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a b s t r a c t

The KdV equation arises in the framework of the Boussinesq scaling as a model equation
for waves at the surface of an inviscid fluid. Encoded in the KdV model are relations that
may be used to reconstruct the velocity field in the fluid below a given surface wave. In
this paper, velocity fields associated to exact solutions of the KdV equation are found, and
particle trajectories are computed numerically. The solutions treated here comprise the
solitary wave, periodic traveling waves, and the two-soliton solutions. For solitary waves
and periodic traveling waves, approximate particle paths are found in closed form.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Korteweg–de Vries (KdV) equation is a model equation describing the evolution of long-crested waves at the surface
of a body of fluid. The main assumptions on the waves to be represented by solutions of the KdV equation are that they be
of small amplitude and long wavelength when compared to the undisturbed depth of the fluid, and that the wave motion
be predominantly one-directional. The equation arises in a certain parameter regime called the Boussinesq scaling [1], and
it is possible to find exact solutions of the KdV equation describing solitary and periodic water waves [2]. The equation
also features closed-form solutions describing overtaking collisions of solitary waves which are found to be elastic in the
sense that the solitary waves reemerge unscathed from the interaction, except for a phase shift [3]. The discovery of the
elastic solitary-wave interaction subsequently led to the development of the inverse-scattering method for the solution of
the initial-value problem associated to the KdV equation [4]. Since the equation is exactly solvable, one may think of it as a
completely-integrable infinite-dimensional Hamiltonian system. As a matter of fact, the KdV equation serves as a paradigm
for the use of the inverse-scattering method for constructing solutions of evolution equations of Hamiltonian type.

Since the discovery of the elastic interaction of solitary waves, an immense body of work has accumulated. The KdV
equation has been used extensively in physical studies of surface and internal water waves, and for many other situations
in mathematical physics [5]. The equation has also been studied a great deal from a mathematical vantage point. Examples
of topics under study include the solution of the initial-value problemwith various boundary conditions, stability of special
solutions, and applications of the inverse-scattering method. However, it appears that one aspect of the KdV as a model
equation for surface water waves, namely the connection between surface wave patterns and the underlying flow has not
been given much attention so far.
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In the present article, the focus is on particle trajectories in the fluid below a given surface wave. The KdV equation will
be studied in the non-dimensional form

ηt + ηx +
3
2
ηηx +

1
6
ηxxx = 0, (1.1)

which appears when the undisturbed depth h0 is taken as a unit of distance, and
√
h0/g is taken as a unit of time. Careful

examination of the derivation of the equation as a surface water-wave model shows that it is possible to reconstruct an
approximation of the fluid velocity field underneath the surface. In particular, it is possible to derive formulas expressing
the horizontal and vertical velocity components in terms of the principal unknown variable η which describes the shape of
the free surface. The most straightforward observation is that to first order in the perturbation parameter, the horizontal
velocity u is independent of the depth at which it is measures, and we have u = η. However, since the KdV equation is valid
to second order, this relation may be improved to read

u = η −
1
4
η2

+
1
3
ηxx, (1.2)

which holds to second-order [6]. In the relation (1.2) u denotes the horizontal velocity at the flat bottom. However, it is
also possible to find an expression for the horizontal velocity at an arbitrary depth in the fluid column. This development
is already implicitly contained in the derivation presented in [6], and has also been exploited recently in the derivation and
study of a general system of Boussinesq equations [7,8]. Once the velocity field associated to a surface wave has been found,
one may study a number of important dynamic properties of the flow, and in particular, one may construct approximate
descriptions of the paths traced out by fluid particles below the surface.

Since the KdV equation is valid asymptotically in the limit of small amplitude and long wavelength, our results are
of approximate character, and should only be applied for waves of small amplitude, and long wavelength. This stands in
contrast to recent major advances in the study of particle motion in the full Euler equations. In particular, Constantin [9]
showed that particle paths are not closed in periodic traveling-wave solutions of the full Euler system with free-surface
boundary conditions. In [10], Constantin and Escher analyzed particle paths associated to solitary-wave solutions of the
water-wave problem, and used maximum principles for elliptic operators to prove qualitative results about the particle
velocities and trajectories.

On the other hand, asymptotic results have also been obtained for the case of small amplitude but arbitrary wavelength.
Indeed, Constantin et al. [11] and Constantin and Villari [12], studied particle trajectories in the linearized water-wave
problem, and provedmathematically that these trajectories are not closed. Results of this type are known in the engineering
literature as Stokes drift, but mathematical proofs had not been available before they were given in [11,12]. A review of
mathematical results about particle paths in the linearized water-wave problem is given by Ehrnström and Villari [13].
Numerical work was recently published by Chang et al. [14] who analyzed particle paths in deep-water waves in the
Lagrangian framework.

It should also be mentioned that in order to approximate the velocity field beneath a solitary or periodic traveling wave,
one may use a direct approximation of the wave structure, without going through the Boussinesq scaling. For instance,
Grimshaw [15] and Fenton [16] found high-order approximations of solitary waves which also allow the evaluation of the
velocity field below the surface. More recently, particle paths due to periodic traveling waves were found to high accuracy,
and compared to particle paths observed in wavetank experiments by Chen et al. [17]. Previous results which are in the
spirit of the present study were obtained by Clamond [18], and more recently by Henry [19]. In these articles, different
strategies were used to construct the velocity field in the fluid associated to a periodic cnoidal solution of the KdV equation.
Approximations of particle paths based on the relation u = η were studied in [20,21].

Finally, we would like to remark that the study of particle trajectories using approximate methods is justified by strong
regularity results ensuring the a priori analyticity of the stream function, for both irrotational and rotational flows [22–25].

In thenext section, the physical setupof the surfacewaterwaveproblem is reviewed, and a short account of the derivation
of theKdV equation is given. In Section 3,weuse formulas such as (1.2) in connectionwith exact solutions to consider particle
trajectories associated to surface solitary waves. In Section 4, particle paths in fluid flow below periodic surface waves are
investigated. Finally, Section 5 features a study of particle paths associated to solitary-wave interactions. One important
theme in Sections 3 and 4 is the comparison of approximate but closed-form expressions for particle paths to numerical
approximations of the trajectories based on discretizing the governing ordinary differential equations. As will be shown, the
numerical discretization – when used with a sufficiently small time step – yields a more reliable description of the particle
trajectories than does any closed-formapproximation. However, the lattermay still be useful in caseswhere a quick estimate
is desired.

2. Surface water waves and the Boussinesq scaling

The KdV equation is derived under the assumptions that the fluid is incompressible and inviscid. Furthermore, it is
supposed that the fluid flow is irrotational and two-dimensional, and that the free surface can bedescribed by a single-valued
function η(x, t). With these assumptions, the problemmay be studied on the domain {(x, z) ∈ R × R|0 < z < h0 + η(x, t)}
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which extends to infinity in the positive and negative x-direction, and where the parameter h0 represents the undisturbed
depth of the fluid. On this domain, the two-dimensional Euler equations are given by

ut + uux + vuz = −px,
vt + uvx + vvz = −pz − g

(2.1)

where (u, v) represents the velocity field, p denotes the pressure, g is the gravitational acceleration, and the density is
assumed to be unity. The incompressibility of the fluid, and the irrotationality of the flow are expressed, respectively, by

ux + vz = 0 and uz − vx = 0. (2.2)

The free-surface boundary conditions are given by requiring the pressure to be equal to atmospheric pressure at the surface
if surface tension effects are neglected, and the kinematic boundary condition:

p = patm and ηt + uηx = v, at z = h0 + η(x, t). (2.3)

The geometric setup of the problem is illustrated in Fig. 1. Since the fluid is incompressible, and irrotational flow is assumed,
it is customary to introduce a velocity potential φ(x, z, t). The surface-wave problem is then given in terms of the Laplace
equation for φ, along with the nonlinear boundary conditions (2.3) on the free surface and the usual boundary condition
at the bottom. The derivation of weakly nonlinear evolution equations of Boussinesq type is due to Boussinesq [1], and is
thoroughly explained in [6,8]. The process relies on recognizing two parameters that describe the regime of waves with
average amplitude a, and average wavelength λ. The parameter α =

a
h0

then describes the relative amplitude of the waves,

and the parameter β =
h20
λ2

measures the ‘shallowness’ of the fluid in comparison to thewavelength. In [6], it is shown that to
second-order accuracy in α and β , solutions of the free-surface problem described abovemay by approximated by solutions
of the system

ηt + h0wx + (ηw)x −
1
6
h3
0wxxx = 0,

wt + gηx + wwx −
1
2
h2
0wxxt = 0,

(2.4)

where w denotes the horizontal velocity at the bottom of the channel, and the potential is given to second order by
φ = f −

z
2 fxx. The horizontal velocity at the bottom w is then given by the relation w = fx. If the horizontal velocity is

evaluated at a level 0 ≤ h0θ < h0, then in terms of the dependent variables ηθ and wθ , the equations take the more general
form

ηθ
t + h0w

θ
x + (ηθwθ )x +

1
2


θ2

−
1
3


h3
0w

θ
xxx = 0, (2.5)

wθ
t + gηx + wθwθ

x −
1
2


1 − θ2 h2

0w
θ
xxt = 0. (2.6)

The functions w and wθ are related to second order in β by w = wθ
+

1
2θ

2h2
0w

θ
xx. Using this relation, and differentiating the

equation for φ gives the horizontal velocity at an arbitrary level in the fluid. This velocity is thus expressed by

u(x, z, t) = φx = wθ (x, t) +
1
2


(h0θ)2 − z2


wθ

xx(x, t). (2.7)

Similar considerations show that the vertical velocity can be written in terms of wθ as

v(x, z, t) = −z wθ
x , (2.8)

which is also correct to second order in β . Thus it is plain that the horizontal and vertical velocity components of the fluid
at a point (x, z) can be expressed in terms of the horizontal velocity at a fixed height h0θ from the even bottom.

As shown in [6], the KdV equation can be derived from (2.5) and (2.6) by assuming a certain relationship betweenwθ and
η which singles out waves that mainly travel in the direction of increasing values of x. This relation is given in dimensional
form by

wθ
=

g
c0


η −

1
4h0

η2
+ h2

0


1
3

−
1
2
θ2


ηxx


, (2.9)

and the corresponding KdV equation for η is

ηt + c0


1 +

3
2h0

η


ηx +

h2
0

6
c0ηxxx = 0. (2.10)
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Fig. 1. The schematic elucidates the geometric setup of the problem. The free surface is described by a function η(x, t). The undisturbed water depth is
h0 , the gravitational acceleration is g , and the x-axis is aligned with the even bottom.

It now appears that (2.9)may be used in conjunctionwith (2.7) and (2.8) to reconstruct a velocity field associated to solutions
of (2.10). This approximate velocity field is valid to the same order as the Eq. (2.10) describing the excursion of the free
surface.

In the following, it will be convenient to define non-dimensional variables adapted to the problem at hand. In particular,
the new variables are defined by

x → h0x, z → h0z, η → h0η, t →
h0

c0
t, w → c0w.

The Eqs. (2.9) and (2.10) can be rewritten in terms of new variables as

wθ
= η −

1
4
η2

+


1
3

−
θ2

2


ηxx, (2.11)

ηt +


1 +

3
2
η


ηx +

1
6
ηxxx = 0. (2.12)

The expression (2.7) for the horizontal velocity of a fluid particle is given in non-dimensional variables as

u(x, z, t) = wθ (x, t) +
1
2


θ2

− z2

wθ

xx(x, t). (2.13)

The relation (2.8) for the vertical velocity does not change under the nondimensionalization. It was indicated in [26], that
values of θ close to but less than 1 could be advantageous if a close approximation to the linear dispersion relation of the
water-wave problem is sought. In the context of particle paths it can be useful to set θ close to the initial z coordinate of the
particle, so that a close representation is achieved. However, from the point of view of the Boussinesq scaling, all values of
θ are formally equivalent. In practice, as long as the waves are within the validity of the Boussinesq scaling, the results will
be qualitatively the same. The numerical computations which are presented in the following sections have been run with
several values of θ , and the variation of the results has been minor in comparison to their main qualitative features.

3. Particle paths in solitary-wave solutions

In this section, our attention will be focused on the particle paths in the fluid due to the passage of a solitary wave at the
surface. As is well known, the solitary-wave solution of the KdV equation is given by

η = η0 sech2
√

3η0

2
(x − x0 − ct)


, (3.1)

where η0 is the amplitude, x0 is the initial location of the wave crest, and the phase velocity is given by

c = 1 +
η0

2
. (3.2)

In the following, we will always assume that the wavecrest is located at x = 0 at time t = 0, so that x0 = 0. Defining the
argument A(x, t) =

√
3η0
2 (x − ct), the relation (2.11) yields the expression

wθ
= η0 sech2(A)


1 −

η0

4
sech2(A) −

3
2
η0


1
3

−
θ2

2

 
3 sech2(A) − 2


(3.3)



H. Borluk, H. Kalisch / Wave Motion 49 (2012) 691–709 695

for the horizontal velocity at z = θ . For the solitary-wave solutions of the KdV equation, the horizontal and vertical velocities
at an arbitrary point (x, z) in the fluid, and at a time t are then given by

u(x, z, t) = η0 sech2(A)


1 + η0 −

3
2
η0z2 +

η0

4
(9z2 − 7) sech2(A)

+
3
8
η2
0


θ2

− z2
 

35 sech4(A) − 34 sech2(A)

+ 4 − 3θ2 
15 sech4(A) − 15 sech2(A) + 2

 
,

v(x, z, t) = −z

√
3
2

η
3/2
0 tanh(A) sech2(A)

×


−2 + η0 sech2(A) + 6η0


1
3

−
θ2

2

 
3 sech2(A) − 1


.

Taking the functions ξ(t) and ζ (t) to describe the x-coordinate and z-coordinate, respectively, of a particle originally located
at the point (x, z) = (ξ0, ζ0), the particle motion is described by the differential equations

∂ξ

∂t
= u (ξ(t), ζ (t), t) ,

∂ζ

∂t
= v (ξ(t), ζ (t), t) , (3.4)

with initial conditions ξ(0) = ξ0 and ζ (0) = ζ0. These equations can be solved numerically. For instance, an efficient
discretization of these equations can be effected by a four-stage Runge–Kutta method. It has been found in our numerical
experiments that such a fourth-order method yields highly accurate results, even when used with a moderately small time
step.

However, for some purposes it might be desirable to have available a closed-form expression which describes
approximate particle paths. If it is assumed that the individual particles do not move a great deal during the passage of
a solitary wave, the Eqs. (3.4) may be approximated by

∂ξ̄

∂t
= u(ξ0, ζ0, t),

∂ζ̄

∂t
= v(ξ0, ζ0, t), (3.5)

where the initial position of the particle is again (ξ0, ζ0). Using these relations and the solutions of KdV equation given by
(3.1) and (3.3) it is possible to find the expressions

ξ̄ = X0 −
2

√
3 c

√
η0 tanh(A0)


1 −

η0

6
+

η0

12


9ζ 2

0 − 7

sech2(A0)

+
3
8
η2
0


θ2

− ζ 2
0


sech2(A0)


sech2(A0) +


2 − 3θ2 

3 sech2(A0) − 1


,

ζ̄ = Z0 +
ζ0

c
η0 sech2(A0)


1 −

η0

4
sech2(A0) −

3
2
η0


1
3

−
θ2

2

 
3 sech2(A0) − 2


.

(3.6)

Here A0 represents the argument A0(t) =

√
3η0
2 (ξ0 − ct), corresponding to a solitary wave which is initially centered

at x = 0, and a particle whose x-coordinate is initially x = ξ0. The constants X0 and Z0 denote the difference between
the initial particle location ξ0 and ζ0, respectively, and the expressions of the right-hand side evaluated at t = 0 (i.e. at
A0(0) =

√
3η0
2 (ξ0)).

In Figs. 2–4, sample particle paths are shown during the propagation of a surface solitary wave with amplitude η0 = 0.3.
In all figures in this article, the ordinate represents values of z unless indicated otherwise. Fig. 2 shows the time evolution
of a fluid particle located in the surface. The wave profile is shown at t = 0 (light-gray), t = 2 (dark-gray) and t = 4 (black).
The particle trajectory given by (3.6) is represented by the dashed curve. The particle location at the three instances where
the wave profile is shown are color coded: the light-gray dot indicates the particle position at time t = 0; the dark-gray dot
indicates the particle position at time t = 2; the black dot indicates the particle position at time t = 4. Similar color-coding
is used in Figs. 3 and 4. As can be seen from these figures, fluid particles move to the right and upwards if they are located to
the right of the crest. Particles located on the left of the crest move to the right and downwards. This is in agreement with
the findings of Constantin and Escher [10]. It is also apparent that particles closer to the bed have smaller total excursion.

The particle trajectories shown as solid curves in the left panels of Figs. 3 and 4 are numerical approximations of solutions
of (3.4) obtainedwith the 4-th order Runge–Kuttamethodmentioned above. In the right panel of Figs. 3 and 4, a comparison
of the numerical approximation of particle trajectories using (3.4) and the explicit form (3.6) are shown (the approximate
formula (3.6) is shown as a dashed curve). In this comparison, it is apparent that the approximation (3.6) yields particle
paths that are somewhat shorter than the more accurate trajectories computed numerically. We also note in Fig. 4 that the
horizontal displacement is independent of the initial depth of the particle if the approximation (3.6) is used. On the other
hand, the horizontal displacement does depend on the initial depth of the particle as shown by the solid curves in the right
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Fig. 2. Thewave in the figure is shown at t = 0 (light-gray), t = 2 (dark-gray) and t = 4 (black). The dashed curve represents the path of a particle initially
located in the surface at (5, 1.02). Note that the particle lags behind the surface, indicating that the approximation used in (3.6) yields a small error.

Fig. 3. The wave in the left panel is shown at t = 0 (light-gray), t = 3 (dark-gray) and t = 6 (black). The wave crest is initially located at x = 0. The
paths of the fluid particles initially located at (5, 0.8), (5, 0.5) and (5, 0.2) are shown. The particle locations at the three instances where the wave profile
is shown are color coded. The light-gray dots indicate the particle positions at time t = 0. The dark-gray dots indicate the particle positions at time t = 3.
The black dots indicate the particle positions at time t = 6. The right panel features a comparison of the particle paths computed using the Runge–Kutta
method (solid) and the approximate formula (3.6) (dashed).

panel of Fig. 4. The maximal possible excursion of a particle from rest into the vertical direction can be computed from (3.6)
by setting ξ0 = 0, and evaluating

ζ̄ (t = 0) − ζ̄ (t = −∞) = ζ0
2η0

2 + η0


1 +

3
4
η0


θ2

− 1


,

where ζ0 denotes the original z-coordinate of the particle. This expression confirms the decrease in total vertical excursion
with increasing depths which was observed in Fig. 4. Of course such a behavior might be expected since particle amplitudes
decay exponentially towards the bottom in the case of linear waves.

The mass flux due to the passage of a solitary wave can be computed from (3.6) by evaluating the following expression:

ξ̄ (t = ∞) − ξ̄ (t = −∞) =
4

√
η0

√
3

1 −
η0
6

1 +
η0
2

. (3.7)

Since the nondimensional depth of the fluid is 1, this formula represents the total mass flux through a vertical cross-section
in the fluid due to the passage of a solitary wave. Note that the mass flux due to the passage of a solitary waves can also be
computed by observing that the KdV equation (1.1) is actually a mass conservation equation. Accordingly, the quantity

qM = η +
3
4
η2

+
1
6
ηxx
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Fig. 4. Thewave in the left panel is shownat t = 0, t = 5, t = 10 and t = 15. The paths of the particles initially located at (5, 0.8), (5, 0.5), (5, 0.2) (5, 0.01)
are shown. The light-gray dots indicate the particle positions at time t = 0, and the black dots indicate the particle positions at time t = 6. The curves
show the trajectories traced out by particles during the full passage of a solitary wave from the far field on the left to the right. The right panel features a
comparison of the particle paths computed using the Runge–Kutta method (solid) and the approximate formula (3.6) (dashed). The vertical lines illustrate
the final horizontal position of the lowest particle computed numerically (solid), and with the approximate formula (3.6) (dashed).

can be interpreted as the mass flux due to the wave motion. Therefore, the total mass flux due to a solitary wave can be
computed by evaluating the integral

Q =


∞

−∞

qMdt

=
2

√
3η0c


∞

−∞


η +

3
4
η2

+
1
6
ηxx


dA

=
2

√
3η0c

η0


tanh(A) +

η0

4


3 tanh(A) − tanh3(A)

∞

−∞

.

The value of this integral is 4
√

η0
√
3
. Comparing this value to the expression found using the approximation (3.6), we see that

4
√

η0
√
3

−
4

√
η0

√
3

1 −
η0
6

1 +
η0
2

=
8

3
√
3
η
3/2
0 + O(η

5/2
0 ).

Thus we note that the mass flux due to evaluating the differential equation is somewhat larger, and the difference between
the two is of order less than 2. Note however that the formula for themass flux found from the particle paths above was due
to the further approximation (3.5), and comparisonwith the Runge–Kuttamethod showed that the horizontal displacement
of a particle was underestimated. Fig. 5 suggests that the mass flux computed using the Runge–Kutta method is closer to
the value Q =

4
√

η0
√
3
, and is therefore more accurate than the value computed using the formula (3.7). The total mass flux

can also be computed by simply evaluating the integral


∞

−∞
η dx, where η is the solitary wave given by (3.1). This approach

was used in [27], and it also gives the correct value 4
√

η0
√
3
.

4. Particle paths in periodic waves

Attention will now be turned to particle paths in the fluid flow due to the propagation of periodic traveling waves at
the surface. In the KdV approximation, periodic wavetrains are described by exact solutions given in terms of the so-called
cnoidal functions [28]. Indeed, it is well known that periodic solutions of (2.10) are given by

η = f2 + (f1 − f2)cn2(B), (4.1)

where the solution is defined by the three constants f1, f2 and f3 which are arranged in the order f3 < f2 < f1. In Eq. (4.1), the
argument is B(x, t) =

√
3
2 (f1 − f3)1/2(x − ct), cn is one of the Jacobian elliptic functions defined by the incomplete elliptic

integral of the first kind [29], and the modulus of cn is given by m = (f1 − f2)/(f1 − f3). The phase speed of the wave is
c = 1 + (f1 + f2 + f3)/2, and the wavelength is given by λ =

4
√
3
K(m) 1

√
f1−f3

, where K(m) is the complete elliptic integral
of the first kind. The particle motion is described by the differential equations (3.4) which may be rewritten with the help
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Fig. 5. A comparison of the values of total mass flux. The dashed line shows the formula (3.7). The solid line shows the formula Q =
4
√

η0
√
3

. The circles
indicate the mass flux computed from the numerical solution of the particle paths with the Runge–Kutta method, and taking the average over the depth
of the fluid.

of (2.7) and (2.8) as
∂ξ

∂t
= wθ

+
1
2
(θ2

− ζ 2)wθ
xx,

∂ζ

∂t
= −ζ wθ

x . (4.2)

Using the relation (2.11), the horizontal velocity may be written in terms of the Jacobian elliptic functions cn, sn and dn as

wθ
= f2 −

f 22
4

+ (f1 − f2)

1 −

f2
2


cn2(B) −

(f1 − f2)2

4
cn4(B)

−
3
2
(f1 − f3)(f1 − f2)


1
3

−
θ2

2

 
−sn2(B) dn2(B) + cn2(B) dn2(B) − mcn2(B) sn2(B)


.

The derivatives are given by

wθ
x =

√
3
2

(f1 − f3)1/2cn(B)sn(B)dn(B)


− (f1 − f2)(2 − f2) + (f1 − f2)2cn2(B)

+ 6(f1 − f3)(f1 − f2)

1
3

−
θ2

2


(dn2(B) + mcn2(B) − msn2(B))


,

and

wθ
xx =

3
4
(f1 − f3)


− (f1 − f2)(2 − f2)(−sn2(B) dn2(B) + cn2(B) dn2(B)

−m cn2(B) sn2(B)) + (f1 − f2)2(−3cn2(B) sn2(B) dn2(B) + cn4(B) dn2(B)

−m cn4(B) sn2(B)) + 6(f1 − f3)(f1 − f2)

1
3

−
θ2

2

 
(−sn2(B) dn2(B)

+ cn2(B) dn2(B) − m cn2(B) sn2(B))(dn2(B) + m cn2(B) − m sn2(B))

− 6m cn2(B) sn2(B) dn2(B)
 

.

Now as in the case of solitary-wave solutions, the Eqs. (4.2) may be integrated numerically if an initial particle location
(ξ0, ζ0) is given. On the other hand, since the fluid particles may not be displaced a great deal from their initial position
during the passage of a surface wave, the approximation (3.5) may also be used to describe the particle paths in the periodic
case. To this end, we use (4.2) with the right-hand side fixed at the initial particle location. Then using the relation (2.11), it
is found that the x-component of the particle path is given by

ξ̄ − ξ0 =

 t

0


wθ

+
1
2
(θ2

− ζ 2
0 )wθ

xx


dt ′

=

 t

0


η −

1
4
η2

+


1
3

−
θ2

2


ηθ
xx


dt ′ +

1
2
(θ2

− ζ 2
0 )

 t

0
wθ

xx dt
′,
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where the integrands are all evaluated at (ξ0, t ′). Note further that the x-derivatives can be written as t derivatives, so that

ξ̄ − ξ0 =

 t

0


η −

1
4
η2


dt ′ +


−

1
c


1
3

−
θ2

2


ηx −

1
2c

(θ2
− ζ 2

0 )wθ
x

t

0
.

We define B0(t) =

√
3
2 (f1 − f3)1/2(ξ0 − ct), and note that t

0


η −

1
4
η2


dt ′ =


f2 −

f 22
4


t −

(f1 − f2)
√
3c(f1 − f3)1/2

(2 − f2)
 B0(t)

B0(0)
cn2(B) dB

+
(f1 − f2)2

2
√
3c(f1 − f3)1/2

 B0(t)

B0(0)
cn4(B) dB.

The last two integrals are given by
cn2(B)dB = B −

B

m
+

E(am(B),m)

m
, (4.3)

and 
cn4(B)dB =


2 −

2
m

 
cn2(B)dB −

B

m2


4
3

−
7
3
m + m2


+

2
3
2 − m
m2

E(am(B),m) +
1
3m

cn(B)sn(B)dn(B).

Here E(·,m) denotes the incomplete elliptic integral of the second kind and am(·,m) is the Jacobi amplitude function [29].
The z-component of the particle location is treated in a similar way, and substituting the expressions found above, the
particle paths are given by the parametric curve

ξ̄ (t) − X0 =


f2 −

f 22
4


t −

(f1 − f2)
√
3c(f1 − f3)1/2

(2 − f2)

B0 −

B0

m
+

E(am(B0),m)

m


+

(f1 − f2)2

2
√
3c(f1 − f3)1/2


1 −

5
3m

+
2

3m2


B0 +

2(2m − 1)
3m2

E(am(B0),m)

+
1
3m

cn(B0)sn(B0)dn(B0)


+

√
3
c

(f1 − f3)1/2(f1 − f2)cn(B0)sn(B0)dn(B0)

×


1
3

−
ζ 2
0

2
+

1
4
(θ2

− ζ 2
0 )


− f2 + (f1 − f2)cn2(B0)

+ 6(f1 − f3)

1
3

−
θ2

2


(dn2(B0) + m cn2(B0) − m sn2(B0))

 
and

ζ̄ (t) − Z0 =
ζ0

c


f2 +

f 22
4

− (f1 − f2)

1 −

f2
2


cn2(B0) −

(f1 − f2)2

4
cn4(B0)

+
3
2
(f1 − f3)(f1 − f2)


1
3

−
θ2

2


[sn2(B0) dn2(B0)

− cn2(B0) dn2(B0) + mcn2(B0) sn2(B0)]


.

As before, the constants X0 and Z0 denote the difference between the initial particle locations and the expressions of the
right-hand sides when evaluated at t = 0 (i.e. atB0(0) =

√
3
2 (f1 − f3)1/2ξ0). Although these expressions can be programmed

easily, their length makes them somewhat impractical. Moreover, these approximations suffer from the same problem as
the approximate particle paths (3.6) associated to solitary waves, namely that the horizontal excursion is underestimated.
A more satisfactory approach is the direct integration of the differential equations (4.2) by a high-order numerical method,
in the same way as (3.4) was solved in the previous section. Of course, here, the expressions for w and its derivatives given
above must be used.

Some examples of particle paths will now be presented. We first consider periodic traveling waves in the configuration
where the trough of the wave coincides with the undisturbed fluid surface. In this case, the cnoidal wave resembles a train
of solitary waves, and if the wavelength is large, it approximates the solitary wave. In Fig. 6, particle paths (ξ , ζ ) are shown
for one cycle using the Runge–Kutta method. It is evident that the particle paths look similar to those below a solitary wave.
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Fig. 6. A periodic wave with wavelength 7.3108, period 7.6956 and phase speed c = 0.95 is shown at t = 0 (light-gray), t = 5 (dark-gray) and t = 10
(black). The solid part of the curve is kept constant, indicating the movement of the surface. The path of a particle initially located at (x, z) = (4, 1) is
shown. The right panel shows a close-up of the lower turning point.

Fig. 7. A periodic wave with wavelength 7.3108, period 7.6956 and phase speed c = 0.95 is shown at t = 0 (light-gray) and t = 22 (black). The solid part
of the curve is kept constant, indicating the movement of the surface. The paths of particles initially located at (4, 0.8), (4, 0.5) and (5, 0.2) are shown. In
the right panel, a closeup of the path of a particle located initially at (4, 0.8) is shown, and compared to the approximate trajectory (ξ̄ , ζ̄ ), which is shown
as a dashed curve.

The periodicity however is still important as the closeup shows. There, we see that the particle actually completes a small
elliptic cycle before it turns up again, and rides into the next wave.

In Fig. 7, a train of cnoidal waves is shown, and a comparison between the numerical integration of (4.2) and the
asymptotic approximation (ξ̄ , ζ̄ ) is made. The particles closer to the bottom have smaller vertical speed, and smaller total
vertical excursion. It is also visible that the asymptotic approximation (ξ̄ , ζ̄ ) yields a shorter particle path. This is similar to
the results concerning particle paths beneath solitary waves in the previous section.

If the crest and trough of the cnoidal wave are taken to be such that the mean level is zero, then the particle paths are
nearly closed. For small amplitudes, these waves can be approximated by the sinusoidal waves which are the hallmark of
the linearized water-wave problem. Fig. 8 shows some particle paths below a periodic cnoidal wave with amplitude 0.06,
and wavelength 2π . The crest of the wave is centered at x = 0, and the particles are initially located at x = π/2, and
z = 0.1, 0.2 · · · 1. The dashed curves indicate particle paths given by (ξ̄ , ζ̄ ). In the right panel of Fig. 8, it can be seen that
when the approximation (ξ̄ , ζ̄ ) is used, then the particle paths are nearly closed. However, there is a slight defect, which
can already by anticipated by observing that the horizontal excursion of the particles is too short both in the case of solitary
waves (Fig. 4), and in the previous case shown in Figs. 6 and 7. Thus in this case, as opposed to the linearwater-wave problem,
the particle paths are not completely closed if the approximation (3.5) for (ξ̄ , ζ̄ ) is made. In column 4 of Tables 1 and 2, the
backward drift due to this defect is tabulated as a function of the wave amplitude at the surface. Note that the defect does
not depend on the initial depth of the particle, a fact which can be understood by examining the formula for (ξ̄ , ζ̄ ), and
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Fig. 8. This figure shows the full cycle of a periodic traveling wave with amplitude 0.06 and wavelength 2π . Paths of particles initially located at x = π/2
and a variety of initial depths are shown. The dashed curves are obtained with the formula for (ξ̄ , ζ̄ ). The trajectory indicated by a solid curve in the right
panel is obtained by numerical approximation.

Table 1
The first three columns of this table show the amplitude, time period, and phase speed of a periodic traveling-wave solution
of the KdV equation. The wavelength is λ = 2π . The fourth column shows the defect in the particle paths after one period if
the approximation (ξ̄ , ζ̄ ) is used. The fifth column shows the actual forward drift for a particle located initially at a depth of
ζ0 = 0.5, computed using equation (4.4). The sixth column shows the Stokes drift of a linear wave of the same wavelength
and amplitude, and for a particle located at the same position. The phase speed of the linear wave is 0.8727.

Amplitude Period Phase speed Defect Forward drift Stokes drift

0.06 7.5214 0.8354 −0.0004 0.0016 0.0018
0.12 7.4676 0.8414 −0.0018 0.0073 0.0070
0.18 7.3814 0.8512 −0.0040 0.0186 0.0158
0.24 7.2672 0.8646 −0.0070 0.0384 0.0281
0.30 7.1301 0.8812 −0.0109 0.0691 0.0439

Table 2
The first three columns of this table show the amplitude, time period, and phase speed of a periodic traveling-wave solution
of the KdV equation. The wavelength is λ = 5π . The fourth column shows the defect in the particle paths after one period
if the approximation (ξ̄ , ζ̄ ) is used. The fifth column shows the actual forward drift for a particle located initially at a depth
of ζ0 = 0.8, computed using Eq. (4.4). The sixth column shows the Stokes drift of a linear wave of the same wavelength and
amplitude, and for a particle located at the same position. The phase speed of the linear wave is 0.9746.

Amplitude Period Phase speed Defect Forward drift Stokes drift

0.06 15.9517 0.9850 −0.0004 0.0017 0.0020
0.12 15.5134 1.0127 −0.0016 0.0072 0.0081
0.18 14.9893 1.0480 −0.0029 0.0176 0.0181
0.24 14.4461 1.0874 −0.0055 0.0342 0.0323
0.30 13.9093 1.1293 −0.0081 0.0590 0.0504

observing that the part which depends on ζ0 is periodic. In the linear water-wave problem, it is customary to approximate
the integrands at the central point of the particle path, but hereweused the initial point in order to approximate the integrals
involved in evaluating the particle paths. Experimentation with different fixed locations did not yield a great variation in
the particle paths in the case of the cnoidal traveling waves. In particular, it was not possible to find closed curves for (ξ̄ , ζ̄ ).

In the right panel of Fig. 8, the solid curve indicates the numerical approximation of a particle path starting at (x, z) =

(π/2, 0.6). It is clear from this picture that if the numerical solution is used, then the particles experience a forward drift,
similar to thewell known Stokes drift in the linear approximation. In column 5 of Tables 1 and 2, the forward drift during one
period is computed by using the Runge–Kutta method, and for comparison, the Stokes drift as computed by a second-order
Taylor expansion for linear periodic water waves is shown in column 6. In the present non-dimensional case, the formula is
given by

ūL = a2ωk
cosh 2kz
2 sinh2 k

, (4.4)

where ω =
√
k tanh k, and z is measured from the horizontal bottom.



702 H. Borluk, H. Kalisch / Wave Motion 49 (2012) 691–709

Fig. 9. This figure shows a wave with wavelength 15.659. The upper left panel shows 1.5 wavelengths of the surface wave, and a number of particle
trajectories (ξ , ζ ) with initial x-coordinates x = 0 and x = 7.829, and initial z-coordinates z = 0.25, z = 0.5 and z = 0.8. A close-up of particle paths
starting below the crest and below the trough of the surface wave is shown in the upper right panel. The lower panels show even closer pictures of the
particle paths, and comparisons to the approximate particle paths (ξ̄ , ζ̄ ) which are displayed as dashes curves.

Table 2 shows a comparison of the defect in the particle path given by (ξ̄ , ζ̄ ), the forward drift experienced by the
numerical approximation of (ξ , ζ ), and the Stokes drift for a linear periodic wave of the same amplitude. Here, the
wavelength of the cnoidal travelingwave is 5π .Wenote that the forward drift in theKdV approximation agreeswellwith the
Stokes drift, for small amplitudes, but becomes larger than the Stokes drift with increasing amplitude. Although not shown
here, it appears that the forward drift dependsmore strongly on the initial position of the particle in the KdV approximation
than in the linear approximation. Further examples of the forward drift of a particle during one period are shown in Fig. 9.
The evolution of a particle in the surface during several cycles of a periodic wave is shown in Fig. 10.

5. Particle paths in soliton interactions

As mentioned in the introduction, the KdV equation features exact two-soliton solutions given in closed form [30]. With
such a formula in hand, one may then use (2.7)–(2.9) to find the velocity field associated to the interaction of two solitary
waves on the surface. The two-soliton solution of the KdV equation is given by

η(x, t) = 32
k21E1 + k22E2 + 2(k1 − k2)2E1E2 + A(k21E2 + k22E1)E1E2

(1 + E1 + E2 + AE1E2)2
. (5.1)

Here ki, i = 1, 2 are the wave numbers, x0i, i = 1, 2 are arbitrary phases, A is given by A = (k1 − k2)2/(k1 + k2)2 and

Ei = exp{2
√
6ki(x − x0i − (1 + 4k2i )t)}, i = 1, 2.

Note that this formula reduces correctly to the one-soliton solution if k1 or k2 are taken as zero. For example if k2 = 0, (5.1)
takes the form

η(x, t) = 8k21 sech
2

2
√
6k1(x − x01 − (1 + 4k21)t)


.
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Fig. 10. A periodic wave with wavelength 6.08, period 7.35 and phase speed c = 0.827 and mean zero is shown at t = 0 (light-gray) and t = 2, t = 5,
t = 9 and t = 13 (black). The solid part of the curve is kept constant, indicating the movement of the surface. The path of a particle initially located at
(3.04, 0.907) is shown.

Using (2.11) in the expressions of horizontal and vertical velocities, given by (2.7) and (2.8), respectively, one can
write

u(x, z, t) = η −
1
4
η2

+
1
3
ηxx −

1
2
z2ηxx +

1
2
(θ2

− z2)

−

1
2
(η2

x + ηηxx) +


−

θ2

2
+

1
3


ηxxxx


,

and

v(x, z, t) = −z

ηx −

1
2
ηηx +


1
3

−
θ2

2


ηxxx


.

It appears that evaluation of the velocity field involves finding the spatial derivatives of η up to order 4. This task can
be carried out efficiently with the software package Maple for instance. Since the formulas are rather expansive, they have
been tabulated in the Appendix for the reader’s convenience.

Once the horizontal and vertical velocities are evaluated, they can be inserted into the differential equations (3.4), and
these can be integrated numerically using the four-stage Runge–Kutta scheme. As in the previous sections, this strategy
yields approximations to the parametric curves traced out by particles in the fluid. An example is shown in Figs. 11 and 12.
Therewe have chosen k1 = 0.1 and k1 = 0.24, corresponding to solitarywaveswith amplitudes 0.08 and 0.46, respectively.
Fig. 11 shows the trajectory during a soliton-interaction of a particle located close to the free surface. Fig. 12 shows particle
paths for a number of particles located at a greater depth. Finally, Fig. 13 shows a comparison of particle paths due to the
interaction of solitary waves, and paths due to the individual solitary waves.
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Fig. 11. This figure shows the interaction of two solitary waves with amplitudes 0.08 and 0.46. The wave is shown at t = 0 (light-gray), t = 6 (dark-gray)
and t = 15 (black). The trajectory of a fluid particle located close to the free surface is by the thin black curve, and the particle positions at the three times
where the wave is shown is indicated by dots.

Fig. 12. This figure shows the interaction of two solitary waves with amplitudes 0.08 and 0.46. Several particle paths are shown for particles originally
located at depth z = 0.5. The initial x-coordinates are x = −21, x = −14, x = −7, x = 0, x = 7, x = 14, and x = 21.

6. Conclusion

In this article, it has been shown that the KdV approximation may be used to describe the motion of particles in the fluid
column below a surface wave. While solutions of the KdV equation represent wave patterns at the surface of the fluid, the
derivation of the KdV equation shows that it is possible to deduce expressions for the velocity field of the fluid below the
surface. The particle paths are described by two coupled ordinary differential equations which are defined in terms of the
velocity field associated to a surface wave.

The solutions can be approximated in two ways. First, the particle location is assumed fixed on the right-hand side
of each equation, and this method yields an exact formula which is valid asymptotically in the limit of small amplitude.
This technique hails from the study of the linear water-wave problem where it can be used to show that particle paths in
linear water waves are close to ellipses (however, as shown in [9,11], particle paths due to periodic surface waves are never
closed, not even in the linear approximation). The second method of approximation is the direct numerical integration of
the ordinary differential equations governing the particle motion. Also here, the KdV approximation is crucial in providing
explicit formulas which can then be integrated numerically.

A number of tests have been performed on the resulting approximations of the particle paths. We have computed the
mass flux due to a surface solitary wave, and the forward drift due to a periodic cnoidal surface wave. In all cases, it
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Fig. 13. This figure shows particle paths associated with the interaction of two solitary waves with amplitudes 0.08 and 0.46. The particles are originally
located at z = 0.65, x = 0 (left panel), and x = 10 (right panel). The dashed–dotted curves represent the corresponding particle paths associated to the
passage of a single solitary wave.

appears that the numerical integration of the equations gives more favorable results. However, just as in the linear case,
the asymptotic small-amplitude approximation is also useful because it is given in exact form.

Finally, it should be mentioned that the velocity field (2.7), (2.8) constructed from the derivation of the KdV equation is
irrotational and incompressible up to the same order as the KdV equation is valid. This can be seen immediately from the
discussion surrounding the derivation of the equation in [6].
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Appendix

The first four spatial derivatives of η(x, t) given by (5.1) are tabulated.

ηx =
1

(1 + E2 + E1 + AE1E2)2
{2 k3

√
6E1 + 2 l3

√
6E2 + 4 (k − l)2

√
6kE1E2

+ 4 (k − l)2E1
√
6lE2 + A(2 l2

√
6kE1 + 2 k2

√
6lE2)E1E2
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√
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√
6lE2}
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√
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