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1. Introduction
Various properties of wind-generated waves in coastal regions are significantly differ-

ent from those in deep water regions. The differences are largely due to the influence of
bathymetry, which is more pronounced in shallower water.

In general, deep water waves are considered a Gaussian random process with only minor
discrepancies between the observed and theoretical probability density functions. The devi-
ations from the Gaussian model are exhibited by that fact that high crests are observed more
frequently than deep troughs (Holthuijsen 2007). In shallow water, these deviations are more
pronounced due to the relative importance of non-linearity in these waves. Indeed irregu-
larities in bathymetry, changes in wave height and wave steepness as the mean water depth
decreases towards the shore affect wave properties and their probability distribution as a re-
sult. The steepening process near shore causes higher and sharper wave crests and shallower
and flatter wave troughs. Under such conditions, the Gaussian model is no longer sufficient for
describing wave behaviour as it underestimates the higher values and overestimates the lower
values of the observed surface elevation. Hence, a non-Gaussian probability density function
has to be applied for representing shallow water wave profiles (Ochi and Wang 1985).

Previous statistical analyses on the non-Gaussian characteristics of coastal waves include
the results of Ochi et al. (1982) and Ochi and Wang (1985). In these works, wave records were
obtained at a location along the CERC Field Research Facility at Duck North Carolina. These
wave records were taken during the growth stage of a storm in the ARSLOE project. The
results show that the skewness of the distribution modelling the free surface elevation was the
dominant parameter affecting the degree of deviation from the Gaussian model. To account
for the skewness, a non-Gaussian probability density function was used to more accurately
represent the distribution of the free surface elevation near the shore. The Gram-Charlier
probability density function showed good agreement with the histograms of the surface eleva-
tion obtained near the shore in both studies.

While the studies mentioned above are based on measurements, the present study embod-
ies a numerical framework for estimating the coastal surface elevation distribution. As will
be elaborated on in this paper, the combination of linear shoaling theory in deep water and
non-linear cnoidal theory in shallow waters yields good agreement with the experimental re-
sults found in the above studies. In particular, with the numerical approach used in the present
paper, the distribution of the free surface elevation is also found to be non-Gaussian and well
represented by a Gram-Charlier distribution.

2. Background
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In shoaling processes, wave energy is generally conserved while wave momentum may
vary. The linear theory of wave shoaling imposes energy conservation to obtain the wave
height of a shoaling wave. For the nonlinear case, momentum and energy balances are de-
scribed using the KdV equation together with periodic cnoidal wave solutions.

Linear wave theory is generally limited to small-steepness, small amplitude surface gravity
waves. This implies that a/λ � 1 and a/h � 1, respectively (Kundu and Cohen 2001).
Here, a is the amplitude, λ is the wavelength and h is the depth. The solution to the linear
problem is found by assuming the surface elevation η takes the form of a simple sinusoidal
wave propagating in the positive x-direction

η(x, t) = acos(kx− ω(k)t), (1)

where k is the wave number and ω is given by the dispersion relation ω(k) =
√
gk tanh kh.

The velocity potential is given by

φ(x, z, t) =
aω(k)

k

cosh(k(z + h))

sinh(kh)
sin(kx− ω(k)t). (2)

In shoaling processes, the wave speed generally decreases, and as a consequence, the
kinetic energy decreases. However, the total energy of a wave consists of both kinetic energy
and potential energy which is conserved. A direct result of the decrease in the kinetic energy
is then an increase in potential energy which is found to be directly proportional to the wave
height. Consider first the energy per unit horizontal area

E =
1

λ

∫ λ

0

∫ 0

−h

[ρ
2
| ∇φ |2 +ρgz

]
dzdx. (3)

Substituting the solution of the velocity potential (2), and computing the integrals gives the
expression

E =
1

8
ρgH2 (4)

for the total energy. Now, the phase speed c is defined as c = ω
k
=
√

g
k
tanh kh, and so the

group velocity (the velocity with which the overall envelope shape of the wave propagates) is

cg =
dω

dk
=
c

2

[
1 +

2kh

sinh(2kh)

]
(5)

Conservation of the energy flux Ecg then implies that the wave height H at a current depth is
solely determined by the wave height at the offshore depth and the respective group velocities
at each depth. Namely H = H0

√
cg0
cg
, where the subscript ’0’ denotes the offshore depth

(Sorensen 1993). To close the problem, conservation of the wave period T can be used in
combination with the dispersion relation, leading to the equation 2π

T
− gk tanh (kh) = 0,

which can be solved for k numerically, so that H may be determined at the shoaling depth.
When waves become too steep or the local depth becomes too shallow, the assumptions

of linear theory are no longer satisfied and a new, higher-order framework is required. The
Korteweg-de Vries equation is one example of such a framework and has been used with its
cnoidal solution to describe wave behaviour during shoaling processes. Previous studies on
the shoaling of non-linear cnoidal waves were presented by Ostrovskiy and Pelinovskiy (1970)
and Svendsen and Brink-Kjær (1972), Svendsen and Buhr Hansen (1977).
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The Korteweg-de Vries (KdV) equation is a weakly non-linear dispersive model equation
given in dimensional variables by

ηt + c0ηx +
3

2

c0
h0
ηηx +

c0h
2
0

6
ηxxx = 0 (6)

where c0 denotes the shallow water approximation of the phase speed and h0 denotes the local
water depth. The KdV equation has an exact travelling wave solution given by

η(x, t) = f2 + (f1 − f2)cn2

(√
3(f1 − f3)

4h30
(x− ct);m

)
, (7)

where f1 is the wave crest, f2 is the wave trough, m is the elliptic parameter, cn is the Jacobian
elliptic function and f3 = f1− 1

m
(f1−f2). The wave speed c and wavelength λ can be defined

as

c = c0

(
1 +

f1 + f2 + f3
2h0

)
and λ = K(m)

√
16h30

3(f1 − f3)
(8)

where K(m) is the complete elliptic integral of the first kind. It has been shown (Ali and
Kalisch 2010, Ali and Kalisch 2012, Ali and Kalisch 2014) that the energy balance in the
KdV equation is given by

∂

∂t
E +

∂

∂x
qE = 0 (9)

to the second order, where

E = c20

(
1

h0η2
+

1

4h20
η3 +

h0
6
ηηxx +

h0
6
η2x

)
(10)

and

qE = c30

(
1

h0
η2 +

5

4h20
η3 +

h0
2
ηηxx

)
. (11)

The wave height of a shoaling wave can now be determined by imposing preservation of
wave frequency, conservation of mass and conservation of energy. Thus, if the wave motion
at a certain water depth hA is given, the wave height at water depth h was found by Khorsand
and Kalisch (2014) to be given by the following equations:

cA
λA

=
c

λ
,

∫ T

0

qEA
dt =

∫ T

0

qEdt,

∫ λ

0

ηAdx =

∫ λ

0

ηdx.

Using the stationary solution of the KdV equation (7) with wave speed and wavelength given
in (8) and also utilizing the energy flux (11), a system of three non-linear equations that can
be solved for f1, f2 and f3 and the height of a wave at depth h can be determined. For more
details on the numerical procedure see Paulsen and Kalisch (2022).

Sea surface elevation is typically modelled by a Gaussian distribution. An alternative
model is provided by the two-parameter Gram-Charlier distribution, obtained by perturbing a
standard Gaussian density by Hermite polynomials. It is formally defined by

f(z) =

(
1 +

√
β1
3!

H3(z) +
β2 − 3

4!
H4(z)

)
p(z) (12)
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Figure 1: The red lines define the admissibility region of the parameters of the Gram-Charlier
density.

where p(z) is the standard normal distribution,

Hn(z) = (−1)nd
np

dzn
1

p(z)

is the nth-order Hermite polynomial, and β1 and β2 are a skewness and a kurtosis parameter,
respectively. When β1 = 0 and β2 = 3, f(z) reduces to a standard Normal distribution.

The function (12) is however a proper probability density distribution only when the pa-
rameters γ1 =

√
β1 and γ2 = (β2 − 3) lie within a specific admissibility region, such as

found by Barton and Dennis (1952). The region of admissibility is displayed in Figure 1
This restriction complicates maximum likelihood estimation of the parameters which can be
obtained by a maximization algorithm with nonlinear constraints. We obtained parameter esti-
mates by exploiting a simple grid search algorithm that explores the likelihood surface within
the admissibility region.

3. Application
For a given sea state with significant wave height Hs = 1, 2, 3m and peak period Tp =

8, 10, 12s, Rayleigh-distributed wave heights were randomly sampled. The non-linear transfer
function implemented by Paulsen and Kalisch (2022) was then readily applied to each sample
with their corresponding frequency f = 1/T to acquire the local wave heights, wave lengths,
modulus m and root solutions f2 in shallow water.

To compute the surface elevation η in both deep and shallow water, the parameter m was
used as a switch. Using each mi to calculate K(mi) which is the complete elliptic integral of
first kind, the Jacobian elliptic function cn was computed for each mi. Now, m gives periodic
waves for 0 ≤ m < 1. For the case m = 0, the cnoidal solution given in (7) reduces to the
linear solution given in (1). The surface elevation of each individual wave was then computed
at 100 uniformly spaced grid points xi so that −λi

2
≤ xi ≤ λi

2
, using either the linear or

non-linear solution depending on the nature of the wave.
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Table 1: Estimated values of γ1, γ2 and σ for simulated sea states with T = 8s.

Hs,0 Hs γ1 γ2 σ β1 β2
1m 1.05m 0.517 0.552 0.249 0.267 3.552
2m 2.05m 0.879 1.379 0.512 0.773 4.379
3m 3.18m 0.983 1.793 0.731 0.966 4.793

Figure 2: Distribution of wave height at 70m depth (left) and at 5m depth (right), given a
period T = 8s. The continuous line shows the fit of the Rayleigh distribution.

A statistical analysis of both the wave height and the surface elevation was then carried
out.

Deep water and coastal depth were set equal to 70m and 5m, respectively. Table 1 shows
the estimated values of the skewness (γ1) and kurtosis (γ2) parameters of the Gram-Charlier
distribution as well as the standard deviation (σ) of the normal distribution p(z). The param-
eter Hs,0 defines the significant wave height in deep water whereas Hs denotes the shallow
water significant wave height.

Figure 2 shows that the Rayleigh distribution nicely fits wave height at both 70m and 5m
depth (Kolmogorov-Smirnov test p = 0.77). Figure 3 displays individual wave profiles as
function of wave length λ. An increase in wave height and decrease in wavelength can be
observed while the frequency remains constant in each case. This is due to the group velocity
changing with water depth. A decrease in the group velocity is analogous to a decrease in the
wave-energy transport velocity and must be compensated for. Since wave energy is conserved,
a decrease in the kinetic energy leads accordingly to an increase in the potential energy and
thus an increase in wave height.

Figure 4 shows the obtained histograms of the free surface elevation. The Gaussian distri-
bution (solid line) fits the data well in deep water. Regarding the surface elevation in shallow
water, the results vary depending on the significant wave height. As can be observed, sea
states with a smaller significant wave height are in general better approximated by a Gram-
Charlier density. As the significant wave height increases, the surface elevation data becomes
excessively skewed which can possibly be explained by the non-linearity of the waves. Recall
that the modulus m ∈ [0, 1) gives periodic waves. For m = 0, the solution to the problem is
given in terms of (1). When the non-linear terms are more dominant however, the parameter
m increases and causes a surface deformation in the form of sharper crests and flatter troughs
which can be seen in the histograms. In general, the non-linear terms seem more dominant in
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Figure 3: Surface elevation η at 70m and at 5m depth for waves with T = 8s over each of
their respective wavelengths λ. Left: Hs,0 = 1, 2, 3m. Right: Hs = 1.05, 2, 2.05m
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Figure 4: Histograms of surface elevation η at 70m and at 5m depth for waves with T = 8s.
Left: Hs,0 = 1, 2, 3m. Right: Hs = 1.05, 2, 2.05m
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(a) γ1 = 0.517 and γ2 = 0.552 (b) γ1 = 0.879 and γ2 = 1.379

(c) γ1 = 0.983 and γ2 = 1.793

Figure 5: γ1, γ2 plane showing estimated parameters of the Gram-Charlier type-A expansion
for waves with T = 8s. Color contours indicate the values oof the negative log-likelihood
function.

the sea states with an original significant wave height Hs,0 = 3m.

4. Discussion
Non-Gaussian behaviour of the free surface elevation in shallow water has been investi-

gated for sea states consisting of waves with a single frequency. The wave heights obtained at
5m depth can still be considered Rayleigh distributed, but the surface elevation is not Gaus-
sian distributed. As found in the field data collected by Ochi and Wang (1985), the distribution
of the simulated surface elevation is decribed to a satisfactory degree by the Gram-Charlier
series. However, the histograms of the surface elevation became excessively skewed for sea
states with an offshore significant wave height of Hs,0 = 3m or higher. A natural extension
to these experiments would be the investigation of the limiting sea severity above which the
Gram-Charlier series is no longer accurate in describing the distribution of the free surface
elevation in shallow waters. A comparison between the Gram-Charlier series and the Tayfun
distribution could then be carried out to identify which distribution is most accurate depend-
ing on the sea severity. It was also observed that the significant wave height did not change
significantly after the non-linear transfer function was applied, even though the wave shape
did undergo a noticeable change in the form of sharper crests and flatter troughs. Since the
model used in this work does not take into account wave breaking. Wave breaking can be
included in the present model in a way similar to the work of Bjørkavåg and Kalisch (2011),
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and further studies could involve the investigation of a region between the linear region and re-
gion dominated by non-linear effects where the waves have not yet reached breaking point but
the significant wave height of the sea state undergoes a noticeable change during the shoaling
process. In particular, it would be interesting to see whether waveheights follow the Gamma
distribution observed in (Ochi and Wang, 1985) for locations in shallow water. However, this
result likely relies on wave breaking dissipation, and may require more in-depth studies using
a Boussinesq-type nearshore wave model such as the one put forward by Roeber and Cheung
(2010).
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