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Exponential convergence of a spectral projection of the KdV equation
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Abstract

It is shown that a spectral approximation of the Korteweg–de Vries equation converges exponentially fast to the true solution if the Fourier basis
is used and if the solution is analytic in a fixed strip about the real axis. Computations are carried out which show that the exponential convergence
rate can be achieved in practice.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this Letter, consideration is given to the convergence of
a spectral projection of the periodic Korteweg–de Vries (KdV)
equation

(1.1)∂tu + u∂xu + 1

a3
∂3
xu = 0,

where a is a positive real number. Evidently, for the KdV equa-
tion on the line R, a can be taken to be equal to 1, as it can
be scaled out using the scaling u(x, t) = 1

a
v(ax, t). However,

as we are considering the equation on the interval [0,2π] with
periodic boundary conditions, it will be convenient to leave a

unspecified.
The KdV equation has been useful as a model equation in

a variety of contexts, including the study of water waves, par-
ticle physics and flow in blood vessels [1–5], just to name a
few. The discovery by Zabusky and Kruskal of the elastic in-
teraction of solitary waves [6], and the subsequent formulation
of a solution algorithm by way of solving an inverse-scattering
problem [3,7], excited interest in the equation from both the
mathematical and physical point of view. Along with the non-
linear Schrödinger equation, the KdV equation has become a
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paradigm for nonlinear wave equations featuring competing
nonlinear and dispersive effects. Since the discovery by Cooley
and Tukey of a fast algorithm to compute the discrete Fourier
transform [8], spectral methods based on the fast Fourier trans-
form have become a popular choice for the spatial discretization
of nonlinear partial differential equations. In particular, in wave
propagation problems, spectral projection has been widely used
in connection with the Fourier basis.

The convergence of spectral projections of the KdV equa-
tion was proved by Maday and Quarteroni [9]. In particular, it
was shown that if the solution u(x, t) of (1.1) is smooth, then
spectral convergence is achieved. That is, if uN denotes the ap-
proximate solution with N grid points, then there is a constant
λT , such that

sup
t∈[0,T ]

∥∥u(·, t) − uN(·, t)∥∥ � λT N−m,

for any positive integer m. This estimate shows that the conver-
gence rate is higher than any algebraic rate. It was announced
in [10] that if the solution u is analytic in a strip about the real
axis, then the convergence rate is in fact exponential. Thus there
exist constants ΛT and σT , depending on T , such that

(1.2)sup
t∈[0,T ]

∥∥u(·, t) − uN(·, t)∥∥ � ΛT Ne−σT N .

In this Letter, a proof of this estimate will be given. Moreover,
a numerical study will be conducted to show that this result is
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Fig. 1. It appears that the exponential convergence rate which holds for analytic
solutions is more advantageous than the traditional spectral convergence which
holds for smooth, but not analytic solutions.

indeed achievable in practice. To indicate the significance of the
improvement, Fig. 1 shows the result of computing approximate
solutions of the inhomogeneous equation

∂tu + u∂xu + 1

a3
∂3
xu = f.

First, the function u(x, t) = e− sin2(x−t) is used as the exact so-
lution. Note that this function is smooth, but not analytic. The
values shown as boxes in Fig. 1 are the L2-error between the
exact solution u and the computed approximation uN . For this
function, spectral convergence is achieved. Next, we use the
function u(x, t) = 1

1+sin2(x−t)
which is analytic. The resulting

L2-errors are shown as circles in Fig. 1, and it appears that the
exponential convergence rate is by far superior to the spectral
convergence rate. It should be noted that exponential conver-
gence for spectral approximation schemes for evolution equa-
tions has been studied earlier. The exponential convergence of
Galerkin schemes for parabolic equations has been previously
advocated by Ferrari and Titi [11] and proved for the Ginsburg–
Landau equation by Doelman, Jones, Margolin and Titi [12,13].
There have not been any previous results in this direction for
dispersive equations like the KdV equation. However, Matthies
and Scheel have used the analytic Gevrey norms to be defined
in the next section in connection with dispersive equations in
another context [14].

The plan of this Letter is as follows. In Section 2, we es-
tablish the relevant mathematical notation. In Section 3, the
spectral approximation is defined, and the convergence estimate
(1.2) is proved. Finally, in Section 4, numerical computations
are shown to elucidate the result of Section 3. As it will turn
out, the numerical observations match the theoretical predic-
tions superbly.

2. Notation

The results in this Letter hold for solutions of (1.1) which
are real-analytic functions of the spatial variable x. To quantify
the domain of analyticity, we use the class of periodic analytic
Gevrey spaces as introduced by Foias and Temam in [15]. For
σ > 0, we define the Gevrey norm ‖ · ‖Gσ by

‖f ‖2
Gσ

=
∑
k∈Z

e2σ
√

1+|k|2 ∣∣f̂ (k)
∣∣2

,

where the Fourier coefficients f̂ (k) of the function f , periodic
on the interval [0,2π] are defined by

f̂ (k) = 1

2π

2π∫
0

e−ikxf (x) dx.

A Paley–Wiener type argument shows that functions in the
space Gσ are analytic in a strip of width 2σ about the real axis.
Similarly, the usual periodic Sobolev spaces are given by the
norm

‖f ‖2
Hs =

∑
k∈Z

(
1 + |k|2)s∣∣f̂ (k)

∣∣2
.

In particular, for s = 0, the space L2(0,2π) appears. For sim-
plicity, the L2-norm is written without any subscript, so that
‖f ‖ = ‖f ‖H 0 . In the sequel, we will have occasion to use the
inner product on this space, given by

(f, g) =
2π∫

0

f (x)g(x) dx.

Note also that for functions f ∈ Hs with s > 1
2 , we have the

Sobolev inequality, namely

sup
x

∣∣f (x)
∣∣ � C‖f ‖Hs

for some constant C.

3. Spectral projection

The spectral projection is achieved by solving a discrete set
of ordinary differential equations in a finite-dimensional space.
For this purpose, the subspace

SN = {
eikx | k ∈ Z,−N � k � N

}
of L2(0,2π) is commonly used in connection with the Fourier
basis. The self-adjoint operator PN denotes the orthogonal pro-
jection from L2 onto SN , defined by

PNf (x) =
∑

−N�k�N

eikxf̂ (k).

Observe that PN may also be characterized by the property that,
for any f ∈ L2, PNf is the unique element in SN such that

(3.1)(PNf,φ) = (f,φ),

for all φ ∈ SN . Using a straightforward calculation, the follow-
ing inequality can be proved [18]

(3.2)‖f − PNf ‖Hr � Nre−σN‖f ‖Gσ ,
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for r � 0 and σ > 0. The Galerkin approximation to (1.1) is
given by a function uN from [0, T ] to SN satisfying

(3.3)

{(
∂tuN + 1

2 ∂x(u
2
N) + 1

a3 ∂3
xuN,φ

) = 0, t ∈ [0, T ],
uN(0) = PNu0,

for all φ ∈ SN . Thus we assume that the solution is written as
the sum

uN(x, t) =
∑

−N�k�N

ûN(k, t)eikx .

The system (3.3) is a finite-dimensional system of ordinary dif-
ferential equations. At present we are focusing attention on this
semi-discrete system. The time integration of (3.3) is generally
performed using some convenient time-discretization scheme,
but we do not study any convergence results for such a scheme.
With all notation and definitions in place, we can state the the-
orem advertised in the introduction.

Theorem 3.1. Suppose u(x, t) is a continuous function of t with
values in the space Gσ for some σ > 0, and suppose that u

solves (1.1). Given T > 0 and an integer N > 0, there exists
a unique solution uN of the finite-dimensional problem (3.3).
Moreover, there is a constant ΛT , such that

sup
t∈[0,T ]

∥∥u(·, t) − uN(·, t)∥∥ � ΛT Ne−σN .

One class of functions to which the theorem applies directly
is the family of periodic traveling waves of the KdV equation.
Note however that in general, even if initial data u(x,0) are
given in the periodic analytic Gevrey space Gσ , it cannot be
concluded that the solution u(x, t) is in Gσ at any other time
t > 0. However, it can be shown that u(x, t) is in Gσt , where
σt is a decreasing function of t . In the case of the real line,
algebraic dependence of σt on t has been recently proved [16].

In the proof of Theorem 3.1, it will be necessary to use some
a priori bounds on Sobolev norms of the functions u and uN . It
is well known that the KdV equation has an infinite number of
conserved integrals. As a consequence, it can be shown that all
positive Sobolev norms of the solutions are bounded globally in
time. Here, we only need the first three integer Sobolev norms.

Lemma 3.2. Suppose u is a solution of (1.1). Then there are
constants c0, c1 and c2, such that

sup
t∈[0,∞)

∥∥u(·, t)∥∥ � c0, sup
t∈[0,∞)

∥∥u(·, t)∥∥
H 1 � c1,

sup
t∈[0,∞)

∥∥u(·, t)∥∥
H 2 � c2.

For the spectral projection, it can also be shown that the first
three integer Sobolev norms are bounded independently of N .

Lemma 3.3. Suppose uN is a solution of (3.3). Then there are
constants c0, c1 and c2, such that
sup
t∈[0,T ]

∥∥uN(·, t)∥∥ � c0, sup
t∈[0,T ]

∥∥uN(·, t)∥∥
H 1 � c1,

sup
t∈[0,T ]

∥∥uN(·, t)∥∥
H 2 � c2.

For a proof of these estimates, the reader is referred to [9,17].

Proof of Theorem 3.1. The existence of the solution uN on
the interval [0, T ] is proved by a combination of a fixed-point
argument and the foregoing stability results. This is standard
fare and will be omitted. To prove the convergence estimate,
consider the function h = PNu − uN ∈ SN as the test function
φ in the formula (3.3). Applying PN to (1.1) and subtracting,
there appears the equation

(∂th,h) + 1

a3

(
∂3
xh,h

) + 1

2

(
PN∂xu

2 − ∂x

(
u2

N

)
, h

) = 0.

Since the third derivative operator is skew-symmetric, we have
(∂3

xh,h) = 0, so that the previous equation may be rewritten as

d

dt
‖h‖2 = (

PN

(
u2) − u2, hx

) + (
u2 − (PNu)2, hx

)
(3.4)+ (

(PNu)2 − u2
N,hx

)
.

Since PN is the orthogonal projection onto SN , (3.1) shows that
the first term on the right in (3.4) is identically zero. The second
term on the right can be treated as follows.∣∣(∂x

(
u2 − (PNu)2), h)∣∣ � sup

x

∣∣∂x(u + PNu)
∣∣‖u − PNu‖‖h‖

+ sup
x

|u + PNu|‖u − PNu‖H 1‖h‖
� 4C‖u‖H 2Ne−σN‖u‖Gσ ‖h‖.

After an integration by parts, it appears that the third term on
the right of (3.4) can be estimated by

∣∣(∂x

(
(PNu)2 − u2

N

)
, h

)∣∣ � 1

2
sup
x

∣∣∂x(uN + PNu)
∣∣‖h‖2

� C

2
‖uN + PNu‖H 2‖h‖2.

Hence it can be seen that the estimate

2
d

dt
‖h‖ � 4C‖u‖H 2‖u‖Gσ Ne−σN

+ C

2

(‖uN‖H 2 + ‖u‖H 2

)‖h‖
appears. Letting K = supt ‖u(·, t)‖Gσ , this can be written as

d

dt

∥∥h(·, t)∥∥ � 2Cc2KNe−σN + C

2
c2

∥∥h(·, t)∥∥.

Now using Gronwall’s inequality, we obtain∥∥h(·, t)∥∥ � 2Cc2KNe−σNT e
C
2 c2T + ∥∥h(·,0)

∥∥e
C
2 c2T .

Noting that ‖h(·,0)‖ = 0, and using the triangle inequality and
(3.2), we get the final estimate∥∥u(·, t) − uN(·, t)∥∥ �

∥∥u(·, t) − PNu(·, t)∥∥ + ∥∥h(·, t)∥∥
� ΛT Ne−σN ,

where ΛT = K + 2Cc2KT e
C
2 c2T . Taking the supremum over t

concludes the proof. �
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Table 1
Computations using a solitary wave with c = 1. Spectral convergence is ap-
parent in the left half of the table, where the time step was �t = 10−6.
Quadratic convergence is visible in the temporal discretization on the right,
where N = 8192

N L2-error Ratio �t L2-error Ratio

36 1.19 × 10−6 0.0625 5.97 × 10−3

72 1.13 × 10−6 1.05 0.0312 1.51 × 10−3 4.00
144 2.28 × 10−7 4.95 0.0156 3.67 × 10−4 3.99
288 1.59 × 10−9 143.38 0.0078 9.18 × 10−5 3.99
576 1.13 × 10−14 140570.00 0.0039 2.29 × 10−5 4.00

1152 4.75 × 10−15 2.38 0.0020 5.73 × 10−6 4.00

4. Numerical computations

In this section, some numerical computations will be pre-
sented with the aim of showing that the convergence rates
proved in the previous section can actually be achieved in prac-
tical situations. Note that Theorem 3.1 applies in particular to
the special case of a solitary wave u(x, t) = ψ(x − ct) with
translational velocity c. This is a solution of Eq. (1.1) if ψ has
the special form

ψ(x) = 12
κ2

a
sech2(κax),

for any κ > 0, and with velocity c = 4κ2. Taking the Fourier
transform of ψ yields

ψ̂(k) = 6πk csch

(
πk

2κa

)
,

revealing that ψ is in the space Gσ as long as σ < π
2κa

. Evi-
dently, since the solution does not change its shape over time,
it will continue to be in the space Gσ for all time, and The-
orem 3.1 is applicable. It is now clear why the equation was
written in the scaled form using the parameter a, because this
allows us to put a solitary wave into the interval [0,2π] without
it getting close to the boundary during the time evolution. With
this scaling, the tails of the solitary wave are sufficiently small
(below machine precision), so that periodic boundary condi-
tions can be used to study the Cauchy problem on the line. The
spectral projection of the KdV equation as described in the pre-
vious section is now coupled with a trapezoidal time-integration
scheme. This scheme is implicit in the nonlinear term, so that
an iteration has to be used at each time step. Since we gen-
erally took rather small time steps, only a few iterations were
needed at each time step in order to achieve the convergence re-
sults shown in the following. In all computations shown c = 1
and a = 34.2 were used, corresponding to a value of σ slightly
less than 0.0918. Computations were also performed for other
values of c and a, and similar results obtain for these cases.

In the first three columns in Table 1, computations with a
varying number of spatial gridpoints are shown. The third col-
umn in Table 1 represents the ratio between the errors in two
consecutive calculations, and it can be seen that the spatial error
decays rapidly with a rate that is apparently increasing. Also,
the quadratic convergence of the time integration method can be
seen in the fourth, fifth and sixth column of Table 1. As guided
Table 2
Numerical values for σ , and deviation from prediction after 1 time step. Results
shown are for c = 1 and a = 34.2

N L2-error σ Deviation in %

76 1.1501 × 10−6 0.0498 45.7
128 4.4699 × 10−7 0.0625 31.9
180 1.1289 × 10−7 0.0695 24.3
232 2.2602 × 10−8 0.0738 19.7
284 3.9179 × 10−9 0.0766 16.5
336 6.1547 × 10−10 0.0787 14.3
388 8.9993 × 10−11 0.0803 12.5
440 1.2458 × 10−11 0.0816 11.2

Table 3
Numerical values for σ , and deviation from prediction after 10 time steps. Re-
sults shown are for c = 1 and a = 34.2

N L2-error σ Deviation in %

76 1.1501 × 10−5 0.0498 45.7
128 4.4699 × 10−6 0.0625 31.9
180 1.1289 × 10−6 0.0695 24.3
232 2.2602 × 10−7 0.0738 19.7
284 3.9179 × 10−8 0.0766 16.5
336 6.1547 × 10−9 0.0787 14.3
388 8.9993 × 10−10 0.0803 12.5
440 1.2459 × 10−10 0.0815 11.2

by the theory in the previous section, our main goal here will be
to establish a relationship of the type

sup
t∈[0,T ]

∥∥u(·, t) − uN(·, t)∥∥ � ΛNe−σN ,

where u is the solitary wave, and uN is the spectral approx-
imation. To this end, we seek the number σ by denoting the
L2-error

E = sup
t∈[0,T ]

∥∥u(·, t) − uN(·, t)∥∥,

and supposing a relation of the form

E = ΛNe−σN .

Now σ can be approximately computed by noting that we have
the relation

(4.1)σ = log(E1/E2) − log(N1/N2)

N2 − N1
,

where E1 and E2 are the errors corresponding to two differ-
ent computations with N1 and N2 gridpoints, respectively. Note
that the constant ΛT appearing in Theorem 3.1 is probably not
sharp. In light of this, it is an added advantage that the constant
Λ does not appear in (4.1).

Results of a few computations are listed in Tables 2, 3 and 4.
These tables are for 1, 10 and 100 time steps, respectively.
These tables show the error as well as the approximations for σ ,
and the deviation from the true value of σ . Note that we achieve
a deviation of less than 15%. Here, a very small time step is
taken, so that errors from the temporal discretization can be ne-
glected. Corresponding graphs are shown in Figs. 2, 3 and 4. It
is apparent that for longer time integrations, more grid points
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Table 4
Numerical values for σ , and deviation from prediction after 100 time steps.
Results shown are for c = 1 and a = 34.2

N L2-error σ Deviation in %

76 1.1501 × 10−4 0.0498 45.7
128 4.4699 × 10−5 0.0625 31.9
180 1.1289 × 10−5 0.0695 24.3
232 2.2602 × 10−6 0.0738 19.7
284 3.9179 × 10−7 0.0766 16.5
336 6.1547 × 10−8 0.0787 14.3
388 8.9993 × 10−9 0.0803 12.5
440 1.2458 × 10−9 0.0815 11.2

Fig. 2. Error and approximation of σ after 1 time step. The dashed line repre-
sents the theoretical value of σ . Results shown are for c = 1 and a = 34.2.

Fig. 3. Error and approximation of σ after 10 time steps. The dashed line rep-
resents the theoretical value of σ . Results shown are for c = 1 and a = 34.2.

are required to achieve the same error. This is the reason why
the graph in Fig. 2 appears shorter than in Figs. 3 and 4. In
all three cases, the L2-error approaches machine precision be-
fore the approximations reach the asymptotic convergence rate.
Therefore, to improve the approximation of σ , a least-squares
Fig. 4. Error and approximation of σ after 100 time steps. The dashed line
represents the theoretical value of σ . Results shown are for c = 1 and a = 34.2.

Fig. 5. Approximation of σ , extrapolated by least-squares fit using the func-
tion σ = N

a+bN
. The dashed line represents the exact value σ ∼ 0.0918. The

asymptote of the extrapolating function is 1/b = 0.093.

fit is made over all values of σ computed. For the data fit, the
form

σ = N

a + bN

is assumed. The fitted curve is shown in Fig. 5. It appears
that the computed value of σ found from the extrapolation ap-
proaches the theoretical value asymptotically. Indeed we find
that 1/b = 0.093, while σ ∼ 0.0918.

In conclusion, it can be said that the theoretical convergence
result of Theorem 3.1 can be achieved without much difficulty
in practical computations. The implications of this are twofold.
On the one hand, rapid convergence like the one exhibited
in (1.2) point towards the use of simple models such as the KdV
equation in order to capture the essence of a physical situation.
On the other hand, the pursuit of similar convergence estimates
for more complicated models retaining more refined physical
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features could prove to be a fruitful endeavor if one knows that
such strong results can be proved in the model case.
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