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ABSTRACT
If a weir is dragged through a wave flume, the upstream flow takes the form of an undular bore propagating ahead of the weir. It was found
previously in the work of Wilkinson and Banner (“Undular bores,” in 6th Australian Hydraulics and Fluid Mechanics Conference, Adelaide,
Australia, 1977) that the leading wave of the undular bore will break if the bore strength given by the ratio of downstream to upstream flow
depth exceeds a certain value. In the present work, a Boussinesq system is used to study the situation in a numerical wave tank. It is found
that if a convective breaking criterion is used to indicate wave breaking, then the critical bore strength of the numerical model agrees with the
experimental value of Wilkinson and Banner up to an error of less than 2%.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5085861

I. INTRODUCTION

A river bore is an upstream-propagating transition between two
different flow depths usually caused by tidal forces. Similar flows
can also be realized in controlled environments such as wave flumes,
and a number of laboratory studies have been conducted in order to
bring to light some of the main features of bores. One of the first in-
depth investigations of undular bores in the laboratory was carried
out by Favre in a dedicated wave flume,1 and Favre’s results have
been examined theoretically from a number of angles. For exam-
ple, the initial formation of the free-surface oscillations was under
study in Refs. 2–4, and the energy balance at the bore front has been
reviewed in Refs. 5–9. Dissipative effects were considered in Refs. 10
and 11, and the breaking of the leading oscillations in the bore was
studied in Ref. 12.

Favre’s experimental results highlighted in particular the tran-
sition between purely undular and partially turbulent bores in terms
of the bore strength defined as the ratio of downstream to upstream
flow depth, and the main purpose of the present work is to explore
whether the critical bore strength can be found using standard wave
models such as the classical Boussinesq system.

Favre himself used the shallow-water Saint-Venant system with
frictional terms to describe the flow. One weakness of the shallow-
water system is that it fails to describe the transition between undular

and breaking bores because in the shallow-water theory, all waves
eventually break (see Ref. 13, chap. 13.11, or, Ref. 14 chap. 11.3).
On the other hand, the Boussinesq models incorporate dispersion,
and small-amplitude waves do not feature the typical steepening
observed in the shallow-water theory.15 Therefore, wave breaking
cannot be observed directly in the Boussinesq equations, but one
may use a convective criterion comparing the crest speed of the lead-
ing wave to the fluid particle speed near the crest as a diagnostic
for wave breaking. In these terms, a wave breaking criterion may
be defined by saying that a wave starts to break when the horizon-
tal component of the fluid velocity near the wavecrest exceeds the
wavecrest velocity.

An initial study using this wave-breaking criterion in the con-
text of Boussinesq modeling of Favre’s experiments gave good qual-
itative results but was quantitatively inconclusive.16 The relatively
poor agreement with the experiments may be partially due to vortic-
ity created by the discharge used to generate the undular bore. The
existence of vorticity in a similar situation was also found in Refs.
17 and 18, and a mathematical inquiry into the Favre results also
suggested that vorticity might be present in such flows.19

In the current work, we investigate the wave breaking onset
in the leading wave in a bore created by moving a weir through
a wave tank. Such experiments were carried out by Wilkinson and
Banner,20 and as shown in Fig. 1, this generating mechanism yields
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FIG. 1. Generating mechanisms for
undular bores. Left panel: Undular bore
created by a constant discharge imposed
on the left-hand side of the wavetank.
Right panel: Undular bore created by a
moving weir through upstream influence.
Note that the bore front propagates at a
speed U which is generally larger than
the speed Uw of the weir. The differ-
ence is exaggerated by the length of the
arrows. The undisturbed depth is h0, and
the average flow depth behind the bore
is a0 + h0.

bores that are markedly different from the ones created by a forced
inflow. Favre found that wave breaking occurred when the bore
strength was larger than 1.28. By contrast, in the experiments carried
out by Wilkinson and Banner, the critical bore strength was found
to be about 1.38. As will be shown in the body of the present paper, if
the convective wave-breaking criterion is used in connection with a
Boussinesq model in the case of a bore generated by a moving weir,
then the critical bore strength may be found numerically to within
an error of less than 2%. The plan of the paper is as follows. In Sec. II,
the Boussinesq system used in the study of the undular bore is intro-
duced. In Sec. III, the wave breaking criterion is explained in detail.
The numerical experiments are described in Sec. IV, and the results
are discussed in the Conclusion.

II. UNDULAR BORES AND BOUSSINESQ-TYPE
SYSTEMS

In the experiments by Wilkinson and Banner, a moving weir
is used to generate an undular bore (see Fig. 1 for an illustration
of the geometric setup). The weir is placed at the bottom of a wave
flume and dragged along the tank. As the weir is moving, it creates
a mound of fluid propagating ahead of the weir itself. This phe-
nomenon is well known to experimentalists and is sometimes called
upstream influence.23 The borefront develops oscillations (which in
this case are often called undulations), and at first sight, the result-
ing undular bore seems similar to the bore featuring in the work of
Favre.1 However, as already mentioned, there are some important
differences between these two flows. In particular, vorticity seems
to be an important factor in the bores generated by a constant dis-
charge, while as far as we can tell, vorticity is a minor effect in the
bore generated by the moving weir. Some authors have pointed out
the importance of bottom friction on the appearance of an undu-
lar bore.10,7 Indeed, in a river bore, if the conditions are right, a
nearly steady profile of undulations can be observed. However, in the
present case, the main focus is on the onset of wave breaking which
happens on relatively short time scales where dissipative effects do
not have a major impact.

A bore may be characterized either by the bore strength already
mentioned or using the Froude number. The Froude number is
defined by Fr = U/

√
gh0, where U is the velocity of the bore front,

h0 is the undisturbed (upstream) depth, and g is the gravitational
acceleration.24–26 While the Froude number seems to be more com-
mon in the literature, in the present case, since we are aiming for

a favorable comparison with the experimental work in Ref. 20, it
is expedient to use the same parameter as in that work to quantify
the strength of the bore. Given the average downstream flow depth
a0 + h0, the bore strength is defined as the ratio of flow depths by
r = a0+h0

h0
.

As a side note, we should mention that recent work suggests
that a single parameter such as the Froude number or bore strength
may not be sufficient to classify bores and hydraulic jumps. For
example, the authors of Ref. 27 proposed an additional parameter
related to the vorticity of the flow. However, in the present case, such
an extension is unnecessary.

Boussinesq systems are approximations of the full Euler equa-
tions valid for long waves of small amplitude if the fluid is incom-
pressible and inviscid and the flow is irrotational.28,15 Due to their
relative simplicity, Boussinesq models are frequently used to model
various surface wave phenomena. Since the undular bores described
in Ref. 20 have small amplitudes and long wavelengths relative to
the undisturbed depth, it is natural to use a Boussinesq model in the
current situation.

Here, and in the rest of this article, a Cartesian coordinate sys-
tem (x, z) is chosen such that z = η(x, t) describes the free surface η,
the undisturbed free surface is at z = 0, and the bottom of the wave
tank is located at z = −h0. Moreover, u(x, t) is the horizontal fluid
velocity at the fixed height z = (

√
7/9−1)h0. We use the Boussinesq

system

ηt + h0ux + (ηu)x −
2
9h

2
0ηxxt = 0,

ut + gηx + uux − 1
9h

2
0uxxt = 0,

(1)

to simulate an undular bore. The Boussinesq system (1) was intro-
duced in Ref. 21. It is valid in the Boussinesq scaling regime, which
applies when the parameters α = a/h0 and β = h2

0/`2 are small and
of the same order of magnitude. Here a is a typical wave amplitude,
` is a typical wavelength, and h0 is the undisturbed depth, and the
parameters α and β describe the relative strength of nonlinear and
dispersive effects in the flow.

System (1) is a coupled system of two regularized long-wave
equations. Using the same rationale as the authors of Refs. 2 and
22 who introduced the Benjamin-Bona-Mahony (BBM) equation,
it can be surmised that this system is more amenable to numerical
methods than a number of other Boussinesq systems that were dis-
cussed in Ref. 21. In fact, the system can be solved efficiently using a
Fourier-spectral collocation method.

Phys. Fluids 31, 033601 (2019); doi: 10.1063/1.5085861 31, 033601-2

© Author(s) 2019

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

As shown in Ref. 21, the system has exact solutions which can
be used to test the convergence of numerical codes. The system can
also be extended to accommodate time-dependent bathymetry. This
was first done in Ref. 29, and in the present case, a time-dependent,
spatially varying bottom topography h(x, t) is included in these equa-
tions to model the weir moving along the bottom of the wave tank.
The precise version of (1) to be used, including all parameter-values
and some details on the numerical discretization, is given in the
Appendix.

In Sec. III, it is shown how the full fluid velocity field is recon-
structed from these variables, using an asymptotic expansion of the
velocity potential. It will be shown that once a solution of (1) is avail-
able and the wave crest velocity is known, then a local convective
criterion can be taken as an indication of whether the wave starts
breaking or not. Denoting the crest speed by U and the horizon-
tal component of the fluid particle velocity by u(x, z, t), we say that
the wave breaks if u(x, η(x, t), t) > U. This convective wave break-
ing criterion is standard in the study of breaking waves (see Ref.
30 and references therein) but has not been tested in the current
situation.

III. WAVE BREAKING CRITERION
FOR THE BOUSSINESQ SYSTEM

In order to understand the wavebreaking criterion, a look at
the derivation of the Boussinesq system (1) is in order. Since this
derivation is well known, we just summarize a few points of impor-
tance. For a more detailed discussion, the reader is referred to Refs.
16 and 13. As discussed above, since the bottom of the wave tank
is constant away from the weir, and given by z = −h0 near the
leading wave crest behind the bore front, the following discussion
is based on the Boussinesq system (1). It is assumed that α and
β are small and of the same order so that Eq. (1) are valid and
higher order terms in α and β can be neglected in the following
derivation.

With the assumptions of irrotational flow of an inviscid and
incompressible fluid, a velocity potential φ(x, z, t) can be introduced.
The surface wave problem is then formulated in terms of the velocity
potential as

φxx + φzz = 0, −h0 < z < η(x, t),

φz = 0, z = −h0,

with the free-surface boundary conditions

ηt + φxηx = φz ,

φt + 1
2(φ

2
x + φ2

z) + gη = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
z = η(x, t).

As discussed in Ref. 13, since the total depth is small, an ansatz of

the form φ(x, z, t) =
∞
∑
0
(z + h0)nfn(x, t) is suggested for the veloc-

ity potential. Inserting this into the Laplace equation and using the
boundary condition on the bottom gives

φ(x, z, t) = f − 1
2
(z + h0)2fxx (2)

to second order in β. Note that f = f0 is the velocity potential at the
bottom z = −h0 and that φx(x, z, t) = fx(x, t) − 1

2(z + h0)2fxxx(x, t)
is the horizontal velocity at a height z in the fluid.

Using this relation, it is possible to derive systems of equations
such as (1) where the horizontal velocity is modeled at a prescribed
depth z = (

√
7/9 − 1)h0. Letting u(x, t) = φx(x, z, t)∣z=(√7/9−1)h0

be

the horizontal velocity at z = (
√

7/9 − 1)h0, we obtain

fx = u +
7

18
h2

0uxx (3)

to order β2. Combining (3) and (2) gives

φx(x, z, t) ≈ u(x, t) +
1
2
(7

9
h2

0 − (z + h0)2)uxx(x, t) (4)

up to O(β2).
Equation (4) can be used to approximate the horizontal fluid

velocity field at any point (x, z) in the fluid domain. As discussed in
Ref. 16, we assume that wave breaking commences when the hor-
izontal fluid particle velocity at the leading wave crest exceeds the
local phase velocity of the wave crest, denoted by U. Evaluating (4)
at z = η(x, t) yields the following breaking criterion:

A wave solution (η(x, t),u(x, t)) of system (1) starts breaking if

u(x, t) +
1
2
(7

9
h2

0 − (η(x, t) + h0)2)uxx(x, t) > U. (5)

This criterion is illustrated in Fig. 2. From (5), it follows that once
a solution (η(x, t),u(x, t)) of the BBM system (A2) is available,

FIG. 2. Convective wave breaking crite-
rion. The left panel shows a wave with
horizontal particle velocity less than crest
velocity. This wave is not breaking. The
right panel shows a case where the hori-
zontal particle velocity exceeds the crest
velocity. This wave is breaking.
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the onset of wave breaking can be predicted provided the wave
propagation speed U is known.

IV. NUMERICAL EXPERIMENTS
We consider quasi-twodimensional fluid flow in a numerical

wave tank of length L. The coordinate system (x, z) is as defined
in Sec. II, with the positive z direction taken vertically upwards
and the horizontal x-axis along the undisturbed free surface of the
fluid. The bottom of the wave tank is located at z = −h0, and the
undisturbed free surface is located at z = 0, as shown in Fig. 3.
The numerical domain is x ∈ [0, L], and the fluid domain is then
(0,L) × (−h(x, t), η(x, t)), where z = −h(x, t) describes the weir and
the bottom of the tank, and z = η(x, t) is the free surface as usual.

In the numerical simulation used in the present study, sys-
tem (A2) is approximated using a spectral collocation method cou-
pled with a 4-stage Runge-Kutta time integration scheme. At each
time step, the resulting linear system is solved using a precondi-
tioned conjugate gradient method. As the bore is generated by a weir
moving along the bottom of the tank, we use initial values of zero
surface displacement and zero initial velocity, i.e., η(x, 0) = 0 and
u(x, 0) = 0.

Wilkinson and Banner conducted numerous experiments with
varying undisturbed fluid depths and showed experimentally that
undular bores may persist up to bore strength r = 1.377. Since the
goal of this paper is to obtain favorable results in comparison with
Wilkinson and Banner,20 we used the same parameters as in that
work. Accordingly, a weir of height 25 mm and length 150 mm was
used in our simulation. As the value of h0 is not consistently specified
in Ref. 20 for a given Froude number, we have chosen to use the fluid
depth h0 = 0.06 m in all simulations shown, except the computations
shown in Fig. 4. In this case, the undisturbed depth was specified
in Ref. 20 to be h0 = 0.053 m. We chose to run the simulations for
t = 15 s as larger time intervals seemed to have little impact on the

TABLE I. Parameters used in the numerical simulation.

Parameter Symbol Units Value

Undisturbed depth h0 m 0.06
Tank length L m 50
Weir height A mm 25
Weir width mm 150
Time interval length T s 15

eventual bore strength r. The parameters used in our simulation are
summarized in Table I. The function

z = −h(x, t) = A
2
(1 + tanh(κt

√
g/h0 −m))

× exp(−(w(x/h0 − σ −Uwt/h0))2) − h0 (6)

with the parameters A = 0.025 m, κ = 0.2, m = 2, w = 1.22, σ = 100,
and h0 = 0.06 m is used to model the weir moving along the bottom
of the tank. The speed Uw at which the weir is moving along the
bottom of the tank is the only parameter which is varied, while the
rest of the parameters in (6) are held fixed.

In order to test the validity of the numerical simulations, we
first run a test with a purely undular bore. We choose the case
shown in Fig. 3, page 372 from,20 which features a Froude number
Fr = 1.24, and is far from the breaking regime. In this case only, in
order to obtain a good match with the experimental data, we have
used the undisturbed depth h0 = 0.053 m. Figure 3 from Ref. 20 is
shown in Fig. 4 in digitalized form, alongside the numerical approx-
imation of η obtained in our simulation. As can be seen, there is
relatively good correspondence between the experimental data and
numerical simulation. In particular, the wavelengths and amplitudes
of the bores agree very well.

FIG. 3. Undular bore generated by a moving weir at the
bottom of the tank z = −h0 = −0.06 m.

FIG. 4. Digitized form of Fig. 3 in Ref. 20, Fr = 1.24 superim-
posed with a plot of η obtained from the numerical simula-
tion with Fr = 1.24. The fluid depth is h0 = 0.053 m, and the
x-axis is aligned with the undisturbed water line. The bottom
of the flume is indicated by a solid line at z = −0.053 m.
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FIG. 5. Left panel: The horizontal par-
ticle speed does not exceed the phase
speed, so the bore is purely undular.
This corresponds to the bore strength
r = 1.38. Right panel: The horizontal par-
ticle speed curve intersects the propa-
gation speed curve at t = 15 s, and the
leading wave starts breaking. This corre-
sponds to the bore strength r = 1.40 as
can be seen in the plot of the undular
bore in Fig. 3.

Since the bottom is described by the constant function z = −h0
near the leading wavecrest, Eq. (4) can be applied in approximating
the particle velocity there. At each time step tn = n∆t in the sim-
ulation, the position xn of the leading wave crest is located. From
this sequence of values, the local phase velocity Un of the wavecrest
is estimated by a fourth-order, backwards finite-difference formula.
The fluid particle velocity at the leading wavecrest behind the bore
front is estimated from (4) with z = η(xn, tn) at each time step.

As Uw is increased manually in each new run, the wave crest
velocity and the horizontal fluid particle velocity also increase.
Eventually the fluid particle velocity exceeds the phase velocity of

the wave, and wave breaking commences. The process is illustrated
in Fig. 5. In the left panel, the value of r is 1.38 and no intersection is
taking place at times t ≤ 15 s. As shown in the right panel of Fig. 5,
the particle velocity curve first intersects the phase velocity curve at
t = 15 s for the value r = 1.40 which is therefore just above the critical
bore strength for the current setup. The corresponding weir velocity
is Uw = 0.724 m/s.

Table II tabulates whether the bore is breaking or not for differ-
ent values of the bore strength r obtained numerically. Each row in
Table II contains values of r and FrU obtained from a fixed value of
Uw . We find the critical value of the bore strength in Table II to be

TABLE II. Wave breaking in the numerical model for different Froude numbers and bore strengths at t = 15 s. The critical
bore strength is r = 1.395.

Simulation r = 1 + a0/h0 FrU = U/
√
gh0 U (m/s) Uw (m/s) Breaking/non-breaking

1 1.35 1.319 1.012 0.675 Not breaking
2 1.38 1.344 1.031 0.698 Not breaking
3 1.39 1.350 1.036 0.706 Not breaking
4 1.40 1.358 1.042 0.724 Breaking
5 1.41 1.375 1.055 0.744 Breaking
6 1.43 1.388 1.065 0.760 Breaking

FIG. 6. Relation between the flow-depth
ratio r and the Froude number Fr. The
critical bore strength is indicated with a
dashed horizontal line. Left panel: Exper-
iments by Wilkinson and Banner.20

The critical bore strength is r = 1.377.
Right panel: Numerical simulations using
Boussinesq system. The critical bore
strength is r = 1.395.
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r = 1.395, between the values 1.39 which does not feature breaking,
and 1.40 which does lead to breaking. As an additional comparison,
we also include the Froude numbers FrU = U/

√
gh0, where U is the

phase speed of the leading wave behind the borefront, approximated
numerically at t = 15 s by the method described above.

Comparing the results in Table II with the ones in Ref. 20, we
see that the numerical critical bore strength r = 1.395 is about 1.3%
higher than the experimental value r = 1.377 in Ref. 20 and that
FrU = 1.358 is about 4.5% larger than Fr = 1.3 in Ref. 20, so the
results are relatively close in both cases. The data are also represented
in Fig. 6, where the left panel shows data from the experiments in
Ref. 20, and the right panel shows data based on our numerical
simulations.

V. CONCLUSION
In this work, it has been shown that the transition from laminar

to partially turbulent flow in an undular bore can be captured with
a standard weakly nonlinear dispersive system of Boussinesq type.
Reference is made to two experimental studies: the experiments of
Favre1 and the experiments of Wilkinson and Banner.20 The partic-
ular quantity of interest is the bore strength r given by the ratio of
downstream to upstream flow depths.

In previous work, it was shown that using a convective wave-
breaking criterion leads to qualitative agreement with the experi-
ments of Favre in the sense that the Boussinesq system features a
critical ratio indicating the commencement of wave breaking.16,31
However, the quantitative agreement between the numerical exper-
iments in Refs. 16 and 31 was not very good. The discrepancy may
possibly be ascribed to the appearance of vorticity in the undular
bore, such as suggested in Refs. 17 and 19. Indeed, it was argued in
Ref. 27 that a single parameter such as the bore strength r or the
Froude number Fr may not be sufficient to classify bores, even in the
case where the flow is quasi-two-dimensional. In the present case
of a bore generated by a moving weir, it was found that the bore
strength r can be used as an effective diagnostic parameter to predict
whether a bore will break or not. The critical bore strength signal-
ing the demarcation between laminar and turbulent flow was found
experimentally to be about 1.377.20 Our numerical simulations indi-
cate that the leading wave breaks at a bore strength of 1.395. Thus,
experiment and simulation coincide up to an error of less than 2%.

The separate comparison using the Froude number FrU
= U/

√
gh0 for the phase speed of the leading wave crest behind

the bore front, which was found to be FrU = 1.358 when the bore
started breaking, is also fairly close to the critical Froude number
Fr = 1.3 in Ref. 20. Using this parameter as an indicator for the
onset of breaking yields agreement between experiment and numer-
ical simulation with an error of less than 5%. Additionally, Fig. 4
shows that the shape of the free surface of the bore obtained numer-
ically for non-breaking bores is very similar to the free surface in Ref.
20. This further validates the results obtained from the model used
in this work.

One may ask whether the bore strength r or the Froude number
Fr is a better indicator for whether a bore features incipient break-
ing. While the Froude number is probably more commonly used
than the bore strength, the present study found slightly better agree-
ment between theory and experiment if the bore strength was used
as a parameter. Indeed it can also be observed in the left panel of

Fig. 6 that the relation between Fr and r is slightly nonlinear in the
experimental measurements.

To put our findings into context, it should be mentioned that
wave breaking in an undular bore is a special case of wave breaking
on a planar beach, a phenomenon which has been studied widely. It
is not immediately clear whether the convective breaking criterion
can be used in this case as well. Recent work paints a complicated
picture. The experiments described in Ref. 32 point to the convective
criterion as being a good indicator for the commencement of wave
breaking. On the other hand, if the wave breaking criterion is to be
used in a numerical model in order to switch between a dispersive
system and a hyperbolic system (in order to exploit the dissipative
nature of numerical approximations to hyperbolic systems), then the
convective breaking criterion should possibly be sharpened in order
to give the waves time to adjust (see Refs. 36–38 and the references
therein).

Indeed, the detection of wave breaking through various wave
breaking criteria has been researched by a number of groups for
many years. As explained in Ref. 33, there are essentially three classes
of criteria. Geometric criteria are based on the shape and in partic-
ular the steepness of the waves close to breaking, while kinematic
criteria such as used here are based on violation of the kinematic free
surface boundary condition. As it generally seems to be understood
that no dynamic insight or advance warning of imminent breaking
is provided by geometric and kinematic criteria,34 dynamic criteria
based on evaluation of the energy flux such as proposed in Refs. 35
and 30 seem to be favored at the moment.

Recently a new parameter based on crest speed and local energy
flux and density has been put forward as a diagnostic for the initia-
tion of wave breaking. As shown in Ref. 30, using this parameter
reduces to a sharpened convective criterion when evaluated at the
free surface. However, it has been tested mainly in deep and inter-
mediate water,30,39 and it is not clear at this point whether this
diagnostic will work in shallow water such as in the current situation.

It should also be noted that there have been extensive efforts
to understand various aspects of wave breaking using numerical
approximations of the full Euler equations. In particular, in the case
of potential flow, we mention the work on overturning breakers
reported in Refs. 40 and 41. On the other hand, some authors have
advocated the use of conservative Boussinesq system42 or indeed for
the use of fully nonlinear long-wave systems, such as the Serre or
Green-Naghdi equations43,44 in order to study wave breaking on a
slope (see Ref. 45 for example). However, in the present case, no such
extension is needed.
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APPENDIX: BOUSSINESQ SYSTEMS
WITH MOVING BATHYMETRY

In order to simulate an undular bore generated by a moving
weir numerically, a BBM-BBM type system is used in this work.
In Ref. 29, the following system describing unsteady fluid flow in
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one horizontal dimension over a time dependent, spatially varying
bottom topography is derived:

ηt + ((h + η)u)x + {Ah2[(uhx)x + hxux]

+ ah2(hu)xx − bh
2ηtx}x + Ã(h2htx)x + ht = 0,

ut + gηx + uux + {Bgh[(hxηx)x + hxηxx]

+ cgh2ηxxx − dh2utxx} − Bhhttx = 0.

(A1)

Here u = u(x, t) is the horizontal fluid velocity at the height
z = (θ − 1)h0, where 0 < θ < 1, η(x, t) is the free surface, and
h(x, t) describes the bottom topography. The parameter θ is an
arbitrary modeling parameter which has been chosen to be equal
to

√
7/9 in the body of this paper. The definitions of the further

parameters used in the system are as follows:

ã = θ − 1/2, b̃ = −A, c̃ = −B,

A = 1
2 [

1
3 − (θ − 1)2], B = 1 − θ, Ã = µã − (1 − µ)b̃,

a = 1
2(θ

2 − 1
3)µ, b = 1

2(θ
2 − 1

3)(1 − µ),

c = 1
2(1 − θ2)ν, d = 1

2(1 − θ2)(1 − ν),

where µ, ν ∈ R. Taking µ = ν = 0 in (A1) gives

ηt − b(h2ηxt)x + ((h + η)u)x

+ {2Ah2hxux + Ah2hxxu}x − b̃(h
2hxt)x + ht = 0,

ut + gηx + uux + Bghhxxηx + 2Bghhxηxx

− dh2uxxt − Bhhxtt = 0,

(A2)

where b = 1
2(θ

2 − 1
3), d = 1

2(1 − θ2). The BBM-BBM type sys-
tem (A2) with the boundary and initial conditions stated in Sec. IV
is used to simulate an undular bore numerically in this work. Like
system (1), this system is valid under the Boussinesq approximation.
As discussed earlier, the time dependent bottom h(x, t) is included
in Eq. (A2) to model the weir moving along the bottom of the wave
tank.

The numerical approximation of this system is effected by a
pseudo-spectral collocation method based on a Fourier basis. This
discretization entails the imposition of periodic boundary condi-
tions. In the present one-dimensional case, this choice does not pose
a serious problem since the numerical domain [0, L] can be made
large enough to prevent wave interactions at the far ends on either
side. Rescaling the equations to the numerical interval [0, 2π] intro-
duces a scaling factor λ = L/(2π). Using the standard collocation
points xj = 2πj

N for j = 0, 1, . . ., N − 1 yields the first-order col-
location derivative matrix DN and the corresponding second-order
matrix DN ,2, such as detailed in Refs. 46 and 47. Defining the N × N
identity matrix by IN , and the discrete unknowns as ΣN and UN , the
semi-discrete system is written as

[λ3IN − λbDNdiag(h2
N)DN]ΣN

t

= −DN[2Ah2
N DNhN DN(UN) + ADN,2hN h2

N UN]

−λ2DN(hNUN) − λADN(h2
NDN(hN)t)

−λ2DN(ΣNUN) − λ3(hN)t ,

[λ3IN − λd diag(h2
N)DN,2]UN

t

= −λ2gDNΣN − λ2 1
2
DN(UNUN) − 2BghN DNhN DN,2ΣN

−BghNDN,2hN DNΣN + λ2BhNDN(hN)tt ,

where hN is defined by [hN(t)]j = h(xj, t). This system of N ordi-
nary differential equations is integrated using a 4-stage Runge-Kutta
method. The most demanding operation is the inversion of the
time-dependent matrices on the left-hand side of these equations
which has to be performed at each time step. The inversion is per-
formed using a preconditioned conjugate gradient (PCG) method
(see Ref. 48). The scheme has been tested for convergence in Ref. 49.
Alternative methods for the numerical discretization of these equa-
tions are finite-element methods29 or finite-difference methods.16
These methods would allow for straightforward incorporation of
various boundary conditions, but in the present case, that is not
necessary.
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