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Abstract

Using a model equation for the evolution of long waves at the surface of an incom-
pressible fluid, the number of rapid oscillations of an undular bore is estimated.
The estimate relies on the analysis of the Burgers-KdV equation in spaces of
analytic functions. Special attention is paid to the effect of viscosity.
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1 Introduction

The tidal bore is a well known phenomenon in fluid mechanics, having been observed in many
rivers around the world. Two of the better known rivers where bores regularly appear are the
Severn River in England [20] and the Qiantang River in China [18]. The usual circumstances
in which a bore can appear develop when a tidal swell causes a difference in surface elevation
in the mouth of a river or further upstream. In this case, long waves start to propagate
upstream, and if the conditions are favorable, the main front steepens, and a nearly steady
transition profile develops. Through field measurements and experiments [10] and [17], it has
been found that bores appear in two types. If the ratio of the difference in surface elevation
between the two uniform states to the undisturbed depth is greater than approximately 0.75,
a so-called turbulent bore may be seen. If this ratio is smaller than 0.28, then the bore
tends to exhibit undular character, in other words, the bore will feature oscillations in the
downstream part. If the ratio is between 0.28 and 0.75, the bore will be turbulent, but also
feature some oscillations.

Quite commonly, the bore is studied in the context of shallow-water theory. In this case,
an analysis using conservation of mass and momentum shows that energy must be lost at the
front of the bore. In the case of an undular bore, the energy is thought to be disseminated
through an increasing number of oscillations behind the bore, while in the turbulent bore, the
energy appears to dissipate through turbulent motion at the front of the bore. A turbulent
bore featuring some undulations experiences both types of energy loss.

In the case of a purely undular bore, the transition from low to high surface elevation is
rather gentle, so that a long-wave approximation is justified. Moreover, as the difference in
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amplitude is small, the assumption of small amplitude may also be used, so that an equation
like the Korteweg-deVries (KdV) equation can be used. In dimensional variables, this equation
takes the form

(1.1) ηt + c0ηx +
3

2

c0
h0

ηηx +
1

6
c0h

2
0ηxxx = 0,

where η is the deflection of the free surface, h0 is the undisturbed depth of the river, c0 =
√
gh0

is the limiting long-wave speed, and g is the gravitational acceleration.
To recall the rationale behind using this equation, we first note that the flow is assumed

in a channel or a river whose breadth is hardly varying. Thus it is reasonable to neglect
transverse effects. It is also assumed that the river bed is essentially flat. Now if the surface
is slowly varying, i.e. if waves are long compared to the depth of the water, and if the change
in wave amplitude is also subtle, then the KdV equation is thought to be a reasonable model
on short to intermediate time scales for waves that propagate mainly in the direction of
increasing values of x.

There have been a number of studies aimed at understanding whether the use of the KdV
equation in the description of an undular bore can account for the loss of energy exhibited in
the shallow-water theory. Assuming a wavetrain of cnoidal waves behind the bore, Benjamin
and Lighthill [1] found that the loss of energy in the front, and the energy contained in the
dispersive tail do not agree, thus concluding that dissipation is required even in a purely
undular bore. Using experimental results of Favre [10], Sturtevant [22] also found that when
the undulations are assumed to have cnoidal shape, there is some excess energy which he
attributed to the existence of a boundary layer behind the bore. According to his computa-
tions, up to 20% of the excess energy is dissipated by the boundary layer. In light of these
findings, it seems expedient to include some form of dissipation directly into the model equa-
tion. Perhaps the most obvious way to include viscosity into the description is to consider
the so-called KdV-Burgers equation

(1.2) ut + uux + uxxx = νuxx.

This equation appears in non-dimensional form, and in a frame of reference moving with the
linear long wave speed c0. The variable u(x, t) now denotes the nondimensional deflection of
the free surface, and the parameter ν represents viscous effects. A formal derivation of (1.2)
can be found for instance in [14]. It is evident that the coefficients multiplying the nonlinear
and dispersive terms in (1.1) have been scaled out, and appear in front of the dissipation
term in (1.2). Thus the parameter ν is not the viscosity per se, but is inversely proportional
to the Reynolds number. A dissipative Boussinesq system of similar character as (1.2) has
also appeared recently in [7] and [8]. A more sophisticated approach is to include viscous
effects only where they are strongest, namely in the boundary layer, thus paying heed to
the findings of Sturtevant [22]. Such an analysis leads to a different model equation which
features a nonlocal dissipative term, and a derivation of such an equation can be found in
the book by Johnson [15]. Still other types of equations are found if one uses a Chezy law
for bottom friction. This has been done for instance in the recent work of El, Grimshaw
and Kamchatnov [9]. They have also made progress using asymptotic methods applied to a
dissipative Boussinesq-type system to study the time development of an undular bore [8].

Beginning already with the work of Peregrine [19], recent studies of undular bores have
focused on the time-dependent problem, and in particular on the initial onset of the undular
bore and the nature of the developing oscillations. Since the energy at the bore is mainly
lost to oscillations, a complete understanding of the physical principles underlying bore-type
phenomena and connections with properties of mathematical models such as the ones just
mentioned must certainly be based on an understanding of these initial oscillations. On
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the basis of an analysis using the non-dissipative equation (1.1), Sturtevant expects that new
undulations will be generated continuously, and a long time after the bore has been generated,
there will be an infinite train of oscillations. On the other hand, Peregrine [19] states that he
believes the profile to approach a near-steady state, an outcome that appears to be closer to
what is observed in actual river bores. For the equation (1.2), it has been proven by Bona,
Rajopadhye and Schonbek [3, 4] that stationary profiles of the KdV-Burgers equation exist,
and that they are stable if the Reynolds number is not too big. Thus at least for the case
of the simple mathematical model (1.2), a steady profile is possible. If however the initial
wave form is far from the steady profile, then it is not clear how the undulations will develop.
Given the presence of the dissipative term νuxx, one might expect that any strong oscillations
will be damped immediately. However, according to the results of [3, 4, 9], if the parameter
ν is small enough, the solution might still have a growing number of oscillations.

In the present article, we are using a method based on rigorous estimates of the solutions
of the KdV-Burgers equation in spaces of analytic functions. Using these estimates, we make
a first attempt at giving an upper bound on the number of undulations that emerge from
an arbitrary initial wave profile. What we are able to show is that given a length scale L,
the number of rapid oscillations of u on an interval of length L is proportional to L, thus
also giving a lower bound on the average wavelength of these oscillations. This result follows
essentially from the analyticity of solutions of (1.2) in the space variable. This analyticity
imposes on the solution a certain rigidity which can be exploited to estimate the number
of critical points of the function. This in turn leads to an upper bound on the number
of oscillations of the surface. The paper is organized as follows. In the next section, the
initial-value problem is stated, and some notation established. In Section 3, estimates on the
solution are obtained. Finally, in Section 4, a bound on the number of rapid oscillations is
found.

2 Setting of the problem

We study the equation (1.2) with initial data given by u(x, 0) = u0(x). It is assumed that
the disturbance is localized enough so that boundary effects can be ignored. The equa-
tion will therefore be posed on an infinite interval, and it will be required that the solution
approaches two different surface elevations upstream and downstream of the bore, namely
limx→−∞ u(x, t) = ρ1 for all t, and limx→∞ u(x, t) = ρ2 for all t. The geometry of the
problem is schematized in Figure 1. To aid in the analysis of the initial-value problem, it
is convenient to use an analytic function h(x), with the same boundary values as u, and
to investigate the equation satisfied by v = u − h. As will become clear in a moment, the
function h(x) must be chosen in such a way that it can be continued to an analytic function
f(z) in some strip {z = x+ iy : |y| < σ} around the real axis. To make the computations as
explicit as possible we take the special form

(2.1) h(x) = ρ2 +
ρ1 − ρ2

2

[

1− tanh
(x

λ

)]

.

This function is analytic in the strip {z = x + iy : |y| < π/2λ}, and we have supx |h′(x)| =
ρ1−ρ2

2λ . The equation for v is

(2.2) vt + vvx + vxxx = νvxx − (vh)x + F,

where F = νhxx − hxxx − hhx. For (2.2), we consider the initial-value problem, with initial
data

(2.3) v(x, 0) = u0(x) − h(x).
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Figure 1: The solid curve shows the function h(x). The dashed curve represents a
possible surface profile, and the grey shaded area represents the river bed.

The well posedness of the initial-value problem (2.2), (2.3) has been studied in great detail in
[4]. There, it has been shown that under reasonable assumptions on the initial data, a unique
solutions exists. In particular, for smooth initial data v(x, 0) which are square-integrable on
the real line, a solution exists for all time. Here, we focus on analyticity properties of these
solutions. Extensive use will be made of the L2-norm, defined by

‖f‖2 =
∫ ∞

−∞
|f(x)|2 dx.

This norm can also be expressed via the inner product by ‖f‖2 = (f, f), where (f, g) =
∫∞
−∞ f(x)g(x) dx. Here it should be noted that all functions appearing are real when restricted
to the real axis. The Fourier transform of a function f is defined by

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(x)e−ixξ dx,

whenever the integral converges. The inverse Fourier transform is defined by

f(x) =
1√
2π

∫ ∞

−∞
f̂(ξ)eixξ dx.

Of course, for functions f ∈ L2(R), a limiting procedure has to be used to define f̂ . With the
help of the Fourier transform, we may define two operators A and eσA that will be of crucial
importance in the following development. For σ > 0, let

{Af}̂(ξ) = |ξ|f̂(ξ),
and

{eσAf}̂(ξ) = eσ|ξ|f̂(ξ).

The quantity ‖eσAf‖ can be used as a norm, and it is straightforward to check that a func-
tion for which ‖eσAf‖ is finite is the restriction to the real axis of a function analytic on a
symmetric strip of width 2σ. The strip {z = x+ iy : |y| < σ} will be denoted by Sσ, and the
upper and lower boundaries of Sσ will be denoted by Γσ and Γ−σ, respectively. The following
result gives a quantitative relation between ‖eσAf‖ and a path-integral over Γσ and Γ−σ.

Proposition 1 Let f ∈ L2(R) be a function for which ‖eσAf‖ is finite. Then f can be
continued analytically to the strip Sσ. Moreover, the following inequalities hold.

‖eσAf‖2 ≤
∫

Γσ

|f |2 dx+

∫

Γ
−σ

|f |2 dx ≤ 2 ‖eσAf‖2.
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Proof: This is essentially the Paley-Wiener theorem. The proof of the first part, i.e. that f
can be continued analytically to Sσ can be found in Katznelsen [16], page 174. To obtain

the estimate, one makes use of the identity {f(x− ia)}̂(ξ) = eaξf̂(ξ), which holds pointwise
so long as |a| < σ, and still holds in the L2 sense for |a| = σ. The estimate then follows by
taking the limit as a → ±σ, and using Plancherel’s formula and the dominated convergence
theorem. ✷

According to Proposition 1, the sum of the two integral expressions in the center of the
above inequality may be used as an equivalent norm, denoted by

‖f‖2σ =

∫

Γσ

|f |2 dx +

∫

Γ
−σ

|f |2 dx.

The number σ is called radius of analyticity.

3 Estimates on the solution

The main thrust in this section will be in the direction of obtaining analyticity in the spatial
variable. The first step is an priori estimate for square-integrable solutions. Namely, it will
be shown that the L2-norm of a solution can be controlled for all time.

Proposition 2 Suppose v is a smooth solution of (2.2) and (2.3) on R× (0, T ]. Suppose the
function h(x) is chosen as in (2.1). Then the L2-norm of v can be estimated according to

(3.1) ‖v(·, t)‖2 ≤ γ(t),

where

(3.2) γ(t) = e(
ρ1−ρ2

2λ +1)t‖v(·, 0)‖2 + te(
ρ1−ρ2

2λ +1)t ‖F‖2.

Proof: Multiply (1.2) by v, and integrate in x to obtain

1

2

d

dt

∫ ∞

−∞
v2 dx = ν

∫ ∞

−∞
vvxx dx+

∫ ∞

−∞
hvvx dx+

∫ ∞

−∞
vF dx.

Note that the nonlinear term and the term containing the third derivative integrate out. Two
integrations by parts yield

1

2

d

dt

∫ ∞

−∞
v2 dx+ ν

∫ ∞

−∞
v2x dx = −1

2

∫ ∞

−∞
v2hx dx+

∫ ∞

−∞
vF dx

≤ 1

2
sup
x

|hx| ‖v‖2 + ‖v‖‖F‖.

Noticing that the second term on the left is nonnegative, and using the inequality ab ≤
1
2a

2 + 1
2b

2, there appears

d

dt
‖v(·, t)‖2 ≤ sup

x
|hx(x)| ‖v‖2 + ‖v‖2 + ‖F‖2.

Finally, using Gronwall’s lemma, it follows that

‖v(·, t)‖2 ≤ e(supx |hx|+1)t‖v(·, 0)‖2 + te(supx |hx|+1)t ‖F‖2.

Noting that supx |hx| = (ρ1 − ρ2)/2λ finishes the proof. ✷
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Proposition 2 establishes a bound on the L2-norm of a smooth solution. The next order of
business is to establish analyticity of a solution v(x, t) as a function of x. Indeed, it will be
shown that any solution of (2.2) must be real-analytic, and can be extended analytically to a
strip Sσ about the real axis. Moreover, v(x, t) must satisfy a certain bound as stated in the
following theorem.

Theorem 1 Let v be a solution of (2.2) and (2.3), and let T > 0 be fixed. Let γ(T ) be
defined as in (3.2), let κ > 2, and define σT by

(3.3) σT = min

{

π

4λ
,
1

2

ν3

ν2(1 +H2) + 2κ2γ2(T ) + ν3(1 + C)

}

,

where H = supz∈Sπ/4λ
|h(z)|, and C =

∥

∥e
π
4λA(hhx + νhxx + hxxx)

∥

∥

2
. Then there exists a

t0 > 0, such that for any t with t0 ≤ t ≤ T , v(·, t) is analytic in SσT , and satisfies the bound

(3.4) ‖eσTAv(·, t)‖2 ≤ κγ(T ).

Before the proof can be given, a couple of lemmas are needed.

Lemma 1 Let f be a real-analytic function, such that ‖eσAf‖ and ‖eσAAf‖ are finite. Then
the following inequality holds.

(

eσA(ffx), e
σAf

)

≤ sup
x∈R

|eσAf(x)| ‖eσAf‖ ‖AeσAf‖.

Lemma 2 Let f be a real-analytic function, such that ‖eσAf‖ and ‖eσAAf‖ are finite. Let
h be defined as in (2.1). Then the following inequality holds for σ < π/2λ.

(

eσA(hf)x, e
σAf

)

≤ 2 sup
z∈Γσ∪Γ

−σ

{|h(z)|} ‖eσAf‖ ‖AeσAf‖.

The proof of these estimates is standard, and can be found for instance in [11, 12]. For the first
lemma, use Parseval’s formula to rewrite the inner product in terms of Fourier transforms.
Then use the triangle inequality on the exponential factors. For the second lemma, use
Cauchy-Schwarz, and then Proposition 1 and the equivalent norm ‖ · ‖σ.

Proof of Theorem 1: The proof will be obtained by providing an a priori bound on the
quantity ‖eσTAv(·, t)‖. To this end, a standard Galerkin procedure is employed. Notice that
the space of functions for which the norm ‖e π

4λAf‖ is finite is a separable Hilbert space, and
therefore has a countable orthogonal basis. Moreover, this space is also dense in any larger
space of functions for which the norm ‖eσAf‖ with σ < π/4 is finite. The solution v is now
approximated by a sequence of smooth functions which are analytic as functions of x, and
are also continuous as mappings t 7→ ‖e π

4λAv(·, t)‖.
A priori estimates are then obtained on the approximating functions. Since this procedure

and the ensuing limiting process are standard, we will write the estimates formally in terms
of v with the understanding that they are actually obtained for each member of the sequence
vn. Since they hold for each member of the sequence, they also hold for the limit v. The
a priori estimates are obtained by means of a differential inequality involving the operator
eσ(τ)A where the radius of analyticity is allowed to depend on τ . The differential inequality
is obtained in the following way. After applying the operator e2τA to the equation (2.2), take
the inner product of v and every term in the equation. Using the relation

d

dτ
(eτAv, eτAv) = 2 (AeτAv, eτAv) + 2 (eτAvτ , e

τAv),
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for the shifted function v(x, t− t0 + τ), there appears the inequality

1

2

d

dτ
‖eτAv‖2 − ‖AeτAv‖‖eτAv‖ ≤ −

(

eτA(vvx), e
τAv

)

−
(

eτA(hv)x, e
τAv

)

+ ν
(

eτAvxx, e
τAv

)

+
(

eτAF, eτAv
)

.

The term containing the third derivative is not present because the third derivative is skew-
adjoint. Using the estimates in Lemma 2 and Lemma 3, the Cauchy-Schwarz inequality, and
the basic inequality supx |f(x)| ≤ 1

2‖f‖
1

2 ‖Af‖ 1

2 , there appears

1

2

d

dτ
‖eτAv‖2 + ν‖AeτAv‖2 ≤ ‖eτAv‖‖AeτAv‖+ ‖eτAv‖ 3

2 ‖AeτAv‖ 3

2

+ sup
z∈Γτ∪Γ

−τ

|h(z)|‖eτAv‖‖AeτAv‖+ ‖eτAF‖‖eτAv‖.

Observe that supz∈Γτ∪Γ
−τ

|h(z)| is finite as long as τ < π/2λ. We will take τ < π/4λ to be
safely inside the domain of analyticity of h. Next, using Young’s inequality as before, and in
the form ab ≤ 1

pa
p + 1

q b
q, where 1

p + 1
q = 1 and q = 4 on the nonlinear term, there appears

the inequality

1

2

d

dτ
‖eτAv‖2 + ν‖AeτAv‖2 ≤ ν

2
‖AeτAv‖2 + 1

2ν

(

1 +H2
)

‖eτAv‖2

+
ν

2
‖AeτAv‖2 + 27

32

1

ν3
‖eτAv‖6

+
1

2
‖eτAF‖2 + 1

2
‖eτAv‖2,

where H = supz∈Sπ/4λ
|h(z)|. Finally, we obtain the differential inequality

(3.5)
d

dτ
‖etAv‖2 ≤ c1 ‖eτAv‖2 + c2 ‖eτAv‖6 + C,

where the constants c1 and c2 are given by

c1 =
1

ν
(1 +H2) + 1, and c2 =

2

ν3
.

Recall that C was defined by

C =
∥

∥e
π
4λAF

∥

∥

2
=

∥

∥e
π
4λA(hhx + νhxx + hxxx)

∥

∥

2
,

and that inequality (3.5) is valid as long as τ < π/4λ. To determine the radius of analyticity
at some t, first define

(3.6) t0 = min

{

π

4λ
,

(κ− 1)γ(T )

c1 κγ(T ) + c2 κ3γ3(T ) + C

}

.

The reason for this choice will become more transparent in a moment, as will the fact, that t0
can also be chosen smaller if necessary to allow for t0 < T . On the other hand, t0 decreases as
a function of T , so that a large enough choice of T will also suffice. Pick a time t in the interval
[t0, T ], and observe that ‖v(·, t− t0)‖2 ≤ γ(T ) by Proposition 2. Since ‖eτAv(·, t− t0 + τ)‖ is
a continuous function of τ , it is apparent that the inequality

(3.7) ‖eτAv(·, t− t0 + τ)‖2 ≤ κ γ(T )
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will hold for κ > 2 and small enough τ . Thus for those τ , the differential inequality (3.5)
becomes

d

dτ
‖eτAv(·, t− t0 + τ)‖2 ≤ c1 κγ(T ) + c2 κ

3γ3(T ) + C.

Integrating this relation yields

‖ eτAv(·, t− t0 + τ)‖2 ≤
(

c1 κγ(T ) + c2 κ
3γ3(T ) + C

)

τ + γ(T ).

Now this estimate shows that (3.7) holds for 0 ≤ τ ≤ t0 if t0 is defined as in (3.6). But since
the operator eτA is used in (3.7), t0 represents the radius of analyticity of v(·, t − t0 + τ) at
τ = t0, or in other words of v(·, t). Hence ‖et0Av(·, t)‖ is finite, and what’s more,

‖et0Av(·, t)‖2 ≤ κγ(T )

by (3.7), so that we may define σ(t) = t0. Then assuming that γ(T ) ≥ 1 and using the
expressions for c1 and c2, it transpires that

(κ− 1)γ(T )

c1 κγ(T ) + c2 κ3γ3(T ) + C
≥ κ− 1

κ

1

c1 + c2 κ2γ2(T ) + C

≥ 1

2

1
1
ν (1 +H2) + 1 + 2

ν3κ2γ2(T ) + C

=
1

2

ν3

ν2(1 +H2) + 2κ2γ2(T ) + ν3(1 + C)
.

Thus defining σT as in (3.3), it appears immediately that

‖eσTAv(·, t)‖2 ≤ ‖et0Av(·, t)‖2 ≤ κγ(T ),

and (3.4) is satisfied. Since same procedure as above can be applied to any t with t0 ≤ t ≤ T ,
the theorem is proved. ✷

A few remarks are in order. First, we note that this theorem does not supply a bound
for the initial time 0 < t < t0. However, an argument similar to the one used in the proof
just given can be used to establish bounds for 0 < t < t0. If the initial data are not analytic,
then smaller radii of analyticity are obtained for 0 < t < t0. The initial growth of σ(t) can
be optimized by using for the operator e

√
τA in the proof. We have chosen not to provide

the details here in order to keep the estimates in the next section relatively simple. Next, it
should be remarked that the radius of analyticity σT is limited above by π

4λ due to the choice
of h. Furthermore, the definition of σT appearing in (3.3) is not sharp, but is chosen to make
the expression as explicit as possible. A final remark concerns the asymptotic behavior of σT .
The expression for σT yields the following asymptotic estimates for T ∼ 1:

σT ∼ ν3

4κγ2(T )
for ν → 0,

σT ∼ 1/2
1+C for ν → ∞.

Notice that in the second estimate, the radius of analyticity does not become infinite, but is
limited by the choice of h. Note also that the KdV equation has only been proved to be valid
on short to intermediate time scales [5, 6], so that T ∼ 1 is an appropriate choice.
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4 Bound on oscillations

In this final section, it will be our goal to obtain a bound on the number of spatial oscillations
of v(·, t) at a given time t. The first step is to deduce from Theorem 1 a bound on the spatial
derivative of v. The next few results are of a general nature, so that we use the notation f
for a generic function. We will return to v in Theorem 4.

Lemma 3 Let f be analytic in the strip Sσ. Then there exists a constant c, such that

(4.1) sup
x+iy∈Sσ/2

|f ′(x + iy)| ≤ c ‖eσAf‖.

Proof: The Sobolev inequality implies that for fixed |y| ≤ σ, there is a constant c3 such that,

sup
x+iy∈Sσ/2

|f ′(x+ iy)| ≤ c3
(

‖f(·+ iy)‖+ ‖A2f(·+ iy)‖
)

.

Rewriting the right hand side using Parseval’s identity, it appears that

sup
x+iy∈Sσ/2

|f ′(x+ iy)| ≤ c3
(

‖ey|ξ| f̂‖+ ‖ey|ξ||ξ|2 f̂‖
)

≤ c3
(

‖e(σ/2)|ξ| f̂‖+ ‖e(σ/2)|ξ||ξ|2 f̂‖
)

.

Thus to prove the lemma, we need to show that

‖e(σ/2)|ξ||ξ2|f̂(ξ)‖ ≤ c4 ‖eσ|ξ|f̂(ξ)‖,

for some constant c4. But this will be achieved by setting

c4 = max
ξ∈R

{

e−(σ/2)|ξ||ξ|2
}

.

✷

The bound on oscillations will be achieved by making use of Jensen’s formula, which we
state in the following form:

Theorem 2 Let f be analytic in an open disk {z : |z − z0| < r} of radius r about a point
z0 ∈ C. Assume that f(z0) 6= 0. Let α1, α2, . . . , αN be the zeros of f in the closed disk
{z : |z − z0| ≤ r/2} of radius r/2 about z0. Then the following identity holds.

(4.2) |f(z0)|
N
∏

n=1

r/2

|αn|
= exp

{

1

πr

∫

|z−z0|=r/2

log |f(z − z0)|dz
}

.

This identity is classical, and can be found in most standard texts on complex analysis, such
as [21]. An immediate consequence of Jensen’s formula is the following bound on the number
of zeros of the function f , contained in the smaller disk {z : |z − z0| < r/4}.
Corollary 1 Let z0 ∈ C and r > 0. Let f be analytic in {z : |z − z0| < r}, and suppose that
f(z0) 6= 0. Then

card {z : |z − z0| ≤ r/4, f(z) = 0} ≤ 1

log 2
log

max|z−z0|=r/2 |f(z)|
|f(z0)|

The proof is straightforward if it is observed that the product in formula (4.2) is greater than
2N . Taking the logarithm and estimating the integral then yields the required inequality for
N = card {z : |z − z0| ≤ r/4, f ′(z) = 0}. For a full proof, the reader may consult [21] or [12].
Finally, with this estimate on the number of zeros of an analytic function in a subdisk, the
following theorem can be proved.
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Theorem 3 Let L > 0, r > 0, and let f be analytic in {z = x + iy : |y| < r}. Then for any
ε > 0, the interval [0, L] ∈ R is given by the union Iε ∪Rε, where Iε is a union of at most 2L

r
open intervals, and

(i) |f ′(x)| < ε, for all x ∈ Iε,

(ii) card{x ∈ Rε : f
′(x) = 0} ≤ 2

log 2

L

r
log

maxIm(z)≤r/2 |f ′(z)|
ε

.

Proof: Let x1 = inf{x ∈ [0, L] : |f ′(x)| ≥ ε}. Then by Corollary 1, we have

card {x ∈ [x1 − r/4, x1 + r/4] : |f ′(x)| = 0} ≤ 1

log 2
log

max|z−x1|=r/2 |f ′(z)|
ε

.

Next, define x2 = inf{x ∈ [x1 + r/4, L] : |f ′(x)| ≥ ε}, and by applying Corollary 1 again, we
get exactly the same estimate on [x2 − r/4, x2 + r/4]. We can continue this process at most

N = L/(r/2) times, and finally obtain the lemma for Rε =
(
⋃N

i=1[xi − r/4, xi + r/4]
)

∩ [0, L]
and Iε = [0, L]−Rε. ✷

The main result of this paper now emerges. Note first that the function v(·, t) is analytic in
the strip SσT for t0 ≤ t ≤ T , and that

sup
x+iy∈SσT /2

|vx(x+ iy, t)| ≤ c κ γ(T ).

by Theorem 1 and Lemma 3. Moreover, the estimate in Theorem 3 applies to any interval
of length L in the real line. The proof can be adapted by simply translating the function.
Therefore the following result has been proved.

Theorem 4 Let v be the solution of (2.2) and (2.3), and let L > 0, T > 0 and ε > 0 be
given. Fix a time t ∈ [t0, T ]. Then any interval of length L contained in the real line, is given
by the union Iε ∪Rε, where Iε is a union of at most 2 L

σT
intervals, and

(i) |vx(x, t)| < ε, for all x ∈ Iε,

(ii) card{x ∈ Rε : vx(x, t) = 0} ≤ 2

log 2

L

σT
log

(

c κ γ(T )

ε

)

.

Observe that the collection of sets Iε and Rε depends both on the time t, and on the
particular interval chosen. The important result is that the number of zeros of vx(x, t) is
bounded by the same constant for all t with t0 < t < T , and for all intervals of length L.
Next, notice that the cardinality of the set appearing in (ii) in Theorem 4 is a number which
is equal to twice the number of oscillations of v(x, t) on Rε at a given time t. On the other
hand, the intervals that fall under (i) feature oscillations that are arbitrary slow (depending
on ε), so that they can be essentially disregarded when counting rapid oscillations. Since
the function h(x) is monotone, and v(x, t) = u(x, t)− h(x), we see that the number of rapid
oscillations of u(x, t) on a given interval of length L at a time t is linearly proportional to
L. This finding has two immediate consequences. First, we may conclude that the average
wavelength of oscillations of the free surface behind an undular bore is bounded below by a
constant proportional to 1/L. In addition, it appears that the waves cannot concentrate on
a particular location, but must be spread out over a larger domain.

Noticing from (3.3) that σT gets smaller as T gets bigger, we see that the bound in (ii)
in Theorem 4 gets worse as T → ∞. On the other hand, this limit is not necessarily relevant,
because the equation is only valid on intermediate time scales.

Recalling the asymptotic limits of ν found at the end of Section 3, we see that for small
ν, the constant σT also tends to zero, so that the bound in (ii) in Theorem 4 is meaningless.
This is of course expected, as ν → 0 approximates an inviscid theory. On the other hand, if

10



ν approaches infinity, the bound is limited by the choice of the function h, but dependence
on T is weaker, so that in this case, the bound in (ii) is valid for larger times.

In conclusion, it is found that the presence of viscosity inhibits the development of oscil-
lations behind an undular bore. This is of course what one would expect on physical grounds.
A quantitative estimate is found in the form of an upper bound on the number of oscillations,
but we do not expect this estimate to be sharp for several reasons. For one, there are a
number of auxiliary parameters, such λ and ε which have a direct impact on the estimate (ii).
Another drawback of our result is that it is gives a poor estimate for large times. However,
this problem is mitigated by the fact that the equation itself is only valid up to intermediate
time scales. This also shows that the question raised in the introduction about a possibly
infinite number of oscillations having appeared after a long time is mostly of an academic
nature. An analysis focusing on a steady profile affords a finer analysis with respect the effect
of viscosity on the number of oscillations [3], but it is limited in that it neglects dynamical
aspects of the problem, and therefore does not allow for the growth of new oscillations over
time.
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