The classical theory of bores due to Lord Rayleigh [38] uses mass and momentum
conservation in the shallow-water equation to predict a loss of energy at the bore front.
While it is generally accepted that the energy loss in a strong bore is due to turbulent
dissipation, it appears that the precise nature of the energy loss in a weak bore has
not been explained in a satisfactory manner. The accepted point of view is that the
excess energy is disseminated by oscillations behind the bore front. However, as far as
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we know, this commonly held belief has as of yet not been confirmed by quantitative
evidence. It is our purpose in this article to remedy this state of affairs by presenting
a detailed study of undular bores using a dispersive theory.

More generally, we will derive expressions for mass, momentum and energy inte-
grals in a nonlinear dispersive system of evolutions equations appearing in the context
of the Boussinesq scaling. These integrals will be used in a numerical study of an
undular bore, and it will become plain that conservation of mass, momentum and
energy holds to the same order of accuracy as the equations are asymptotically valid.

While observations of bores abound, there are few field measurements available,
so that one has to resort to laboratory experiments in order to obtain quantitative
information. Here, we mention the early studies of Favre [27] and Binnie and Orkney
[6], and the recent work of Chanson [17,18] and Koch and Chanson [33,34]. In [27],
it was found that bores appear in different types. Undular bores feature free-surface
oscillations behind the front of the bore, and we will say that a bore is purely undular,
if none of the waves behind the bore are breaking. As found in [27], such purely
undular bores occur if the ratio of the difference between upstream and downstream
flow-depths against the undisturbed depth is less than about 0.28. Increasing the ratio
beyond this value will result in one or a few waves breaking, and a value of 0.75 and
beyond will result in a completely turbulent transition region.

Let us next give a short account of the works that have investigated the energy
loss through undulations in a weak bore. One of the first to take up the problem
was Lemoine [35]. Using a linear approach and assuming a sinusoidal wavetrain,
Lemoine calculated the rate of radiation of energy from the bore front, but obtained
only moderate agreement with experiments. Benjamin and Lighthill [5] argued that the
ensuing wavetrain must be of cnoidal character. They showed that it is only possible
to match a cnoidal periodic wavetrain to a uniform stream if there is a change in
the volume flow rate, the momentum flow rate or the energy per unit mass, thus
again leading to a loss of energy if both mass and momentum are to be conserved.
Later, Sturtevant [39] used data from Favre’s experiments [27] and a cnoidal wave
approximation to argue that there must be a change in both momentum and energy due
to the existence of a boundary layer below the bore. While dissipation undoubtedly
plays a role, and may be as important as dispersion in an experimental setting, we
argue that the energy loss predicted by the shallow-water system is not due to physical
dissipation, but rather should be viewed as a failure of the shallow-water approximation
to capture the precise transition between the two uniform streams. As it will turn out, a
dispersive correction of the shallow-water system is sufficient to essentially eliminate
the energy loss due to the inaccuracy of the shallow-water system.

To understand the mass, momentum and energy conservation in an undular bore,
we use the weakly nonlinear dispersive model system

ηt + h0wx + (wη)x + h3
0

6 wxxx = 0, (1.1)

wt + g ηx + wwx + gh2
0

6 ηxxx = 0,

where η represents the deflection of the free surface from its rest position, h0 is the
undisturbed fluid depth, and w denotes the horizontal flow velocity at a height

√
2/3 h0
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above the flat bottom. As usual, g denotes the gravitational acceleration. Using (1.1),
it will be shown that if dispersion is included into the model equations, then the energy
loss mentioned above can be accounted for. Indeed, monitoring the mechanical energy
associated to (1.1) shows that the rate of change of the energy contained in a control
volume containing both the bore front and the ensuing oscillations is exactly equal to
the net influx of energy, including both the flow rate of energy on either side, and the
net work done by pressure forces on the control volume. Consequently, there is no
energy loss if dispersion is accounted for. In particular, this shows there is no need for
a further dissipative correction of the shallow-water system if dispersion is properly
treated.

To compare our findings to previous studies presented in [5,39], we note that these
works while taking account of dispersion, deal exclusively with the time-independent
problem. Moreover, the (steady) KdV equation used in these works is limited to uni-
directional propagation, thusly only taking account of waves propagating in the same
direction as the bore. In contrast, we use a time-dependent system of equations allow-
ing for counterpropagating waves. The unsteady problem has been investigated in [37]
using a dispersive system similar to (1.1), but no study of the development of the energy
was provided. More recently, bores have been studied in the context of another system
also derived in [8], but more amenable to numerical methods [7,31], and even with the
help of fully nonlinear evolutions equations [26,43]. A few examples of dissipative
models for undular bores were studied in [15]. Energy issues in connection with the
generation of tsunamis have been studied with a model similar to (1.1) in [23]. The
findings of the present article have been announced in [3].

The basis for our study is the following free-surface problem. Consider an incom-
pressible and inviscid fluid contained in a long narrow channel, such that the depth
of the undisturbed fluid is h0. If it is assumed that the fluid flow is irrotational and
does not vary significantly in the direction transverse to the length of the channel, and
that the free surface can be described by a single-valued function η(x, t), then the
free-surface problem can be written in terms of the Laplace equation for the velocity
potential φ as follows.

φxx + φzz = 0, in − h0 < z < η(x, t),

φz = 0, at z = −h0,

ηt + φxηx − φz = 0, at z = η(x, t),

φt + 1
2 (φ2

x + φ2
z ) + gη = 0, at z = η(x, t).

Both the shallow-water and the dispersive system can be derived as limiting cases
of this free-surface problem. In Sect. 2, we briefly describe the shallow-water theory,
and its implications for the study of bores. The shallow-water approximation is used
in river hydraulics and open channel flows, and despite its limitations, yields fairly
accurate predictions [16,27,44].

A dispersive system of partial differential equations along with the corresponding
momentum and energy integrals is derived in Sect. 3. Here it is imperative that the
correct momentum and energy integrals be found. Careful considerations show that
in the case of bore-type boundary conditions, the momentum and energy integrals
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associated to (1.1) are in fact the same as the corresponding integrals associated to the
shallow-water approximation.

Then, using the system (1.1) and the corresponding expressions for the mass,
momentum and energy, numerical experiments are set up in Sect. 4 to understand
the conservation properties of this approximation.

It is found that the flow quantities predicted by the dispersive system are similar to
those predicted by the shallow-water theory. However, as mentioned above, the disper-
sive theory does not lead to the energy loss which is characteristic of the shallow-water
theory. In the appendix, some details are given concerning the numerical procedure
used to approximate solutions of the dispersive system (1.1).

2 Shallow water theory

In this section, we will recall the implications of the standard shallow-water
theory when applied to a free-surface bore. If the transition between the upstream
and downstream flow depths is gentle, and the undisturbed fluid depth is not too
great, a long-wave approximation is justified. Equivalently, it may be assumed that the
pressure is hydrostatic, and the horizontal velocity u does not depend on the vertical
coordinate z. If this is done, the shallow-water system

ηt + h0ux + (uη)x = 0, (2.1)

ut + gηx + uux = 0,

appears as the governing set of equations for the fluid flow. As before, η(x, t) is
the deflection of the free surface from its rest position, and h0 is the undisturbed fluid
depth. However u(x, t) now represents a uniform horizontal velocity. The system (2.1)
has a well known weak solution accommodating the transition between the upstream
and downstream uniform flows through a sudden jump. The surface profile η of this
discontinuous solution is depicted in Fig. 1. Figure 1 also elucidates the geometric
setup of the problem. Fluid of undisturbed depth h0 running in a horizontal channel
of uniform width over a flat bottom. Assuming that the shock is initially located at
x = 0, the precise formula for the weak solution shown in Fig. 1 is

river bed

h0

U

x

a0

u = u1 u = u2

z

Fig. 1 Schematic of a discontinuous solution of (2.1). The velocity jumps from u1 to u2, and the amplitude
jumps from h0 + a0 to h0. The front of the bore moves upstream at a velocity U
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η(x, t) =
{

a0, x < Ut,
0, x > Ut,

u(x, t) =
{

u1, x < Ut,
u2, x > Ut.

Here and in the following, it will be assumed that the upstream flow depth is the
same as the undisturbed depth of the fluid. This is in accordance with experiments,
where a discharge is imposed on a fluid at rest, or on a previously established uniform
stream. Note also that the arrows in Fig. 1 point in the upstream direction, because
river bores generally move upstream. Recall that smooth solutions of the system (2.1)
conserve the mass, the momentum, and the energy of an initial state. Let h be the total
depth of the fluid, given by h(x, t) = h0 + η(x, t). The conservation of mass in a
control volume of unit width above the interval [x1, x2] is expressed as

d

dt

x2∫
x1

ρh(x, t) dx = ρu(x1, t)h(x1, t) − ρu(x2, t)h(x2, t). (2.2)

Similarly, the conservation of momentum is given by

d

dt

x2∫
x1

ρu(x, t)h(x, t) dx = ρu2(x1, t)h(x1, t) − ρu2(x2, t)h(x2, t)

+ ρ

2
gh2(x1, t) − ρ

2
gh2(x2, t). (2.3)

The energy associated to the shallow-water approximation is given by the integral

E(η, u) = ρ

2

x2∫
x1

{
u2(x, t)h(x, t) + gh2(x, t)

}
dx, (2.4)

while the energy influx at xi is given by

Fi = ρ

2
u3(xi , t)h(xi , t) + ρgu(xi , t)h2(xi , t), (2.5)

where ρ is the density of the fluid. Note that the second term in Fi comprises both the
energy flow rate and the work done by the pressure force, and therefore the quantity
F1 − F2 represents the net influx of energy into a control volume of unit width,
delimited by the interval [x1, x2].

Now the solution indicated in Fig. 1 is not continuous, so that the integrals for
mass, momentum and energy are not differentiable. However, one may still impose
conservation of mass and momentum, which when applied to the exact form of the
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weak solution yields the following shock conditions [44].

U
[
h(x2, t) − h(x1, t)

]
=

[
h(x2, t)u(x2, t) − h(x1, t)u(x1, t)

]
,

U
[
h(x2, t)u(x2, t) − h(x1, t)u(x1, t)

]
=

[
h(x2, t)u2(x2, t) − h(x1, t)u2(x1, t)

]

+g

2

[
h2(x2, t) − h2(x1, t)

]
.

Given the upstream velocity u2 = u(x2, t), and the downstream flow depth
h(x1, t) = h0 + a0, these equations define the velocity U of the front of the bore
by

U = u2 +
√

g

2h0

(
2h2

0 + 3a0h0 + a2
0

)
, (2.6)

and the initial flow velocity at x = x1 as

u1 = u2 + a0

a0 + h0

√
g

2h0

(
2h2

0 + 3a0h0 + a2
0

)
. (2.7)

The loss of energy across the bore may be computed exactly. Denoting the upstream
and downstream energy fluxes by F2 and F1, respectively, and denoting the total
mechanical energy contained in the fluid region between x1 and x2, we find the equation

− d E(η, u)

dt
+ (F1 − F2) = a3

0

4
ρ

√
1
2 g3

(
1

h0
+ 1

a0+h0

)
. (2.8)

The right-hand side of this equation represents the energy lost due the approximate
nature of the governing Eq. (2.1) and the discontinuous solutions.

3 The dispersive model

In this section, a dispersive model equation is derived from the full water-wave problem
for surface waves over a flat bottom. Assuming irrotational flow of an incompressible
inviscid fluid, the surface water-wave problem is given in terms of the velocity potential
φ(x, z, t) and the surface profile η(x, t) as stated in the introduction. As explained in
[44], assuming the expansion

φ =
∞∑

n=0

zn fn(x, t),

the Laplace equation for φ and the bottom boundary condition yield

φ =
∞∑

m=0

(−1)m z2m

(2m)!
∂2m f

∂x2m
,
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where f = f0. In the following it will be necessary to use a typical amplitude and
wavelength of the waves to be described. While a0 is an obvious choice for a typical
amplitude, we choose a space scale �, which is not a priori given by the problem.
Non-dimensional variables are defined by

x̃ = 1

�
x, z̃ = 1

h0
(z + h0), η̃ = 1

a0
η, t̃ = c0

�
t, φ̃ = c0

g�a0
φ,

where c0 = √
gh0 is the limiting long-wave speed. In terms of the two small parameters

α = a0
h0

and β = h2
0

�2 , which are assumed to be of the same order of magnitude, the
non-dimensional problem is

β φ̃x̃ x̃ + φ̃z̃ z̃ = 0, in 0 < z̃ < 1 + αη̃,

φ̃z̃ = 0, at z̃ = 0,

η̃t̃ + αφ̃x̃ η̃x̃ − 1
β
φ̃z̃ = 0, at z̃ = 1 + αη̃,

φ̃t̃ + 1
2αφ̃2

x̃ + α
β
φ̃2

z̃ + η̃ = 0, at z̃ = 1 + αη̃.

Scaling the previous expansion for φ, we find that

φ̃ =
∞∑

m=0

(−1)m z̃2m

(2m)!
∂2m f̃

∂ x̃2m
βm

= f̃ − β
z̃2

2
f̃ x̃ x̃ + β2 z̃4

4! f̃ x̃ x̃ x̃ x̃ + O(β3),

where f is non-dimensionalized with the same factor as φ. Substituting the previous
expression into the nondimensional surface boundary conditions yields

η̃t + ṽx̃ + α(η̃ṽ)x̃ − 1
6βṽx̃ x̃ x̃ = O(α2, αβ, β2), (3.1)

η̃x̃ + ṽt̃ − 1
2βṽx̃ x̃ t̃ + αṽṽx̃ = O(α2, αβ, β2),

where ṽ = f̃ x̃ connotes the non-dimensional horizontal velocity at the bottom. The
velocity w̃ at the non-dimensional height

√
2
3 above the flat bottom is related to ṽ by

ṽ = w̃ + 1
3βw̃x̃ x̃ + O(β2). (3.2)

Substituting this relation into Eq. (3.1) yields

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1
2 ( 2

3 − 1
3 )βw̃x̃ x̃ x̃ = O(α2, αβ, β2),

w̃t̃ + η̃x̃ + αw̃w̃x̃ + 1
2β

( 2
3 − 1

)
w̃x̃ x̃ t̃ = O(α2, αβ, β2).
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Differentiating the lowest order approximation η̃x̃ + w̃t̃ = O(α, β), using this
relation in the last term of the second equation, and disregarding terms of order α2,
αβ, and β2, yields the final system

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1
6βw̃x̃ x̃ x̃ = 0,

w̃t̃ + η̃x̃ + αw̃w̃x̃ + 1
6βη̃x̃ x̃ x̃ = 0.

In dimensional variables, the system (1.1) appears. Note that for very long waves,
the coefficient β is nearly zero, so that the system (1.1) reduces to the shallow-water
system. More details of this derivation are given in [44]. We mention in passing that
the transformations mentioned above may be used in a more systematic way to derive
a general dispersive system [8]. Indeed, there are many different types of systems and
equations of Boussinesq type, such as the single Boussinesq fourth-order equation
[2,32], higher-order and two-dimensional systems [36,40,42], damped systems [41],
and systems arising in elasticity [22]. There are also many papers featuring com-
parison of solutions of different nonlinear dispersive evolutions equations and with
experiments in wave tanks [1,12,13]. However, our present focus is on the system
(1.1), and we now continue to find the important mass, momentum and energy inte-
grals associated with the system (1.1).

The mass per unit width of the fluid contained in the control volume delimited by
the interval [x1, x2] is given by

m = ρ

x2∫
x1

η∫
−h0

dz dx = ρ

x2∫
x1

(η + h0) dx . (3.3)

The horizontal momentum per unit width of the fluid contained in the same control
volume is given by

M = ρ

x2∫
x1

η∫
−h0

φx (x, z) dz dx .

Rescaling and using the approximation for φ̃, the momentum is expressed as

M = ρ
g�a

c0
h0

x2/�∫
x1/�

1+αη̃∫
0

{
f̃ x̃ − β z̃2

2 f̃ x̃ x̃ x̃ + O(β2)
}

dz̃ d x̃

= ρ�ac0

x2/�∫
x1/�

{
f̃ x̃ + α f̃ x̃ η̃ − β

6 f̃ x̃ x̃ x̃ + O(β2, α2, αβ)
}

dx̃ .

The dimensionless momentum is approximated by

M̃ = M

ρ�ac0
=

x2/�∫
x1/�

{
f̃ x̃ + α f̃ x̃ η̃ − β

6 f̃ x̃ x̃ x̃

}
dx̃ .
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In terms of w̃, this becomes

M̃ =
x2/�∫

x1/�

{
w̃ + αw̃η̃ + β

6 w̃x̃ x̃

}
dx̃ .

Notice that for very long waves β is nearly zero, and the momentum reduces to the
corresponding expression for the shallow-water approximation given in dimensional
variables in (2.3).

To find the mechanical energy integral corresponding to the approximation which
yields Eq. (1.1), we investigate the expression

E = EK + EP = 1

2
ρ

x2∫
x1

η∫
−h0

|∇φ|2dz dx + ρg

x2∫
x1

η∫
−h0

(z + h0) dz dx,

where EK denotes the kinetic energy, and EP denotes the potential energy. To obtain
an approximation for the total energy that corresponds to the model (1.1), we use the
same scaling as before. The potential energy is given by

EP = ρgh2
0�

x2/�∫
x1/�

1+αη̃∫
0

z̃ d z̃ d x̃

= ρgh2
0�

2

x2/�∫
x1/�

{
1 + 2αη̃ + α2η̃2

}
dx̃ .

The kinetic energy is

EK = ρ

2

(
g�a

c0

)2

h0�

x2/�∫
x1/�

1+αη̃∫
0

{
1
�2 φ̃2

x̃ + 1
h2

0
φ̃2

z̃ )

}
dz̃ d x̃

= α2 ρgh2
0�

2

x2/�∫
x1/�

1+αη̃∫
0

{
φ̃2

x̃ + 1
β
φ̃2

z̃

}
dz̃ d x̃ .

By substituting the expression for φ̃ into the last integral, we see that the kinetic
energy is

EK = α2 ρgh2
0�

2

x2/�∫
x1/�

{
f̃ 2
x̃ + αη̃ f̃ 2

x̃ − β
3 f̃ x̃ f̃ x̃ x̃ x̃ + β

3 f̃ 2
x̃ x̃ + O(α2, αβ, β2)

}
dx̃ .

Now recognizing f̃ x̃ as ṽ, using (3.2), and disregarding terms of order α3β and
α2β2 it appears that
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EK = α2 ρgh2
0�

2

x2/�∫
x1/�

{
w̃2 + αη̃w̃2 + β

3 w̃w̃x̃ x̃ + β
3 w̃2

x̃

}
dx̃ .

We now use the factor ρgh2
0� to nondimensionalize the energy. Then the total energy

is given in non-dimensional form by the expression

Ẽ = E

ρgh2
0�

= α2

2

x2/�∫
x1/�

{
w̃2 + αη̃w̃2 + β

3 w̃w̃xx + β
3 w̃2

x

}
dx̃

+1

2

x2/�∫
x1/�

{
1 + 2αη̃ + α2η̃2

}
dx̃ .

Examining the expression (2.4) for the energy in the shallow-water theory, it appears
that it contains terms of third-order. The inclusion of these terms can be explained
by our desire to compare the result with the conserved quantities associated to the
shallow-water system. Indeed, we see that in order to obtain the correct energy for the
shallow-water system in the limit of small β, we have to include terms of order up
to α3 in the energy formula. These higher-order corrections do not change the order
of accuracy of the energy integral, which is correct to second-order in α and β, but
they facilitate the comparison with the shallow-water theory. A somewhat different
approach to finding quantities such as M and E has been presented in [4].

In the preceding analysis, it was important to have knowledge of the approximate
fluid velocity below a given surface wave. Such an approach may also be used to study
the motion of individual particles in fluid flow associated to surface waves described
by equations of Boussinesq type [14]. Certain properties of the fluid flow below a
surface wave can also be understood in the context of the free-surface problem for the
full Euler equations which was recalled in the introduction. Some recent results on
fluid flow below steady surface waves can be found in [20,21,24,25,29,30].

4 Numerical study

The considerations presented in the previous section are now applied to the study of
an undular bore. After a brief glance at the qualitative properties of the approximation
provided here, i.e. the shape of the free surface, we will use the expressions for mass,
momentum and energy found in the previous section to gain an understanding of the
conservation properties of the undular bore, and in particular of the differences between
the shallow-water system (2.1) and the model system (1.1). First, let us fix ideas
regarding the expressions of mass, momentum and energy in the approximation which
yields the model system (1.1). While the formula for mass conservation is already
given in dimensional form, we note that the dimensional expressions for momentum
and energy found in the last section are
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M = ρ

x2∫
x1

{
(h0 + η)w + h3

0
6 wxx

}
dx, (4.1)

and

E = ρ

2

x2∫
x1

{
(h0 + η)w2 + g(h2

0 + 2h0η + η2) + h3
0

3 wwxx + h3
0

3 w2
x

}
dx, (4.2)

respectively. Recall that these integrals represent the momentum and energy contained
in a section of unit width of the fluid above the interval [x1, x2]. If the interval [x1, x2]
is large enough to contain the bore front as well as any disturbances propagating away
from the front, it is reasonable to assume that the values of the functions w and η

at the endpoints x1 and x2 have settled to the far-field conditions of the respective
uniform streams. In particular, this assumption encompasses zero spatial derivatives
for both η and w. Now it appears that an integration by parts will help reduce the
formula for E to the corresponding shallow-water energy as given in (2.4). Similar
considerations show that the momentum integral M will also reduce to the shallow-
water momentum, as written in (2.3). We are thus in the situation where instead of
η and u, we use η and w as the primary dependent variables of the flow. However,
the correct expressions for the mass, momentum and energy are the same as in the
shallow-water theory. To distinguish between the different variables, we adopt the
notation E(η, u) for the energy associated to the shallow-water system, and E(η,w)

for the energy associated to the dispersive system (1.1). A similar convention will
be in force for the mass integral m and the momentum integral M . Next note that in
the case where the far-field conditions are the same as the boundary conditions and
include zero spatial derivatives for both η and w, the mass flux associated with the
system (1.1) reduces to the expression of the shallow-water theory given in (2.2). Thus
the first equation in (1.1) may be used to find that

dm(η,w)

dt
= −ρ

x2∫
x1

{h0wx + (wη)x } dx

= ρw(x1, t)(h0 + η(x1, t)) − ρw(x2, t)(h0 + η(x2, t)),

so that mass is exactly conserved in the approximation of (1.1) if the boundary con-
ditions are appropriate. Similarly, momentum conservation follows from using both
equations in (1.1) and zero Neumann conditions.

d M(η,w)

dt
= −ρ

x2∫
x1

{2h0wwx + gh0ηx + gηηx + (wη)x + wηwx } dx

= ρh0

[
w2(x1, t)−w2(x2, t)

]
+ ρ

2
g

[
(η(x1, t)+h0)

2−(η(x2, t)+h0)
2
]

+ ρη(x1, t)w2(x1, t) − ρη(x2, t)w2(x2, t),
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and the right-hand side is recognized as the net momentum flux in the shallow-water
theory. In order to find the influx and outflux of energy into and out of the control
volume, we also use the previous assumption that the interval [x1, x2] is sufficiently
large, and that the flux is given by the expression (2.5) associated to the shallow-water
system. As it appears that energy conservation is not exact in the framework of (1.1),
we now embark upon a quantitative study of energy conservation in an undular bore
in the framework of the system (1.1).

There are a number of ways to induce a bore in an experimental setting. One
may impose a discharge onto a fluid at rest, or on a previously established uniform
background flow which may be directed either in the direction of propagation of the
bore front, or in the opposite direction [6,27,33]. As mentioned before, and indicated in
Fig. 1, we may choose a reference frame in which the transition is from the undisturbed
fluid level h0 upstream of the bore to a prescribed fluid level h0 +a0 downstream of the
bore. If also the upstream flow u2 is given then the shallow-water theory may be used
to obtain approximate values for the downstream velocity u1 and the bore velocity U .

Since most configurations can be described in terms of the nondimensional number
α = a0

h0
which indicates the strength of the bore, we perform all experiments with a

depth h0 = 1 m, and vary only the amplitude a0. The initial position of the bore front
is considered to be at the origin, and we take x1 << 0, and x2 >> 0, so that the
boundary conditions can be chosen to be the same as the far field conditions, viz

η(x1, t) = a0, η(x2, t) = 0,

w(x1, t) = u1, w(x2, t) = u2,

where u1 is related to a0 and the undisturbed depth h0 by formula (2.7). In addition,
two Neumann conditions are required since the equations contain terms with third-
order spatial derivatives. Since x1 << 0 and x2 >> 0, it can be assumed that all
first spatial derivatives are in fact zero at the boundaries. The initial shape of the free
surface η0(x) and the initial velocity w0(x) are given by

η0(x) = 1
2 a0

(
1 − tanh(kx)

)
,

w0(x) = u2 + 1
2 (u1 − u2)

(
1 − tanh(kx)

)
.

The modeling parameter k denotes the steepness of the initial bore slope. For a
large enough interval, the initial conditions match the boundary conditions to machine
precision. The numerical treatment is based on a finite-difference approximation, and
will be detailed in the appendix. As will be shown in the appendix, the algorithm
converges with the expected 2-nd order convergence rate.

A typical wave profile and the corresponding velocity distribution are shown in
Fig. 2. As expected, the dispersive terms contribute to creating a wavetrain following
the bore front. Here it is interesting to note that if the linear wave equation were to be
used, one would need the relation w ∼ c0

g η, while in the one-directional (KdV) theory,

the relation w = g
c0

η − 1
4

g
c0h0

η2 is required. Indeed, both relations are approximately
satisfied for very small values of the ratio a0

h0
. However, as Fig. 3 shows, the deviation
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Fig. 2 Snapshot of the development of an undular bore at time t = 15s, with initial amplitude a0 = 0.1m,
and undisturbed depth h0 = 1 m. a free surface η, b flow velocity w

Fig. 3 Comparison of the left
boundary condition for
undisturbed depth h0 = 1 m and
upstream flow velocity u2 = 0.
The dots represent u1, given by
the shallow-water theory as in
(2.7). The dashed line represents
the first-order relation w = g

c0
η,

while the solid line represents
the second-order relation
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between the present theory and the KdV theory grows significantly with increasing
amplitude.

Let us now turn to the study of conservation properties of the dispersive system
(1.1). As shown in Fig. 4, the energy loss experienced by the dispersive system is much
smaller than the energy loss in the shallow-water system, albeit somewhat dependent
on the model parameter k. Moreover, apart from a slight build-up of inaccuracy over
time, we observe that the energy loss is nearly constant over time, so that we may
summarize the energy loss for different bore strengths using a table. Table 1 shows the
calculation of the energy rates for undular bores with different initial amplitudes a0. As
the amplitude of the undular bore increases, the percentage of the energy loss in the
shallow-water approximation increases. In principle, the shallow-water approxima-
tion is not restricted to small-amplitude waves. However, even though the dispersive
theory is restricted to small-amplitude waves, it gives much better results, even when
applied outside of its range of applicability. Indeed, monitoring the energy as given
by the integral (4.2) shows that the rate of change of E(η,w) is exactly equal to the
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Fig. 4 Comparison of the rate of change of energy in the dispersive and the shallow-water system, versus
the net energy change at the boundaries. The initial bore amplitude is a0 = 0.15 m and the undisturbed
depth is h0 = 1 m. a k = 0.2, b k = 0.7

Table 1 Column 1 shows the non-dimensional bore amplitude α = a0/h0

α F1 − F2(kg m2/s3) d
dt E(η, w)(kg m2/s3) d

dt E(η, u)(kg m2/s3) Difference (%)

0.1 3.64 3.64 3.63 0.2

0.2 8.58 8.58 8.53 0.7

0.3 15.07 15.08 14.88 1.3

0.4 23.35 23.36 22.90 1.9

0.5 33.69 33.69 32.81 2.6

0.6 46.35 46.35 44.86 3.2

0.7 61.63 61.63 59.29 3.8

The net energy flux is shown in Column 2. Columns 3 and 4 display the rate of change in the energy of
the dispersive theory and the shallow-water theory, respectively. Column 5 shows the percentage difference
between the net energy flux and the rate of change of the shallow-water energy. The dispersive theory gives
the correct result to within less than 0.1 % error

net influx of energy into the interval. It appears that the energy loss incurred by the
shallow-water approximation is successfully captured by the dispersive system, and
no dissipation mechanism is necessary to account for energy loss predicted by the
shallow-water theory. Our findings effectively confirm the expectation that the excess
energy is radiated by the continuous creation of waves.

Similar results obtain in cases where the bore is superimposed onto a background
flow. We just briefly present the results of a computation where u2 = −2 m/s. As can
be seen in Table 2, the energy loss predicted by the shallow-water system is by far
greater in relative terms than in the previous case where the bore was propagating into
a fluid at rest. Again, the energy loss in the dispersive system is negligible, showing
that the dispersive approximation successfully captures the energy loss also when a
background flow is present.

Finally, Table 3 presents a comparison of net momentum flux, and bore front velocity
in the shallow-water and dispersive theories in the case of a bore propagating into an
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Table 2 Comparison of the change in energy in the shallow-water and dispersive systems when a strong
backflow u2 = −2 m/s is present

α F1 − F2(kg m2/s3) d
dt E(η, w)(kg m2/s3) d

dt E(η, u)(kg m2/s3) Difference (%)

0.1 0.836 0.836 0.829 0.84

0.2 2.170 2.187 2.128 1.93

0.3 4.200 4.201 4.005 4.87

0.4 7.036 7.034 6.582 6.48

0.5 10.86 10.87 9.992 7.92

0.6 15.87 15.88 14.38 9.38

0.7 22.26 22.27 19.92 10.51

Column 1 shows the non-dimensional bore amplitude α = a0/h0. The net energy flux is shown in Column 2.
Columns 3 and 4 display the rate of change in the energy of the dispersive theory and the shallow-water
theory, respectively. Column 5 shows the percentage difference between the net energy flux and the rate of
change of the shallow-water energy. The dispersive theory gives the correct result to within less than 0.3 %
error

Table 3 Comparison of momentum change and bore velocities in the case when u2 = 0

α Net
momentum
flux (kg m/s2)

d
dt M(η, w)

(kg m/s2)

d
dt M(η, u)

(kgm/s2)

Udisp (m/s) U (m/s) u1 (m/s)

0.1 1.13 1.13 1.13 3.31 3.36 0.31

0.2 2.59 2.59 2.59 3.54 3.60 0.60

0.3 4.40 4.40 4.40 3.73 3.82 0.88

0.4 6.59 6.59 6.59 3.95 4.07 1.16

0.5 9.19 9.19 9.19 4.19 4.29 1.43

0.6 12.23 12.23 12.23 4.37 4.52 1.69

0.7 15.74 15.74 15.74 4.60 4.74 1.95

The net momentum flux is shown in Column 2. The change in momentum in the dispersive system and in
the shallow-water system are shown in Columns 3 and 4 respectively. Columns 5 and 6 show the respective
velocities Udisp and U of the bore front in the dispersive and shallow-water theory. Column 7 shows the
far-field velocity u1 of the uniform stream on the left

undisturbed fluid. As can be seen, the values for the change in momentum agree with
the net influx of momentum in both the shallow-water, and the dispersive theory. Since
we know that momentum is conserved exactly by the Eq. (1.1) the agreement here is
another check on the validity of the numerical discretization. The velocity Udisp is
obtained by following the inflection point at the bore front, and computing its velocity
numerically. Some variations are visible in the bore front velocity, indicating that the
bore front has a slightly smaller velocity in the dispersive theory.

Acknowledgments This work was supported in part by the Research Council of Norway. The authors
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Appendix A: The numerical scheme

The numerical discretization used to find approximate solutions of the system (1.1)
is briefly presented. First, it should be noted that mathematical aspects of the system
(1.1) have been studied in [9,11,28]. In these works, a theory of well posedness for
the Cauchy problem and various boundary-value problems has been developed. In
[10], a finite-element method for the periodic problem was constructed. Here, we
consider a finite-difference method. We begin by writing ζ(x, t) = η(x, t) − η0(x),
and ξ(x, t) = w(x, t) − w0(x), so that the functions ζ and ξ satisfy homogeneous
Dirichlet boundary conditions. Next, we use the transformation

(
u
v

)
=

⎛
⎜⎜⎜⎜⎝

4

√
g

h0

4

√
h0

g

4

√
g

h0
− 4

√
h0

g

⎞
⎟⎟⎟⎟⎠

(
ζ

ξ

)
(5.1)

to obtain a system which is diagonal in the highest derivative. The new variables u
and v satisfy the equations

ut + 1

6
c0h2

0uxxx = −
(

4

√
g

h0

∂x (u − v)

2
+ w′

0

) (
u + 4

√
h0

g
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√
g

h0
η0 + 4

√
g

h0
h0

)

−
(

4

√
h0

g

∂x (u + v)

2
+ η′

0

)(√
g

h0

u − v

2
+ 4

√
g

h0
w0 + 4

√
h0

g
g

)

− 4

√
h0

g

gh2
0

6
η′′′

0 − 4

√
g

h0

h3
0

6
w′′′

0

≡ λu(u, v, ∂x ),

vt − 1

6
c0h2

0vxxx =
(

4

√
g

h0

∂x (u − v)

2
+ w′
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) (
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√
h0

g
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√
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h0
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−
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6
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0

≡ λv(u, v, ∂x ).

The functions u and v also satisfy homogeneous Dirichlet boundary conditions
at the endpoints x1 and x2 of the computational domain. In addition, we require the
Neumann conditions ux (x2, t) = 0 and vx (x1, t) = 0. The first and third spatial
derivatives are approximated by the matrices DN ,1 and Du

N ,3, Dv
N ,3, respectively.

The matrix DN ,1 arises from a standard finite-difference approximation of the first
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derivative. The matrix Du
N ,3 is given by

Du
N ,3 = 1

2(δx)3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 −12 6 −1

2 0 −2 1

−1 2 0 −2 1

. . .
. . .

. . .
. . .

. . .

−1 2 0 −2 1

−1 2 0 −2

−1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.2)

This matrix arises from the use of one-sided Taylor approximations on the left side
of the domain, since only one boundary conditions is required there. Since a Neumann
condition is given on the right side of the domain, a simpler pattern is seen in the right
lower half of the matrix. Similar considerations are applied to construct Dv

N ,3.
The system of ordinary differential equations resulting from the spatial discretiza-

tion is integrated with a combined Crank-Nicholson Adams-Bashforth method. The
linear terms are treated with a Crank-Nicholson method, while the nonlinear terms are
treated using an Adams-Bashforth method. This combination of time discretizations
is explicit, but treats the highest-order spatial derivatives implicitly. Using the nota-
tion U m

N to denote the N -vector approximating u(·, m δt) at the m-th time step, and
respectively for V m

N , the equations to be solved at the m-th time step are

U m+1
N = (I + c0h2

0
δt
12 Du

N ,3)
−1[(I − c0h2

0
δt
12 Du

N ,3)U
m
N

+ δt
2 {3λu(U m

N , V m
N , DN ,1) − λu(U m−1

N , V m−1
N , DN ,1)}]

V m+1
N = (I − c0h2

0
δt
12 Dv

N ,3)
−1[(I + c0h2

0
δt
12 Dv

N ,3)V m
N

+ δt
2 {3λv(U

m
N , V m

N , DN ,1) − λv(U
m−1
N , V m−1

N , DN ,1)}]

As two previous time steps are required to compute the next time step, the very
first time step is done using a simple forward Euler method. The Euler method is
locally of second order, and a single time step does not lead to instability problems.
In Table 4, a convergence study is presented, using an exact solution found in [19]. In
non-dimensional variables, where both g = 1 and h0 = 1 are set to unity, this solution
is given by

η(x, t) = −6 + κ

12
+ κ

4
sech2

(
1

2

√
κ(x + x0 − ct)

)
,

w(x, t) = ∓√
2(6 + κ) + 12c

12
± κ

2
√

2
sech2

(
1

2

√
κ(x + x0 − ct)

)
, (5.3)

for positive κ and c. This exact traveling wave is integrated in time, and it can be
seen that second-order convergence is obtained for both the spatial and the temporal



364 A. Ali, H. Kalisch

Table 4 Convergence of time and space discretization

δt L2-error L2-ratio n L2-error Ratio

2−3 4.53e−03 3.89 3 7.95e−05 3.99

2−4 1.16e−03 3.89 4 1.99e−05 4.00

2−5 2.91e−04 3.96 5 4.95e−06 4.01

2−6 7.22e−05 4.08 6 1.22e−06 4.04

2−7 1.64e−05 4.39 7 2.94e−07 4.17

2−8 4.46e−06 3.67 8 6.45e−08 4.55

The spatial domain is [−50, 50]. In the first three columns, the grid size δx = 0.01 is fixed, and the error
is measured at time t = 1. In the last three columns, the time step δt = 0.001 is fixed, and the error is
measured at time t = 1. The number of grid points N is given by N = 100 × 2n

Fig. 5 Plots of η of the exact
traveling wave defined in (A-3)
with κ = 1

2 and c = 1, shown at
time t = 10. The computed
profile was obtained with a
resolution δx = 0.01 and
δt = 0.01
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discretization. Figure 5 shows both the initial profile η(x, 0) and the computed profile
η(x, t) at t = 10.
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