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In this paper an exponential convergence rate for a spectral projection of the periodic ini-
tial-value problem for the generalized KdV equation is proved. Based on this convergence
result, a method for determining the radius of analyticity of solutions of the generalized
KdV equation is derived. Results from the new method and a similar method are compared.
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1. Introduction

Consideration is given to real-valued solutions of the generalized Korteweg–de Vries (gKdV) equation

otuþ
1
p

oxðupÞ þ o3
x u ¼ 0; ð1:1Þ

where p denotes an integer greater than or equal to 2. The cases p ¼ 2 and p ¼ 3 are especially pertinent when it comes to
applications, as these equations appear as models for surface water waves, and are also used in a variety of other modeling
situations [9,11].

Much of the recent work on (1.1) has focused on low-regularity solutions [6,8,19]. However, there have also been studies
aimed at understanding solutions with high regularity. It is known that (1.1) admits real-analytic solutions for all p P 2
[5,14,18]. In particular, if initial data are given which extend analytically to a strip about the real axis and satisfy some mild
integrability conditions, then it may be shown that the solution can also be extended analytically to a possibly smaller strip
as long as the solution exists. The width of this strip is commonly called the radius of analyticity. Precise estimates for the
radius of analyticity have been given in [14].

Here we explore connections between the radius of analyticity and convergence properties of spectral projections of (1.1).
For the gKdV equation with quadratic nonlinearity, the convergence of spectral projections was proved by Maday and Quar-
teroni in [20]. In particular, they showed that for smooth solutions uðx; tÞ so-called spectral convergence is achieved. That is,
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for the difference between a smooth solution u and the spectral approximation uN with N Fourier modes on some time inter-
val ½0; T�, the estimate

sup
t2½0;T�

uð�; tÞ � uNð�; tÞk k 6 KT N�m ð1:2Þ

holds for any m.
In the case p ¼ 2, it was shown in [2,15] that the convergence rate is actually exponential if u is analytic in a strip about

the real axis. In the present paper, we generalize this result to any p P 2. Thus if u denotes a real-valued solution of (1.1)
which is analytic on a strip of width 2r about the real axis, and uN denotes the solution of a (semi-discrete) Fourier–Galerkin
approximation of (1.1) on a time interval ½0; T�, then we prove the estimate

sup
t2½0;T�

uð�; tÞ � uNð�; tÞk k 6 KN e�rN; ð1:3Þ

for some positive constant K. To illustrate the significance of the improvement of the exponential convergence estimate (1.3)
over the standard spectral estimate (1.2), a smooth but non-analytic solution has to be found. This is not in general easy (cf.
[13]). Here, we use the inhomogeneous KdV equation

otuþ uoxuþ o3
x u ¼ f :

For an appropriate choice of f, this equation has solutions known in exact form. First, the function uðx; tÞ ¼ e
� 1

sin2 ðx�tÞ is used as
the exact solution. Note that this function is smooth, but not real-analytic. The values shown as boxes in Fig. 1 are the L2-
error between the exact solution u and the computed approximation uN . For this function, spectral convergence is achieved.
Next, we use the function uðx; tÞ ¼ 1

1þsin2ðx�tÞ
which is analytic for complex values of x with imaginary part no larger than p=2.

The resulting L2-errors are shown as circles in Fig. 1. Finally, convergence of a finite-difference discretization of the analytic
solution is indicated with diamonds. From Fig. 1, it strikingly appears that the advantage of traditional spectral convergence
over the finite-difference method pales in comparison with the exponential convergence which is achieved if analytic solu-
tions are approximated. Thus with a view towards computational efficiency, it can be important to have available the expo-
nential convergence estimate proved in this paper. Our work is organized as follows. In the remainder of the introduction,
relevant mathematical notation and some auxiliary estimates are established. Then, in Section 2, the spectral projection is
defined and the exponential convergence estimate proved. Some computational issues and a method for estimating r are
presented in Section 3. The technique under review is also compared to a method advocated by Sulem, Sulem and Frisch
[23]. Both methods are then used to find r as a function of time for general initial data in Section 4. Finally, a numerical
experiment is set up to see how r behaves in time for a solution which experiences blow-up in finite time.

The results in this article hold for 2p-periodic real-valued solutions of (1.1) which are real analytic functions in the spatial
variable x. To quantify the domain of analyticity, the class of periodic analytic Gevrey spaces are introduced. These are given
by the norm

fk k2
Gr
¼
X
k2Z

e2r
ffiffiffiffiffiffiffiffiffiffi
1þjkj2
p

f̂ ðkÞ
��� ���2;

for some r > 0. Here f̂ ðkÞ are the Fourier coefficients of a 2p periodic function f. To enforce that these functions restrict to

real-valued functions on the real line, the relation f̂ ð�kÞ ¼ f̂ ðkÞ is used for the Fourier coefficients.
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Fig. 1. It appears that the exponential convergence rate which holds for analytic solutions is more advantageous than both the traditional spectral
convergence and the algebraic convergence of a finite-difference scheme.
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The usual periodic Sobolev spaces are given by the norm

fk k2
Hs ¼

X
k2Z
ð1þ jkj2Þs f̂ ðkÞ

��� ���2;
and for s ¼ 0, the space H0ð0;2pÞ ¼ L2ð0;2pÞ appears. We will also have occasion to consider the mixed Sobolev-Gevrey
norms

fk kGr;s
¼
X
k2Z
ð1þ jkj2Þs e2r

ffiffiffiffiffiffiffiffiffiffi
1þjkj2
p

f̂ ðkÞ
��� ���2:

The L2-norm will for simplicity be denoted by k�k, and the inner product on this space is given by

ðf ; gÞ ¼
Z 2p

0
f ðxÞgðxÞdx:

Finally, we will need the Sobolev inequality

sup
x
jf ðxÞj 6 C fk kH1 ; ð1:4Þ

for functions f 2 H1. In order to define the spectral projection, a finite dimensional subspace SN of L2ð0;2pÞ is introduced. It is
defined as

SN ¼ spanC eikx
� ��k 2 Z;�N 6 k 6 N

�
:

The operator PN denotes the orthogonal projection from L2ð0;2pÞ onto SN , and is defined by

PNf ðxÞ ¼
X

�N6k6N

eikxf̂ ðkÞ:

The operator PN may also be characterized by the property that, for any f 2 L2ð0;2pÞ; PNf is the unique element in SN such
that

ðPNf ;/Þ ¼ ðf ;/Þ; ð1:5Þ

for all / 2 SN . Furthermore, for r P 0 and r > 0, the estimate

f � PNfk kHr 6 Nre�rN fk kGr
; ð1:6Þ

is obtained by a straightforward calculation. Finally, note the inverse inequality (see [7])

om
x /

�� �� 6 Nm /k k; ð1:7Þ

which holds for integers m > 0 and functions / 2 SN .

2. The spectral projection

To obtain a well posed problem, Eq. (1.1) has to be supplemented with appropriate boundary and initial conditions. For
the numerical approximation, the problem will be studied on a finite interval with periodic boundary conditions. The peri-
odic initial value problem for (1.1) is

otuþ 1
p oxðupÞ þ o3

x u ¼ 0; x 2 ½0;2p�; t P 0;

uð0; tÞ ¼ uð2p; tÞ; t P 0;
uðx;0Þ ¼ u0ðxÞ;

8><>: ð2:1Þ

In the following, it will be assumed that a solution of this problem exists on some time interval ½0; T� and with a certain
amount of spatial regularity. In particular, we suppose that a solution exists in the space Cð½0; T�;GrÞ for some
r > 0 and T > 0. For analytic initial data, there are a number of results guaranteeing the existence of solutions in the Gevrey
space Gr [4,17,18]. In general, for p < 5, the well posedness is global in time, while for p P 5, the solution may only exist for a
short time. Since the existence of a solution in the Sobolev spaces Hs is well understood [8], the critical question is only the
Gevrey regularity. The following theorem was proved in [17].

Theorem 2.1. Suppose that u 2 Cð½0; T�;HsÞ is a solution of (2.1) with p ¼ 2, with initial data u0 2 Gr0 ;s for some
r0 > 0 and s > 5

2. Then uð�; tÞ extends uniquely to a function in GrðtÞ;s with rðtÞ given by

rðtÞ ¼ r0e�ct u0k kGr0 ;s e�ct3=2
;

for some constant c independent of t. Moreover, for any s 2 ð0; T�, we have u 2 Cð½0; s�;GrðsÞ;sÞ, and the estimate

uð�; tÞk kGrðsÞ;s
6 u0k kGr0 ;s

þ c
ffiffi
t
p
;

holds for another constant c independent of t.

M. Bjørkavåg, H. Kalisch / Commun Nonlinear Sci Numer Simulat 15 (2010) 869–880 871



Author's personal copy

A similar theorem can be proved for p ¼ 3 and p ¼ 4, using the estimates in [4]. For p P 5, a similar result is also available
if it is assumed that the solution does not blow up on the time interval ½0; T�. Finally, note that we have the estimate

ku0kGr�e;s
6 cs;eku0kGr

for any e > 0 and any r > 0 and s > 0 [5]. This shows that the Sobolev weight in the Gs;r-norm is inconsequential when con-
sidering the radius of analyticity.

The Galerkin approximation to (2.1) is given by a function uN from ½0; T� to SN satisfying

otuN þ 1
p oxðup

NÞ þ o3
x uN ;/

� �
¼ 0; t 2 ½0; T�;

uNðx;0Þ ¼ PNu0ðxÞ;

(
ð2:2Þ

for all / 2 SN . Since for each t;uNð�; tÞ 2 SN , the approximation uN has the form

uNðx; tÞ ¼
XN

k¼�N

ûNðk; tÞeikx;

where ûNðk; tÞ are the Fourier coefficients of uNð�; tÞ. In particular, we have

uNðx;0Þ ¼
XN

k¼�N

û0ðkÞeikx: ð2:3Þ

Short time existence of a maximal solution of (2.2) is proved using the contraction mapping principle, and the solution is
unique on its maximal interval of definition, ½0; tm

N Þ, where tm
N is possibly equal to T. It can be seen that this solution is

real-valued as follows. Taking the complex conjugate of each term in (2.2), it appears that uN is a solution of (2.2) if uN is.
Eq. (2.3) shows that the initial data uNð�;0Þ is real if u0 is real-valued. Since the solution uN is unique, we have that uN ¼ uN .

The main result in this section is that the approximation uN converges exponentially fast towards the solution u of (2.1)
under certain assumptions on the regularity of this solution.

Theorem 2.2. Suppose a solution u of (2.1) exists in the space Cð½0; T�;GrÞ for some r > 0 and T > 0. Then, for N big enough,
there exists a unique solution uN of (2.2). Moreover, there exists a constant K such that

sup
t2½0;T�

uð�; tÞ � uNð�; tÞk k 6 KNe�rN:

Note that from the assumptions of Theorem 2.2 there exists constants j and k such that

sup
t2½0;T�

uð�; tÞk kGr
6 j; ð2:4Þ

and
sup
t2½0;T�

uð�; tÞk kH2 6 k: ð2:5Þ

Now a proof of convergence of solutions of the semi-discrete equation to a solution of (2.1) could proceed by combining a
local convergence result with a stability result for some Sobolev norm. However, as it turns out, in order to prove the local
convergence estimate in the following lemma, one needs stability of the H2-norm of the discrete solution. For the cases
p ¼ 2 and p ¼ 3, an infinite number of conserved integrals exist, and one might think to use discrete versions of these inte-
grals in order to obtain stability of the H2-norm. For p ¼ 2, such an analysis has been carried out in [20]. However, for p > 3,
no such conserved integrals exist, and one must devise an alternative approach. Here, we use a device which was already
implicit in the work [20], and which has been used in [16]. Essentially, the exponential convergence rate is exploited to avoid
the need of a stability result. First, let us prove local-in-time convergence under the assumption of stability.

Lemma 2.3. Suppose that a solution uN of (2.2) exists on the time interval ½0; t�N � and that supt2½0;t�N �
uNð�; tÞk kH2 6 2k. Then the

error estimate

sup
t2½0;t�N �

uð�; tÞ � uNð�; tÞk k 6 KN e�rN

holds for some K, which only depends on t�N, and j and k as defined in (2.4) and (2.5).

Proof. To prove the local error estimate, consider the function h ¼ PNu� uN 2 SN as the test function in (2.2). Apply the pro-
jection operator PN to (2.1), and subtract the spectral projection (2.2), to get

oth;hð Þ þ 1
p

oxPNðupÞ � oxðup
NÞ;h

	 

þ ðo3

x h; hÞ ¼ 0:

Since the third derivative operator is skew-symmetric, and all functions are real-valued, the last term is zero. Then the equa-
tion can be rewritten as
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p
2

d
dt

hk k2 ¼ PNðupÞ � up;hxð Þ þ up � ðPNuÞp; hx
	 


þ ðPNuÞp � up
N;hx

	 

:

It follows from (1.5) that the first term appearing on the right-hand side is zero, since PN is the orthogonal projection onto SN .
Therefore, for general p, the equation

p
2

d
dt

hk k2 ¼ up � ðPNuÞp;hx
	 


þ ðPNuÞp � up
N ;hx

	 

: ð2:6Þ

appears. For the sake of clarity, we will now treat the special case p ¼ 4. The proof is easily modified to cover all other values
of p. When p ¼ 4 the first term in (2.6) can be written as

oxðu4 � ðPNuÞ4Þ;h
� ���� ��� 6 sup

x
jðuþ PNuÞðu2 þ ðPNuÞ2Þj oxðu� PNuÞk k hk k þ sup

x
jðu2 þ ðPNuÞ2Þoxðuþ PNuÞj u� PNuk k hk k

þ sup
x
jðuþ PNuÞoxðu2 þ ðPNuÞ2Þj u� PNuk k hk k:

From the Sobolev inequality (1.4) and (1.6), the estimate

oxðu4 � ðPNuÞ4Þ;h
� ���� ��� 6 4C3 hk k uk k3

H1 u� PNuk kH1 þ 3 uk k3
H2 u� PNuk k

� �
6 16C3k3N e�rN hk k uk kGr

is derived. After one integration by parts, it is seen that the second term in (2.6) is bounded by

jððPNuÞ4 � u4
N;hxÞ 6 sup

x
joxððPNuþ uNÞððPNuÞ2 þ u2

NÞÞ
���� ����12 hk k2

:

Again, by employing (1.4) and (1.6), the estimate

jððPNuÞ4 � u4
N;hxÞj 6

C3

2
hk k2 PNuþ uNk kH2 PNuk k2

H1 þ uNk k2
H1

� �
þ C3

2
hk k2 PNuþ uNk kH1 PNuk k2

H2 þ uNk k2
H2

� �
6

45
2

C3k3 hk k2

appears. Adding the contributions then gives

d
dt

hk k 6 4C3k3jNe�rN þ 45
8

C3k3 hk k:

Using Gronwall’s lemma, gives

hk k 6 4C3k3jt�Ne45C3k3t�N=8Ne�rN þ hð�;0Þk ke45C3k3t�N=8:

From the fact that hð�;0Þ ¼ 0 and using the triangle inequality, the following estimate appears

u� uNk k 6 u� PNuk k þ hk k 6 KNe�rN ;

where

K ¼ jþ 4C3k3jt�Ne45C3k3t�N=8: ð2:7Þ

Taking the supremum over t concludes the proof of the lemma. h

Lemma 2.3 provides an estimate for the L2-norm of the error. However, in order to extend the previous local estimate to
the time interval ½0; T�, we need to know that the H2-norm of uN is bounded. The first step to achieving such a bound is to
relate Lemma 2.3 to an estimate for the H2-norm of the error.

Lemma 2.4. Suppose that a solution uN of (2.2) exists on the time interval ½0; t�N� and with supt2½0;t�N �
uð�; tÞk kH2 6 2k. Then the error

estimate

sup
t2½0;t�N �

uð�; tÞ � uNð�; tÞk kH2 6 KN3 e�rN

holds for some K which only depends on t�N, and on j and k as defined in (2.4) and (2.5).

This lemma is deduced from the triangle inequality and the inverse inequality (1.7), after using the results from Lemma
2.3.

Proof of Theorem 2.2. The proof will be achieved if the time t�N , which has not been specified in Lemma 2.3, can be shown to
be equal to T. First note that the constant K appearing in Lemmas 2.3 and 2.4 can be made independent of t�N by choosing T
instead of t�N in the definition of K in (2.7). Now according to the statement of Lemma 2.3, t�N should be defined as the largest
time in ½0; T� for which the H2-norm of uN is uniformly bounded by 2k. That is,

t�N ¼ sup t 2 ½0; T�j for all t0 6 t; uð�; t0Þk kH2 6 2k
� �

:
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It is clear that t�N is smaller than the maximal time of existence tm
N . And also, from the definition, that it is either equal to T or

smaller than T. In the latter case, since the H2-norm of uN is a continuous function in time, it follows that uNð�; t�NÞ
�� ��

H2 ¼ 2k.
And also, since uNð�;0Þk kH2 ¼ PNuð�;0Þk kH2 , it follows that

uNð�;0Þk kH2 6 uð�;0Þk kH2 6 k;

and therefore t�N > 0 for all N.
While it is not possible that t�N ¼ T for all N, we will now aim to show the existence of a N�, such that

t�N ¼ T; for all N P N�;

in which case the supremum in Lemma 2.3 extends to the interval ½0; T�. Suppose then that t�N < T. Use the triangle inequality
to get

2k ¼ uNð�; t�NÞ
�� ��

H2 6 uNð�; t�NÞ � uð�; t�NÞ
�� ��

H2 þ uð�; t�NÞ
�� ��

H2 6 uNð�; t�NÞ � uð�; t�NÞ
�� ��

H2 þ k;

from the definition of k. Hence,

k 6 uð�; t�NÞ � uNð�; t�NÞ
�� ��

H2 :

By Lemma 2.4 it follows that

k 6 KN3e�rN;

or
k
K
6 N3e�rN :

So, from this it is clear that by choosing N large enough, the above inequality will not hold, and we must have
t�N ¼ T. h

3. Computational considerations

The purpose of this section is twofold. First, we want to use a known solution to confirm the results of the last section
concerning the rate of convergence of the spectral projection of (1.1). Secondly, we want to test and compare two numerical
methods for determining the radius of analyticity r of an unknown solution of (1.1). Since we use solitary waves on the infi-
nite line as exact solutions, it will be convenient to use the equation

otuþ
1
p

oxðupÞ þ 1
a3 o3

x u ¼ 0; ð3:1Þ

instead of (1.1). Note that if the equation is considered on the real line, then a can be taken to be equal to one, as it disappears
under the scaling vðx; tÞ ¼ a1=p�1uðx=a; tÞ. The significance of the parameter a in the periodic setting will become transparent
presently.

Recall that (3.1) has special solutions known as solitary waves which are given explicitly by

UpðxÞ ¼ A sec h
2

p�1 jaxð Þ where j ¼ ðp� 1Þ aAp�1

2pðpþ 1Þ

 !1=2

: ð3:2Þ

These solutions of (3.1) are given on the whole real line. But if a is sufficiently large, they may be considered as a good
approximation to solutions corresponding to periodic boundary conditions since the tails of these solutions decay exponen-
tially and are zero to machine precision within the computational domain. Note also that the solitary waves are members of
the space Gr over R so long as r < p

2ja. This can easily be seen from locating the pole closest to the real line for the hyperbolic
secant function.

We now turn to the problem of finding r from numerical computations. To illustrate the two numerical methods for
determining a possibly unknown radius of analyticity r, the case p ¼ 2 is used. For this solution the expression for the Fou-
rier transform (FT)

bU2ðkÞ ¼
Apk
2ja

csch
pk

2ja

� �
ð3:3Þ

will be found useful. One straightforward approach is to estimate r from the decay of the Fourier spectrum. This approach
has been used by Sulem, Sulem and Frisch in [23]. A slightly more involved approach is to use the convergence rate of the
numerical method to find r. The centerpiece of the analysis here is given by a robust way of computing the error committed
by the Galerkin projection. Thus for fixed N, we want to approximate the integralZ 2p

0
juðx; tÞ � uNðx; tÞj2 dx


 �1=2

:
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While the convergence estimate in the previous section was given in terms of this integral one must resort to a numerical
approximation of the above integral in practical computations. The approximation of the integral is often done on the grid
used to obtain the numerical solution. That is, using a resolution N corresponding to a grid spacing hN ¼ 2p

N , the L2-error, ED, is
usually defined as

E2
DðNÞ ¼ hN

XN

j¼1

juðxj; tÞ � uNðxj; tÞj2:

A problem with this definition is that both the error from the numerical method and the error from the approximation of the
integral enter into the formula. However, one really wants to remove (to machine precision) or keep constant the part of ED

which is not due to the numerical projection of the differential equation. One way to achieve this is the use of an alternative
definition of the L2-error EF , namely

E2
F ðNÞ ¼ hM

XM

j¼1

juðxj; tÞ � uM
N ðxj; tÞj2

where hM ¼ 2p
M , is constant for fixed M � N. For this to work, a way to find the discrete solution on the fine grid with M points,

uM
N ðxj; tÞ; j ¼ 1;2; . . . ;M, is required. Generally, an interpolation routine of at least the same order as the numerical method

has to be used. From the expansion coefficients ûNðk; tÞ, an expression for uM
N is easily found as

uM
N ðxj; tÞ ¼

XN

k¼�N

ûNðk; tÞeikxj ; j ¼ 1;2; . . . ;M:

While the difference between using ED and EF appears unimportant when validating the convergence of a numerical imple-
mentation, the second definition is by far superior in determining the radius of analyticity r from the convergence rate.

To illuminate the difference between using ED or EF , we will estimate r from the L2-errors for the case p ¼ 2 as mentioned
above. The estimates are based on the convergence results of the Galerkin projection and follows from assuming that the L2-
errors are of the form KN e�rN . A linear (in K and r) least squares problem is constructed from this assumed form as

log
ED=FðNÞ

N

� �
¼ logðKÞ þ ð�rÞN:

The resulting overdetermined system is solved for logðKÞ and r by a standard approach like QR-factorization or SVD. For
graphical illustration, estimates of r also follow from two consecutive L2-errors as

r ¼ logðED=FðN1Þ=ED=FðN2ÞÞ � logðN1=N2Þ
ðN2 � N1Þ

: ð3:4Þ

A plot of the L2-errors ED and EF divided by N after 10 time steps is given in Fig. 2 (left) for a ¼ 34:2 and j ¼ 0:5. With the
linear-log axes used here, these quantities should appear linear with slopes equal to r. Superimposed with a solid line in
Fig. 2 (left) is a curve with a slope equal to the theoretical value of r for comparison. It is seen that even though the magnitude
of the errors ED is smaller then EF , the slope for the latter is closer to the slope of the superimposed curve. This is evident in
Fig. 2 (right), where estimates of r based on ED and EF are plotted using (3.4) along with the theoretical value. The deviation
from the true value (solid line) is less then 0.1% for values of N greater then approximately 500 when the estimate of r is based
on EF . An estimation based on ED will typically give a deviation on the order of 10%, even for very large valued of N [2].
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The results for r above depend on our assumption of the special form of the L2-errors EFðNÞ. The form used above is sug-
gested by the convergence result in Theorem 2.2. However, the factor N could be of technical nature. Thus one might want to
assume an alternative form of the dependence of the L2-error on N. After some trial and error we have found a pattern for the
assumed forms giving the most accurate estimates of r in the special case of solitary wave solutions. These forms are sug-
gested by

EFðNÞ ¼ KN�
p�3
p�1 e�rN ð3:5Þ

for different values of p. In Table 1 we have summarized the results for p between 2 and 4. Along with the deviations between
the computed and true values of r, we have also recorded the sum of squares of residuals (SSR) in the different cases. The SSR
value is an indication on how well the assumed form matches the data, and we see that there is a correspondence between
this value and the deviation. The SSR value can thus be used as a tool when deciding between different alternative forms of
the dependence of the L2-error on N. An obvious form for the modulus of the large wavenumbers follows from the exact for-
mulation of bU2ðkÞ given in (3.3), namely

bU2ðkÞ � C
k

e
pk

2ja � e�
pk

2ja

¼ Cke�
pk

2ja
1

1� e�pk
ja

This shows that jûðkÞj � C ke�rk, for k large. More generally, as noted for instance in [1], the asymptotic behavior of solitary
waves for p P 2 is given by

bUpðkÞ � Cjkj�
p�3
p�1e�

pk
2ja

which matches the formula (3.5).
Coming back to the method described by Sulem et al., we again look at the exact solution (3.2) in the case p ¼ 2. The least

squares fit is then made between this assumed form and data for each value of N (for illustrative purposes, one value of N is
sufficient). Since it is the large wavenumber behavior which is of interest, the fit starts at some kminð> 0Þ. And to avoid that
the results is contaminated by round off errors, the fit ends at some kmax as explained in [23]. In Fig. 3 the results for this
method are shown. In Fig. 3 (left) we have plotted the modulus of the FT for the largest N ¼ 512 used. The dots mark the
range of wavenumbers used in the least squares fit. The estimates of r based on the FT are plotted in Fig. 3 (right) together

Table 1
The assumptions on the form of the L2-error is given on the top line of Table 1. The sum of squares of residuals (SSR) and the deviation (in %) from the
theoretical value is listed for different values of p in the columns. It is seen that the forms with the smallest SSR corresponds to the most accurate predictions of
r.

EðNÞ KNe�rN Ke�rN KN�1=3e�rN

p SSR Deviation SSR Deviation SSR Deviation

2 3:83� 10�15 0.13 1:09� 10�12 �4.76 2:01� 10�12 �6.39
3 2:60� 10�11 5.86 3:93� 10�21 �0.000016 3:09� 10�12 �1.95
4 1:96� 10�10 9.16 1:17� 10�11 2.23 5:14� 10�14 �0.07

0 50 100 150 200 250 300
10−8

10−6

10−4

10−2

100

102

k

|(F
T(

u)
)(k

)|

kmin=64

kmax=219

100 200 300 400 500 600
0.086

0.087

0.088

0.089

0.09

0.091

0.092

0.093

N

σ

Theoretical value
Based on: FT

Fig. 3. The left figure show the modulus of the Fourier transform after 10 time steps for N ¼ 512. The dots mark the range of wavenumbers used in the least
squares fit for this particular value of N. Least squares fits for different N have produced the estimates of r seen in the right figure. The solid line is the
theoretical value of r. Results are shown for a ¼ 34:2;j ¼ 0:5 and p ¼ 2.
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with the theoretical value. The results are very accurate, and the deviation from the true value is less then 0.002% for the
largest N.

The very accurate result for the latter method might be expected since an analytical expression for the FT of the solution is
known in closed form and the assumed form for this really captures the large wavenumber behavior very well. With N ¼ 512
the calculated SSR was approximately 5� 10�8. Furthermore, we have found that for different p the form of the modulus of
the FT follows the same pattern as the L2-errors for the special solitary wave solutions. Calculations as those leading to Table
1 for this second method, shows that the two different methods perform approximately equally well for p ¼ 3;4.

4. Radius of analyticity as a function of time

In the cases considered so far, the solutions do not change shape over time and, therefore, if the initial condition is a func-
tion in the space Gr, the solutions will remain in Gr for all time. Put another way, r is constant in time. As intimated in The-
orem 2.1, for general initial data, analytic in a strip in the complex plane, r might change with time. For the generalized KdV
equation, algebraic lower bounds of r have been proved in [5]. The estimates in [5] provide a lower bound for the decrease of
the radius of analyticity as a function of time. In particular, if p ¼ 2 or p ¼ 3, the estimates

rðtÞP Kt�12ðp�1Þ ð4:1Þ

hold true for some constant K, and for t > 1.
In the previous calculations, EFðNÞ was computed by comparing numerical and analytical solutions. For general initial

data, these errors must instead be obtained by comparison with a high resolution numerical solution. Because of the expo-
nential convergence rate this is not a serious drawback in practical terms. Runs done for the solitary waves after substituting
the analytical expressions with a high resolution numerical solution, gave the same results as above.

Since the numerical experiments described in this section require long time integrations with high accuracy, a fourth-or-
der time integration scheme is adapted to the problem. This scheme was proposed by De Frutos and Sanz-Serna in [12]. The
method is based on the second order implicit midpoint rule. One step of the method uses the midpoint rule three times in
succession, or in three stages, when advancing the solution in time. This method being implicit, it requires some iterations
when solving the non-linear term. The linear stability analysis in [12] shows that the method is unconditionally stable on the
whole imaginary axis. It is therefore well suited for integrating wave problems.

In order to compute r as a function of time, a high resolution (high wavenumbers resolved to machine precision) numer-
ical solution is calculated and stored at some given times. This is used as a reference when computing EFðNÞ for different
resolutions N. Estimates of r at the given times are then found as above. Estimates of r in time using the method by Sulem
et al. are obtained directly from the reference solution.

After experimenting with a wide set of initial data, it appeared that the decay rate (4.1) has not been achieved in any prac-
tical computation with the values p ¼ 2 or p ¼ 3. In fact, it appeared that all solutions were approaching a constant asymp-
totic value of r for large t. This observation appears to be related to the fact the solutions of (1.1) are known to be bounded
globally in time for p 6 4. Fig. 4 (left) shows a typical output when r is computed as a function of time. Although the curve
jumps a bit about from one time to the next, the average of the time series of r is approximately equal to r at time t ¼ 0. The
initial data used was a positive bell-shaped hump given by u0 ¼ 1=ð1þ tan h2ðaxÞÞ � 1=2, and in Fig. 4 (right) we have plotted
the solution at the time t ¼ 300.
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Fig. 4. The left figure shows r computed as a function of time. The average value of rðtÞ is approximately equal to rðt ¼ 0Þ for the initial data. The right
figure shows the solution at time t ¼ 300. Results are shown for a ¼ 6:37 and p ¼ 2.
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An altogether different picture emerged in the cases p P 5, where it is not known whether solutions are globally
bounded. For initial data which are large enough in a certain sense, the solution may experience blow-up in finite time. Such
a blow-up is characterized by a loss of regularity in the solution and a decrease of rðtÞ to zero. For the critical case p ¼ 5,
blow-up was suggested by asymptotic computations of Pelinovsky and Grimshaw [22], and indeed, blow-up has now been
proved by Martel and Merle [21]. For p P 5, there are numerical studies of Bona, Dougalis, Karakashian and McKinney [3],
indicating finite-time blow-up, and providing blow-up rates for certain norms. However, no proof of blow-up has been given
so far for the cases p > 5.

Here, an experiment is set up for the case p ¼ 6 in order to investigate how rðtÞ behaves up to around the time of blow-up
of the solution. The initial and final data are shown in Fig. 5 (left) and Fig. 5 (right), respectively. Both methods for computing
rðtÞ need a high resolution numerical solution. This is constructed as follows. A time step is chosen and the initial data are
integrated giving solutions at certain times. These solutions are stored and the H1-norms are calculated. Then, if the H1-norm
varies above a given tolerance from one time to the next, the time step is halved and the process repeated. The integration
stops after the time step has been halved a given number of times or after a given number of iterations are reached. Using
this reference solution the L2-errors EFðNÞ can be calculated. A plot of these and the modulus of the FT of the (reference) solu-
tion at four different times are shown in Fig. 6. One problem with the method based on EFðNÞ when the solution eventually
blows up, is that the numerical solutions with a moderate resolution N becomes unstable and breaks down before the actual
time of blow up. Therefore quite large number of modes N are needed to compute the L2-errors near this critical time. But at
early times such relatively high resolution solutions are as accurate (to machine precision) as the reference and gives no
information of the errors. Therefore, a wide range of resolutions are needed, and the solutions with low number of modes
are eventually dropped as they break down when calculating the L2-errors. This explains the graphs in Fig. 6 (left). These
issues do not appear for the method of Sulem et al. which appears to be best suited for this type of investigation.
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Fig. 5. The initial data (left) and the solution at t = 2.0062 close to the time of blow up (right). Results are shown for a ¼ 12:7.
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As can be seen in Fig. 7 (left), both methods show a rapid decay of rðtÞ at early times. This decay may be due to initial data
splitting up into a small-amplitude solitary wave and an unstable, waveform featuring a large spike. At later times it is seen
that rðtÞ decreases quite slowly, with the magnitude of rðtÞ somewhat larger for the method based on the FT. This difference
gets smaller as one approaches the time of blow-up. Some time before this happens, however, we again see that rðtÞ starts to
decrease quite rapidly. See Fig. 7 (right). This behavior seems intuitively appropriate for a solution featuring finite-time
blow-up. But the rðtÞ computed from EFðNÞ actually increases in the region close to the suspected blow-up time, indicating
that the method based on EFðNÞ is not as robust when very small values of rðtÞ are to be found.

In conclusion, it appears from our experiments that given initial data for equation (1.1) with p P 6, the outcome can be
divided into two cases. Either the solutions stay bounded, and rðtÞ is bounded below by an absolute constant, or the solution
blows up, and rðtÞ approaches zero. The first case resembles the behavior for p < 5, and generally occurs if the initial data are
small enough. In the latter case, the method of Sulem et al. for estimating rðtÞ appears to be more robust. However, to accu-
rately compute a solution featuring finite-time blow-up, it might be more advantageous to directly study the dynamics of the
poles of a solution of (1.1) in the complex plane. For p ¼ 2 and rðtÞP c > 0, such a study has been conducted in [10].

Acknowledgments

This paper was written while the second author was participating in the international research program on Nonlinear
Partial Differential Equations at the Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo dur-
ing the academic year 2008/2009. The authors wish to thank Jerry L. Bona and Zoran Grujić for enlightening conversations.
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