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Abstract
This article takes into account the Korteweg–de Vries (KdV) equation as an
approximate model of long waves of small amplitude at the free surface with
inviscid fluid. It is demonstrated that the mechanical balance quantities, as
defined by the solution of the KdV equation, rigorously approximate those in
the Euler system within the L∞ space. Furthermore, these approximations are
estimated in relation to the parameter ε characterizing the long-wave behavior.
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1. Introduction

In this paper, we consider approximations of physical balance laws associated with the
Korteweg–de Vries equation (KdV) from a mathematical point of view. The KdV equation
is written in non-dimensional form as

ηt+ ηx+ ε
3
2
ηηx+µ

1
6
ηxxx = 0 , (1.1)
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where ε and µ are parameters representing the relative influence of nonlinearity and dispersion,
respectively. As will be shown below, these parameters quantify the amplitude and wavenum-
ber of a typical wave to be described by the equation. In fact, the KdV equation is known to be
a good model for waves at the free surface of an incompressible and inviscid fluid if transverse
effects can be neglected and if the relations µ� 1 and ε=O(µ) hold. This approximation is
rigorously justified using the theory developed in [7, 12, 14, 15, 26, 28, 29] and others.

Even before it was shown that the KdV equation is well posed in a mathematical sense,
it was well known that the KdV equation features an infinite number of formally conserved
integrals (indeed the conservation can be made rigorous by following the work of [8]). If the
equation is given in the non-dimensional form (1.1), the first three conserved integrals are

ˆ ∞

−∞
ηdx,

ˆ ∞

−∞
η2 dx, and

ˆ ∞

−∞

(
µ
3εη

2
x − η3

)
dx. (1.2)

The first integral is found to be invariant with respect to time t as soon as it is recognized that
the KdV equation can be written in the form

∂

∂t
(η)+

∂

∂x

(
η+ ε

3
4
η2 +µ

1
6
ηxx

)
= 0, (1.3)

where the quantity appearing under the time derivative is interpreted as excess mass density,
and the term appearing under the spatial derivative is the mass flux through a cross section
of unit width due to the passage of a surface wave (see [17] for more details). The second
and third integral are sometimes called momentum and energy, but this terminology may be
misleading since these integrals are not readily interpreted as approximations of the physical
momentum and energy appearing in the context of the Euler equations. Indeed, the authors
of [1] already state clearly that they do not believe these integrals to be approximations of
the physical momentum and density, and further doubt was cast on this interpretation in more
recent work [2, 19, 20, 23].

Recently, the problem was considered in [4], and asymptotic expressions for physically
motivated fluxes and densities were found. For example, following the procedure laid out in
[4] gives the expression for momentum density as

I = η+ ε
3
4
η2 +µ

1
6
ηxx. (1.4)

Since the analysis in [4] was based on a formal asymptotic analysis, the question of whether
these physical identities can be made mathematically rigorous have so far remained open (note
however that in the special case of themomentum density I defined above in (1.4) it was shown
in [16] that this expression converges to the corresponding quantity in the full Euler equations
if the parameters µ and ε tend to zero. In the present paper, similar convergence results will be
proved also for the momentum flux, as well as the energy density and energy flux.

In the present article we will give a firm mathematical proof for convergence of all physical
densities and fluxes. The main results to be proved thus state that the mechanical densities and
fluxes found asymptotically in [4] converge to the corresponding quantities defined in terms
of a solutions of the governing Euler equation for a perfect fluid if µ and ε tend to zero.
Denoting the original (dimensional) variables with a tilde, we introduce a scaling to make the
small amplitude and long wavelength relative to the undisturbed depth explicit. Thus we define
new variables (without a tilde) by

x̃= λx, z̃= h0 (z− 1) , η̃ = aη, t̃=
λ

c0
t, ϕ̃=

aλg
c0

ϕ.
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Here a is a dominant amplitude of the waves; λ is a typical wavelength; h is the undisturbed
depth; g is the gravitational acceleration, and c0 =

√
gh0 is the limiting long-wave speed. Then

the free surface Bernoulli’s dimensionless formulation of the water waves problem reads
µ∂2xφ+ ∂2zφ = 0 in Ωt,

∂tφ + ε
2 (∂xφ)

2
+ ε

2µ (∂zφ)
2
=−η at z= 1+ εη,

∂zφ = 0, at z= 0,
∂tη− 1

µ (−µε∂xη∂xφ+ ∂zφ) = 0 at z= 1+ εη,

(1.5)

where

Ωt = {(x,z) ,0< z< 1+ εη (x, t)} ,

is the fluid domain limited by the free surface {z= 1+ η(x, t)}, and the flat bottom {z= 0}, and
where φ(x,z, t), defined on Ωt is the velocity potential associated to the flow (that is, the two-
dimensional velocity field v is given by v= (∂xφ,∂zφ)

T). As is well known, the existence of the
velocity potential is guaranteed by the assumption of irrotational flow. Finally, as mentioned
above, ε and µ are the dimensionless parameters defined as

ε=
a
h
, µ=

h2

λ2
.

Making assumptions on the respective size of ε and µ, one is led to derive (simpler) asymptotic
models from (1.5). Sometimes the Stokes number

S=
ε

µ
,

is introduced in order to quantify the applicability of the equation to a particular regime of
surface waves. Let us assume for the time being that the Stokes number is equal to unity, so
that we can work with a single small parameter ε. The equations above are formally equivalent
to the Zakharov–Craig–Sulem equations. They are written in terms of the Dirichlet–Neumann
operator as 

ηt− 1
εGε [εη]ψ = 0,

ψt+ η+ ε
2ψ

2
x −

[
Gε [εη]ψ + ε2ηxψx

]2
2(1+ ε3η2x )

= 0.

(1.6)

It is shown in [26] that if a number of assumptions are met, a solution (ψ,ζ) exists on a time
interval [0,T/ε] with a certain regularity, and with a bound on Sobolev norm. Given a solution
of this system, one may then reconstruct the potential φ by solving the Laplace equation. More
precisely, in terms of the trace of the velocity potential at the free surface defined as

ψ = φ|z=1+εη
,

the Dirichlet–Neumann operator Gε[εη]· is given by
Gε [εζ]ψ =−ε2ηx (∂xφ)|z=1+εη

+(∂zφ)|z=1+εη
, (1.7)

with φ solving the boundary value problem ε∂2xφ+ ∂2zφ = 0,
∂zφ|z=0

= 0,
φ|z=1+εη

= ψ.
(1.8)
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1.1. Statement of the results

We start in section 2 by developing an approximate potential function φapp, laying the ground-
work for subsequent proof of error estimates between the Euler system (1.5) and the KdV
equation (1.1).

In section 3, the discrepancy between vertical integrals of the space and time derivatives of
the complete φ = φEuler and approximate potentials φapp is assessed.

In section 4, a linkage between the Euler solutions (ηEuler,φEuler) and the KdV solutions
constructed, ηKdV and wKdV = ηKdV − 1

4ε(η
KdV)2 + 1

3εη
KdV
xx , through an approximation of the

horizontal velocity at the flattened bottom φapp
|z=0

and some observations on Boussinesq-type
systems.

In section 5, approximate expressions for the velocity field and pressure in the entire fluid
column are introduced in the context of the KdV equation. These variables will thus be
expressed not only in terms of x and t, but also in terms of z. The goal of this section is to
devise formulas for these variables, demonstrating their convergence to the relevant quantities
defined within the full context of the Euler equations as the small parameter ε tends to zero.
Here and throughout the rest of this paper we denote by C any constant depending on h−1

min,
εmax, |η0|Hs+N+1 , |ψ0,x|Hs+N with N⩾ 8.

In section 6, we establish the main results of this paper, where the mechanical laws in the
Euler equations converge to the mechanical laws (mass, momentum and energy) defined in
terms of the function of the solution of the KdV equation for a perfect fluid as the physical
parameter ε approaches zero. In other words, as long as the assumption of corollary 1 is satis-
fied and for any constant C depending on h−1

min, εmax, |η0|Hs+N+1 , |ψ0,x|Hs+N with N⩾ 8 and for
all t ∈ [0,T/ε] the following results are true:

(i) Theorems 4 and 5, state that the mass balance law of the water wave equations can be
approximated in the long wave limit by appropriate balance quantities defined by solutions
of the KdV equation:∣∣∣MEuler −MKdV

∣∣∣
L∞

+
∣∣∣QM

Euler −QM
KdV
∣∣∣
L∞

⩽ ε2 (1+ t)C , (1.9)

where the mass density and mass flux for the full Euler and KdV equations are given

by : MEuler =
´ 1+εηEuler

0 dz, MKdV = 1+ εηKdV and

QM
Euler =

ˆ 1+εηEuler

0
φEuler
x dz, QM

KdV = ηKdV +
3ε
4

(
ηKdV

)2
+
ε

6
ηKdVxx .

(ii) Theorem 7 states that the momentum balance law of the water wave equations can be
approximated in the long wave limit by appropriate balance quantities defined by solutions
of the KdV equation:∣∣∣IEuler −IKdV

∣∣∣
L∞

+
∣∣∣QI

Euler −QI
KdV
∣∣∣
L∞

⩽ ε2 (1+ t)C , (1.10)

where the momentum density and momentum flux for the full Euler and KdV equations
are given by: IEuler =QM

Euler, IKdV =QM
KdV, and

QI
Euler =

ˆ 1+εηEuler

0

(
ε
(
φEuler
x

)2
+(P ′)

Euler − 1
ε
(z− 1)

)
dz,

QI
KdV =

1
2ε

+ ηKdV +
3ε
2

(
ηKdV

)2
+
ε

3
ηKdVxx ,

with (P ′)Euler is the dynamic pressure of the fluid (see (5.12)).
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(iii) Theorems 8 and 9, state that the energy balance law of the water wave equations can be
approximated in the long wave limit by appropriate balance quantities defined by solutions
of the KdV equation:∣∣∣EEuler −EKdV

∣∣∣
L∞

+
∣∣∣QE

Euler −QE
KdV
∣∣∣
L∞

⩽ ε2 (1+ t)C , (1.11)

where the energy density and energy flux for the full Euler and KdV equations are given
by:

EEuler =

ˆ 1+εηEuler

0

(
ε

2

(
φEuler
x

)2
+

1
2

(
φEuler
z

)2
+

1
ε
z

)
dz,

QE
Euler =

ˆ 1+εηEuler

0

(
ε2

2

(
φEuler
x

)2
+
ε

2

(
φEuler
z

)2
+ ε(P ′)

Euler
+ 1

)
φEuler
x dz,

EKdV =
1
2ε

+ ηKdV + ε
(
ηKdV

)2
, QE

KdV = ηKdV +
7ε
4

(
ηKdV

)2
+
ε

6
ηKdVxx .

1.2. Notation

We denote by C(λ1,λ2, . . .) a constant depending on the parameters λ1, λ2 . . .. To study
the regularity properties of the solution of the transformed problem, we introduce the
following functional spaces on the flat strip S. In particular, the Banach space Hs,k =⋂k
j=0H

j
(
(−1,0);Hs−j(R)

)
endowed with the norm ‖u‖Hs,k =

∑k
j=0 ‖Λs−j∂jzu‖2 are intro-

duced to control functions that are differentiated s times in x and z, with at most k deriv-
atives in z where Λs is the pseudo-differential operator Λs = (1− ∂x)

s/2. We write L∞Hs =
L∞
(
(−1,0);Hs(R)

)
endowed with the canonical norm supessz∈(−1,0)|u(·,z)|Hs(R).

2. The approximate potential φapp

This section is devoted to constructing an approximate potential function which will be useful
later for proving error estimates between the Euler system and the KdV equation. The main
task is to obtain an asymptotic expansion in the small parameter ε of the potential φ in terms of
various combinations of derivatives of the trace ψ. Thus we look for an asymptotic expansion
of φ of the form

φapp =
N∑
j=0

εjφj . (2.1)

Indeed, substituting this expression into the boundary-value problem (1.8) one can remove the
residual up to the order O(εN+1) provided that

∀j = 0, . . . ,N, ∂2zφj =−∂2xφj−1 (2.2)

(with the convention that φ−1 = 0), together with the boundary conditions

j = 0

{
φj|z=1+εη

= ψ,

∂zφj = 0,
(2.3)

and

∀j = 1, . . . ,N,

{
φj|z=1+εη

= 0,
∂zφj = 0,

(2.4)

5
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The differential equation (2.2) can be solved by integrating twice. In view of the boundary
conditions (2.3) and (2.4), one finds

φ0 = ψ, (2.5)

φ1 =−1
2

(
z2 − 1

)
ψxx+ εηψxx+

ε2

2
η2ψxx

=−1
2
z2ψxx+

1
2
(1+ εη)

2
ψxx. (2.6)

In our derivation it is essential to find φ2, therefore by proceeding in the same way as above
(see [22, 24] for more details of the calculations) one obtains

φ2 =
1
24
z4ψxxxx−

1
4
z2ψxxxx+

5
24
ψxxxx+O (ε) . (2.7)

In the case N= 2, φapp satisfies the elliptic problem{
∇· Iε∇φapp = ε3R in Ωt,

φapp|z=1+εη
= ψ, ∂zφ

app
|z=0

= 0,
(2.8)

where following [26], we use the matrix

Iε =
(

ε 0

0 1

)
(2.9)

and the remainder term R is a polynomial in z with coefficients given in terms of ε and various
derivatives of ψ and η.

We proceed to provide error estimates for φapp. In order to avoid confusion in what follows,
we denote the velocity potential associated to the Euler system by φEuler. We assume that the
flow depth is always bounded from below, an assumption which is known as the non-cavitation
condition:

∃hmin > 0, ∀x ∈ R, 1+ εη =: h⩾ hmin. (2.10)

For the sake of notational convenience, we consider the difference u= φEuler −φapp. First of
all, by construction, u satisfies (1.8) with homogeneous boundary conditions up to the same
error term ε3R as in (2.8):{

∇· Iε∇u= ε3R in Ωt,

u|z=1+εη
= 0, ∂zu|z=0

= 0.
(2.11)

Based on [26], it is convenient to transform the above problem on Ωt into an elliptic boundary
value problem on a flat strip S defined as S = R× (−1,0). If condition (2.10) is met, this
transformation is effected by introducing the diffeomorphism

Σ : S → Ωt

(x, ẑ) 7−→ Σ(x, ẑ) = (x,(1+ εζ) ẑ+ 1+ εη) . (2.12)

Then, the composite functions u= u ◦Σ andR= R ◦Σ satisfy the following elliptic boundary-
value problem on the fixed domain S:{

∇·P(Σ)∇u= ε3R in R× (−1,0) ,

u|̂z=0
= 0, eẑ ·P(Σ)∇u|̂z=−1

= 0,
(2.13)

6
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and the matrix P is given by

P(Σ) = J−1
Σ Iε

(
J−1
Σ

)T |detJΣ|=( ε(1+ εη) −ε2 (1+ ẑ)ηx

−ε2 (1+ ẑ)ηx
1+ε3(1+ẑ)2η2

x
1+εη

)
,

where Iε is defined in (2.9) and JΣ is the Jacobian matrix of Σ.

3. Regularity estimates

On the strip S , it is possible to define mixed Sobolov spaces in a straightforward fashion.

Definition 1. For s ∈ R, we define L2Hs as the space of functions

L2Hs =

f ∈ L2 (S) : ‖f‖L2Hs =

(ˆ 0

−1
|f(·, ẑ) |2Hsdẑ

)1/2

<∞

 .
Here we use shorthand notation by denoting the generic norm associated to a function space

over R by | · |, and use the double bar notation || · || for functions defined on the flat strip S.
We shall use intensively the following main estimates on S .

Lemma 1 ([26]). Let s⩾ 0 and t0 > 1/2. Assume that R,∂tR ∈ Hs,0 and u ∈ Hs+1,1 be a
solution to the boundary value problem (2.13) such that assumption (2.10) is satisfied. Then
there exists a constant C depending on h−1

min, εmax, |η|Hs+1∨t0+1 and |∂tη|Hs+1∨t0+1 such that the
estimates

‖Λs∇u‖L2(S) ⩽ ε3C
(
h−1
min,εmax, |η|Hs+1∨t0+1

)
‖ΛsR‖L2(S) , (3.1)

‖Λs∇∂tu‖L2(S) ⩽ ε3C
(
h−1
min,εmax, |η|Hs+1∨t0+1 , |∂tη|Hs+1∨t0+1

)
‖Λs∂tR‖L2(S) , (3.2)

holds. Here εmax is an upper bound of the parameter ε and we have used the notation ∇=
(∂x,∂z)

T.

Proof. The proof of the first estimate (3.1) is exactly the same proof of [lemma 3.43, p 83,
[26]]. In order to prove the second estimate stated in the lemma, we differentiate (2.13) with
respect to t to get{

∇·P(Σ)∇∂tu+∇· ∂t [P(Σ)]∇u= ε3∂tR in R× (−1,0) ,

∂tu|̂z=0
= 0, eẑ ·P(Σ)∇∂tu|̂z=−1

+ eẑ · ∂t [P(Σ)]∇u|̂z=−1
= 0.

Note now that v= ∂tu can be decomposed into v= v1 + v2 so that the above problem is now
v1 and v2 solving {

∇·P(Σ)∇v1 = ε3∂tR in R× (−1,0) ,

v1 |̂z=0
= 0, eẑ ·P(Σ)∇v1 |̂z=−1

= 0.
(3.3){

∇·P(Σ)∇v2 =−∇ · ∂t [P(Σ)]∇u in R× (−1,0) ,

v2 |̂z=0
= 0, eẑ ·P(Σ)∇v2 |̂z=−1

=−eẑ · ∂t [P(Σ)]∇u|̂z=−1
.

(3.4)

As for (3.1), since v1 is solves the BVP (3.3), from [lemma 3.43, p 83, [26]]
it holds that ‖Λs∇v1‖L2 ⩽ ε3C(h−1

min,εmax, |η|Hs+1∨t0+1)‖Λs∂tR‖L2 . To obtain similar
estimate on v2, we will use first [lemma 2.38, p 50, [26]] to bound from above
‖Λs∇v2‖L2 ⩽ C

(
h−1
min, ,εmax, |η|Hs+1∨t0+1

)
‖Λs∂t[P(Σ)]∇u‖L2 . Now, it is not hard to check

7
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that ‖Λs∂t[P(Σ)]∇u‖L2 ⩽ εC
(
h−1
min,εmax, |∂tη|Hs+1∨t0+1

)
‖Λs∇u‖L2 . Then using again (3.1),

the desired estimate holds.

We shall also need the following continuity results of the Dirichlet-Neumann operator
Gε[εη].

Lemma 2 ([26]). Let η ∈ Hs+1/2(R)∩Ht0+2(R) satisfying (2.10) with s⩾ 0, t0 > 1/2. Then,
the following two mappings Gε[εη] : Ḣs+1/2(R)→ Hs−1/2(R) and ν[εη] : Ḣs+1/2(R)→
Hs−1/2(R) defined by

ψ 7→ Gε [εη]ψ , ψ 7→ ν [εη]ψ =

[
Gε [εη]ψ + ε2ηxψx

]2
2(1+ ε3η2x )

are continuous. In particular, one has∣∣Gε [εη]ψ
∣∣
Hs(R) ⩽

√
εC
(
h−1
min,εmax, |η|Ht0+2

)(
|ψx|Hs(R) + |η|Hs+1(R)|ψx|Ht0+1(R)

)
, (3.5)∣∣ν [εη]ψ ∣∣

Hs(R) ⩽
√
εC
(
h−1
min,εmax, |η|Ht0+2

)(
|ψx|Hs(R) + |η|Hs+1(R)|ψx|Ht0+1(R)

)
. (3.6)

Ḣs+1(R) = {f ∈ L2loc(R), fx ∈ Hs(R)} stands for the Beppo-Levi spaces [13] endowed with
the (semi) norm |f|Ḣs+1(R) = |fx|Hs(R).

Proof. More general version of the first inequality (3.5) was proved in [theorem 3.15, p 67,
[26]]. Consequently, one may deduce the desired estimate directly. The second inequality fol-
lows using (3.5) combined with the following estimate on f/(1+ g) for any f ∈ Hs(R) and
g ∈ Hs ∩Ht0(R) (see [proposition B.4, [26]] for the proof):∣∣∣ f

1+ g

∣∣∣
Hs

⩽ C
(
h−1
min, |g|Ht0

)
(|f|Hs + |f|Ht0 |g|Hs) . (3.7)

The main goal of this section is to estimate the difference between of vertical integrals
the space and time derivatives of the full and approximate potentials. These estimates will be
required later on to estimate the energy density and flux, as well as the pressure forces. To do
so, let us introduce the following inequalities that we shall use intensively in our analysis.

First of all, we shall use the product estimate :

‖fg‖L2Hs ⩽ ‖f‖L∞Hs‖g‖L2Hs for f ∈ L∞Hs and g ∈ L2Hs , (3.8)

we refer the reader to corollary B.5(1) in [26] for detailed proof. Moreover, we need the fol-
lowing essential Poincaré inequality which reads:

‖u‖L2(S) ⩽ 2‖∂ẑu‖L2(S) ⩽ 2‖∇u‖L2(S) . (3.9)

Indeed, for any (x, ẑ) ∈ S , by Cauchy-Schwarz inequality we have

|u|2 = 2
ˆ 0

z
u∂ẑu dẑ⩽ 2‖u‖L2(−1,0)‖∂ẑu‖L2(−1,0) .

Integrating the latter on (−1,0) in ẑ, we get ‖u‖2L2(−1,0) ⩽ 4‖∂ẑu‖2L2(−1,0). Integrating now on
R in x, the desired inequality (3.9) holds. Also, it is not hard to check that by Cauchy-Schwarz
inequality and Fubini’s theorem we have∣∣∣∣ˆ 0

−1
f dẑ

∣∣∣∣
Hs

⩽ ‖f‖L2Hs . (3.10)

8
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Now we turn on stating and proving the main results of this section in three distinct
propositions.

Proposition 1. Suppose that the assumption of lemma 1 holds. Let η ∈ Hs+7(R)∩Ht0+2(R)
satisfying (2.10) and ψx ∈ Hs+6(R)∩Ht0+1(R) with s⩾ 0, t0 > 1/2. Then the following
estimate holds ∣∣∣ˆ 1+εη

0
φEuler
t −φapp

t dz
∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+7∨t0+2 , |ψx|Hs+6∨t0+1

)
. (3.11)

Proof. Recall that ∂tu := φEuler
t −φapp

t , by (3.10), the product estimate (3.8) and Poincaré
inequality (3.9), one may observe that∣∣∣∣ˆ 1+εη

0
∂tu dz

∣∣∣∣
Hs(R)

=

∣∣∣∣ˆ 0

−1
[h∂tu− εηt (1+ ẑ)∂ẑu] ◦Σ dẑ

∣∣∣∣
Hs(R)

⩽
(
ε|η|Hs(R) + 1

)
‖∂tu‖L2Hs + 2ε|ηt|Hs‖Λs∂ẑu‖L2(S)

⩽ 2
(
ε|η|Hs(R) + 1

)
‖Λs∂t∇u‖L2(S) + 2ε|ηt|Hs(R)‖Λs∇u‖L2(S) . (3.12)

The first equation of (1.6) combined with (3.5) yields

|ηt|Hs(R) ⩽
1√
ε
C
(
h−1
min,εmax, |η|Ht0+2

)(
|ψx|Hs(R) + |η|Hs+1(R)|ψx|Ht0+1(R)

)
. (3.13)

Now, combining the latter inequality with (3.1) and (3.2) in (3.12), yields∣∣∣ˆ 1+εη

0
∂tu dz

∣∣∣
Hs(R)

⩽ ε3C
(
h−1
min,εmax, |η|Hs+2∨t0+2 , |ψx|Hs+1∨t0+1

)
×
(
‖Λs∂tR‖L2(S) + ‖ΛsR‖L2(S)

)
. (3.14)

It remains to estimate |R|Hs(R) and |∂tR|Hs(R). To do so, remark that by definitions (2.8)–
(2.5)–(2.6)–(2.7), we have R(x,z) = ∂x(ηxh)∂2xψ + 1

2 (h+ 1)η∂4xψ +( 1
24 z

4 − 1
4 z

2 + 5
24 )∂

6
xψ in

Ωt. Nowwe recall that η andψ are independent from the vertical variable, then for all (x, ẑ) ∈ S ,
we have

R(x, ẑ) = R ◦Σ(x,z) = ∂x (ηxh)∂
2
xψ +

1
2
(h+ 1)η∂4xψ

+

(
1
24
h4
(
ẑ4 + 1

)
− 1

4
h2 (ẑ+ 1)2 +

5
24

)
∂6xψ .

Therefore, it is not hard to check that

|R|Hs(R) ⩽ C(|η|Hs+2) |∂5xψx|Hs and |∂tR|Hs(R) ⩽ C(|η|Hs+1 , |∂tη|Hs+2) |∂t∂5xψx|Hs . (3.15)

It is worth noticing that as for estimate (3.13), one may control |∂tη|Hs+2 . Moreover, by the con-
tinuity properties of the operator ν[εη]ψ provided in (3.6) combined with the second equation
of the Zakharov-Craig-Sulem system (1.6), one may observe that

|∂tψx|Hs+5 ⩽ C
(
h−1
min,εmax, |η|Hs+7∨t0+2 , |ψx|Hs+6∨t0+1

)
. (3.16)

Gathering the information provided by the above estimates (3.13)–(3.15)–(3.16) in (3.14) the
proof is complete.

9
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Proposition 2. Suppose that the assumption of lemma 1 holds. Let η ∈ Hs+3(R)∩Ht0+1(R)
satisfying (2.10) and ψx ∈ Hs+6(R) with s⩾ 0, t0 > 1/2. Then the following estimates hold

∣∣∣ˆ 1+εη

0

(
φEuler
x

)2 − (φapp
x )

2 dz
∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+3∨t0+1 , |ψx|Hs+6

)
, (3.17)

∣∣∣ˆ 1+εη

0

(
φEuler
z

)2 − (φapp
z )

2 dz
∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+2∨t0+1 , |ψx|Hs+5

)
. (3.18)

Proof. We start by using the transformation Σ, for any function f(t,x,z), such that it holds

ˆ 1+εη

0
(∂xf)

2 dz=
ˆ 0

−1

1
h
(h∂xf +(ẑhx+ εηx)∂ẑf)

2 dẑ

=

ˆ 0

−1
h(∂xf)

2
+ 2(ẑhx+ εηx)∂xf∂ẑf+

1
h
(ẑhx+ εζx)

2
(∂ẑf)

2 dẑ . (3.19)

To estimate (3.17), we use the above identity to write

ˆ 1+εη

0

(
φEuler
x

)2
− (φapp

x )
2 dz=

ˆ 0

−1
h
[(
φEuler
x +φapp

x

)(
φEuler
x −φapp

x

)]
◦Σ dẑ

+ 2
ˆ 0

−1
(̂z+ 1)εηx

[
∂xφ

Euler∂ẑφ
Euler − ∂xφ

app∂ẑφ
app

]
◦Σ dẑ

+

ˆ 0

−1

1
h
(̂z+ 1)2 ε2η2x

[(
∂ẑφ

Euler
)2

− (∂ẑφ
app)

2
]
◦Σ dẑ=: I+ II+ III .

To control I, by (3.10), the product estimate (3.8), the Poincaré inequality (3.9), the fact that
|ux|L∞Hs ⩽ supessz∈(−1,0)|u|Hs+1,1 , then it holds that

|I|Hs ⩽ ‖h(ux+ 2φapp
x )ux‖L2Hs ⩽ ‖h(ux+ 2φapp

x )‖L∞Hs‖ux‖L2Hs

⩽ (|h− 1|Hs + 1)‖ux+ 2φapp
x ‖L∞Hs‖u‖L2Hs+1

⩽ (|h− 1|Hs + 1)(‖ux‖L∞Hs + 2(|η|Hs+1 + 1) |ψxxxxx|Hs)‖Λs+1u‖L2(S)

⩽ (|h− 1|Hs + 1)(‖u‖Hs+1,1 + 2(|η|Hs+1 + 1) |ψxxxxx|Hs)‖Λs+1∇u‖L2(S) . (3.20)

Now using estimate (3.1) for s+ 1 instead of s, it holds that |I|Hs ⩽ ε3C
(
h−1
min,εmax, |η|Hs+2∨t0+1 ,

|Λs+1R|L2 , |ψx|Hs+4). We recall that from (3.15), we have |R|Hs+1(R) ⩽ C
(
|η|Hs+3

)
|ψx|Hs+6 and

then (3.17) holds.
To control the cross term II, remark that

∂xφ
Euler∂ẑφ

Euler − ∂xφ
app∂ẑφ

app = ∂xu∂ẑu− ∂xu∂ẑφapp + ∂ẑu∂xφapp. (3.21)

Consequently, as in (3.20), it holds that |II|Hs ⩽ ε3C
(
h−1
min,εmax, |η|Hs+3∨t0+1 , |ψx|Hs+6). The con-

trol of |III|Hs ⩽ ε3C
(
h−1
min,εmax, |η|Hs+2∨t0+1 , |ψx|Hs+5) follows similarly using in addition the

below estimate :∥∥∥ f
1+ εη

∥∥∥
L2Hs

⩽ C
(
h−1
min,εmax, |η|Hs

)
‖f‖L2Hs . (3.22)

We refer the reader to corollary B.6 in [26] for the proof of the latter estimate. As a result,
estimate (3.17) holds. To estimate (3.18), as for III, using (3.22) the desired estimate holds.

10
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Proposition 3. Suppose that the assumption of lemma 1 holds. Let η ∈ Hs+3(R)∩Ht0+1(R)
satisfying (2.10) and ψx ∈ Hs+6(R) with s⩾ 0, t0 > 1/2. Then the following estimates hold:∣∣∣ˆ 1+εζ

0

(
φEuler
x −φapp

x

)
dz
∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+3∨t0+1 , |ψx|Hs+6

)
, (3.23)∣∣∣ˆ 1+εζ

0

(
φEuler
z −φapp

z

)
dz
∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+2∨t0+1 , |ψx|Hs+5

)
. (3.24)

Proof. Recall that u= (φEuler −φapp) ◦Σ and R= R ◦Σ. Changing variables in the integral
in (3.23), we get

ˆ 1+εη

0
∂xu dz=

ˆ 0

−1
h∂xu+(ẑ+ 1)εηx∂ẑu dẑ= I+ II .

As in Propsition 2, by (3.10), the product estimate (3.8) and (3.9), it holds that

|I|Hs ⩽ (|h− 1|Hs + 1)‖ux‖L2Hs+1 ⩽ C(|η|Hs)‖Λs+1∇u‖L2(S) ,

and |II|Hs ⩽ ε|ηx|Hs‖Λs∂ẑu‖L2(S) ⩽ C(|η|Hs+1)‖Λs∇u‖L2(S) .

Now using the first estimate of lemma 1 for s and s+ 1 combined with (3.15), estimate (3.23)
holds. The proof of the second estimate (3.24) follows similarly as follows.∣∣∣ˆ 1+εη

0
∂zu dz

∣∣∣
Hs

=
∣∣∣ˆ 0

−1
∂ẑu dẑ

∣∣∣
Hs

⩽ ‖∂ẑu‖L2Hs ⩽ 2‖Λs∇u‖L2(S) .

Proposition 4. Suppose that the assumption of lemma 1 holds. Let η ∈ Hs+3(R)∩Ht0+1(R)
satisfying (2.10) and ψx ∈ Hs+6(R) with s⩾ 0, t0 > 1/2. Then the following estimates hold∣∣∣ˆ 1+εη

0

(
φEuler
x

)3 − (φapp
x )

3 dz
∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+3∨t0+1 , |ψx|Hs+6

)
, (3.25)

∣∣∣ˆ 1+εη

0

(
φEuler
z

)3 − (φapp
z )

3 dz
∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+2∨t0+1 , |ψx|Hs+5

)
. (3.26)

Proof. For the first estimate, remark that

ˆ 1+εη

0

(
φEuler
x

)3
− (φapp

x )
3 dz=

ˆ 1+εη

0

((
φEuler
x

)2
− (φapp

x )
2
)
ux dz

+

ˆ 1+εη

0
φapp
x

((
φEuler
x

)2
− (φapp

x )
2
)
dz+

ˆ 1+εη

0
(φapp

x )
2 ux dz

= J1 + J2 + J3 .

To control J2 + J3, first remark that by definitions (2.8)–(2.5)–(2.6)–(2.7), it holds that∣∣ sup
z∈(0,1+εη)

φapp
x

∣∣
Hs ⩽ C

(
h−1
min,εmax, |η|Hs+2 , |ψx|Hs+5

)
.

11
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Consequently, using the latter inequality combined with the estimates (3.17)–(3.23), we get
that |J2 + J3|Hs ⩽ ε3C

(
h−1
min,εmax, |η|Hs+2∨t0+1 , |ψx|Hs+5). To control J1, we start by using the

transformation Σ. In view of (3.19) and (3.21), it is not hard to check that

J1 =
ˆ 0

−1
h(ux+ 2φapp

x )u2x dẑ+ 2
ˆ 0

−1
(̂z+ 1)εηx

(
uxuẑ− uxφ

app
ẑ + uẑφ

app
x

)
ux dẑ

+

ˆ 0

−1

1
h
(̂z+ 1)2 ε2η2x

(
uẑ+ 2φapp

ẑ

)
uẑux dẑ+

ˆ 0

−1
ε (̂z+ 1)ηx (ux+ 2φapp

x )uxuẑ dẑ

+ 2
ˆ 0

−1

1
h
(̂z+ 1)2 ε2η2x

(
uxuẑ− uxφ

app
ẑ + uẑφ

app
x

)
uẑ dẑ+

ˆ 0

−1

1
h2

(̂z+ 1)3 ε3η3x
(
uẑ+ 2φapp

ẑ

)
u2ẑ dẑ .

Controlling of the above integrals follows same lines of the proof of proposition 2, in particular,
we refer to (3.20) for similar procedure. To estimate (3.26), remark that(
φEuler
z

)3 − (φapp
z )

3
=
[(
φEuler
z

)2 − (φapp
z )

2
]
uz+(φapp

z )
2 uz+φapp

z

[(
φEuler
z

)2 − (φapp
z )

2
]
.

The rest of the proof follows as above.

Proposition 5. Suppose that the assumption of lemma 1 holds. Let η ∈ Hs+7(R)∩Ht0+2(R)
satisfying (2.10) andψx ∈ Hs+6(R)∩Ht0+1(R)with s⩾ 0, t0 > 1/2. Then the following estim-
ate holds∣∣∣ˆ 1+εη

0
φEuler
t φEuler

x −φapp
t φapp

x dz
∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+7∨t0+2 , |ψx|Hs+6∨t0+1

)
, (3.27)

∣∣∣ˆ 1+εη

0

(
φEuler
z

)2
φEuler
x − (φapp

z )
2
φapp
x dz

∣∣∣
Hs

⩽ ε3C
(
h−1
min,εmax, |η|Hs+2∨t0+1 , |ψx|Hs+5

)
. (3.28)

Proof. To estimate (3.27), remark that

ˆ 1+εη

0
φEuler
t φEuler

x −φapp
t φapp

x dz=
ˆ 1+εη

0

(
φEuler
t −φapp

t

)
ux dz

+

ˆ 1+εη

0
φapp
x

(
φEuler
t −φapp

t

)
dz+

ˆ 1+εη

0
φapp
t ux dz

= J1 + J2 + J3 .

To control J2 + J3, first remark that by definitions (2.8)–(2.5)–(2.6)–(2.7), it holds that∣∣ sup
z∈(0,1+εη)

φapp
t

∣∣
Hs ⩽ C

(
h−1
min,εmax, |ηt|Hs+2 , |∂tψx|Hs+5

)
.

Consequently, using the latter inequality combined with the estimates (3.11), (3.23), (3.12)
and (3.16), we get that |J2 + J3|Hs ⩽ ε3C

(
h−1
min,εmax, |η|Hs+7∨t0+2 , |ψx|Hs+6∨t0+1

)
. To control J1,

we start by using the transformationΣ. In view of (3.19) and (3.21), it is not hard to check that

J1 =
ˆ 0

−1
huxut dẑ+ ε

ˆ 0

−1
ηx (̂z+ 1)uẑut dẑ− ε

ˆ 0

−1
ηt (̂z+ 1)uẑux dẑ− ε2

ˆ 0

−1

1
h
ηx (̂z+ 1)u2ẑ dẑ

= J11 + J12 + J13 + J14.

12
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By (3.10), the product estimates (3.8)–(3.22) and Poincaré inequality (3.9), one may observe
that

|J11 + J12|Hs ⩽
(
ε|η|Hs(R) + 1

)
‖ux‖L∞Hs‖∂tu‖L2Hs + ε|ηx|Hs‖uẑ‖L∞Hs‖∂tu‖L2Hs

⩽ 2
(
ε|η|Hs(R) + 1+ ε|ηx|Hs

)
‖u‖Hs+1,1‖Λs∂t∇u‖L2(S)

and |J13 + J14|Hs ⩽ 2
(
ε|ηt|Hs(R) + ε2C|ηx|Hs

)
‖u‖Hs+1,1‖Λs+1∇u‖L2(S) .

Now as in the proof of proposition 1, estimate (3.27) holds. To estimate (3.28), remark that

(
φEuler
z

)2
φEuler
x − (φapp

z )
2
φapp
x =

[(
φEuler
z

)2
− (φapp

z )
2
]
ux+(φapp

z )
2 ux+φapp

x

[(
φEuler
z

)2
− (φapp

z )
2
]
.

The rest of the proof follows as in the proof of proposition 2.

4. Mathematical justification of the KdV equation

The next step is to connect the approximated velocity potential to the KdV equation.
Completing this step turns out to be dependent on an approximation of the horizontal velocity
at the bottom and some observations on Boussinesq-type systems. For the sake of readability,
we introduce the following simplified notation.

Definition 2. We denote by O(εn), with n ∈ N any family of functions {gε}ε∈(0,1) such that
1
εn
gε remains bounded in L∞([0, Tε ]×R) or in L∞([0, Tε ],H

s(R)) for some s> 1/2 and for all

ε small enough.

4.1. The intermediate system

This section is dedicated to revealing the fully symmetric Boussinesq system (4.6) as a bridge
between the Euler system and the KdV equation. Also we will present the mathematical jus-
tification of the system (4.6).

It will be convenient in the following to use the velocity potential evaluated at the bottom. By
using the above approximations of φ (2.1), it becomes clear that to order O(ε2), this quantity
is represented by

f := φapp
|z=0

= ψ+
1
2
εψxx . (4.1)

It is to hard to check that at the free surface we have ∂xφapp = ψx+O(ε2) and ∂zφapp =
−εψxx− ε2ηψxx− 1

3ε
2ψxxxx+O(ε3). Thus, in view of the function f, the second boundary con-

dition in (1.5) becomes

ηt+ fxx+ εηfxx+ εηxfx−
1
6
εfxxxx =O

(
ε2
)
, (4.2)

where fx represents the horizontal velocity at the bottom (note that in the present inviscid
theory, the velocity component tangential to the bottom is unrestricted). Furthermore, the third
boundary condition in (1.5) becomes

η+ ft−
ε

2
fxxt+

ε

2
fx
2 =O

(
ε2
)
. (4.3)

13
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Differentiating (4.3) with respect to x, using (4.2) as the first equation, and denoting w= fx
yields the following approximation:

ηt+wx+ ε(ηw)x−
1
6
εwxxx =O

(
ε2
)
,

wt+ ηx+ εwwx−
1
2
εwxxt =O

(
ε2
)
.

(4.4)

The last system can be approximated using the fact that ηx =−wt+O(ε):

ηt+

(
1− 1

6
ε∂2x

)
wx+ ε(ηw)x =O

(
ε2
)
,(

1− 2
3
ε∂2x

)
wt+

(
1− 1

6
ε∂2x

)
ηx+ εwwx =O

(
ε2
)
. (4.5)

Let us now define two new unknowns, (ξ,v), where ξ is an approximation of the free surface
elevation η and v is an approximation of the horizontal velocity on the bottomw. The unknowns
(ξ,v) are solutions of the system (4.5), but with the error terms removed. To put it another way,
we look at the fully symmetric Boussinesq equations given by{

ξt+
(
1− 1

6ε∂
2
x

)
vx+ ε(ξ v)x = 0 ,(

1− 2
3ε∂

2
x

)
vt+

(
1− 1

6ε∂
2
x

)
ξx+ εvvx = 0.

(4.6)

This system acts as an intermediate system between the Euler system and the KdV equation.
To make this more rigorous, we define the concept of consistency between the water-wave
problem and the fully symmetric Boussinesq system (4.6) in the following sense:

Definition 3 (Consistency). Let ε� 1. We say that the water-wave equations (1.6) are con-
sistent at orderO(ε2)with the fully symmetric Boussinesq equations (4.6) if there exists n ∈ N
and T > 0 such that for all s⩾ 0, t0 > 1/2,

• There exists a solution (η,ψx) ∈ C([0,T/ε]; (Hs+n)2) to the water-wave equations (1.6).
• Defining w= ψx+

1
2εψxxx, one has{
ηt+

(
1− 1

6ε∂
2
x

)
wx+ ε(ηw)x = ε2R1 ,(

1− 2
3ε∂

2
x

)
wt+

(
1− 1

6ε∂
2
x

)
ηx+ εwwx = ε2R2 ,

(4.7)

with |R1|Hs + |R2|Hs ⩽ C
(
h−1
min,εmax, |η|Hs+7∨t0+2 , |ψx|Hs+6∨t0+1

)
on [0,T/ε].

The consistency result mentioned above for the fully symmetric Boussinesq system is the
following.

Proposition 6 (Consistency of (4.6)). Let ε� 1. The water-wave problem (1.6) is consistent
at order O(ε2) with the fully symmetric Boussinesq system (4.6).

Proof. In order to check that the two equations are satisfied up to order O(ε2), we need an
asymptotic expansion of ψx in terms of w which can be deduced from (4.1) as follows :

ψx = w− 1
2
εwxx+ ε2r . (4.8)

14
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Now, substitute G[εη]ψ in the first equation of (1.6) by its expression (1.7) with φ replaced by
φapp:

G [εη]ψ =−εψxx− ε2 (ηψx)x−
1
3
ε2ψxxxx+ ε3R=−wx+

1
6
ε2wxxx− ε2 (ηw)x+ ε3 (rx+R) . (4.9)

Also, take the derivative of the second equation of (1.6) and replace ψx by its expression (4.8).
We denote by ε2R1 and ε2R2 the residual of the first and the second equations corresponding to
the consistency result stated above, one therefore has that R1 and R2 depends on the remainder
∂xr and R the same error term as in (2.8). Now we use (4.8) and definition of w to give some
control on r as follows :

|rx|Hs ⩽ |∂5xψx|Hs and |∂trx|Hs ⩽ |∂5x∂tψx|Hs . (4.10)

Taking advantage of the estimates (3.13), (3.15) and (3.16) in the proof of proposition 1 the
proof is complete with n large enough (mainly greater than 7).

We turn our attention now to the full justification (existence+stability+convergence) of the
fully symmetric Boussinesq system (4.6). In other words, we state here that the solutions to
the water waves equations exist on the relevant time scale associated to the Boussinesq regime
under consideration and remain close to the approximation furnished by (4.6). Let us first
remark that the model (4.6) is in fact the same as the system (5.34) of [26] if one takes the
parameter values

λ= 0, θ =
1
2
, δ = 0, α=

3
2
,

in the notation from [26].
The well-posedness result of system (4.6) has been proved in [27], note that according to

the notation used in [27], a= c=−1
6
, b= 0 and d=

2
3
, for our system (4.6).

Theorem 1 (Local existence [27]). Let t0 > 1/2 and s⩾ t0 + 2. Assume that V0 = (ξ0,v0)T ∈
Xs(R) = Hs+3(R)×Hs+4(R) satisfying condition (2.10). Then there exist T> 0 independent
of ε such that system (4.6) has a unique solution V= (ξ,v)T ∈ C([0,T/ε];Xs(R)). Moreover,
we have the following size estimate

max
t∈[0,T/ε]

|(ξ,v) |Xs ⩽ C
(
h−1
min,εmax, |ξ 0|Hs+3 , |v0|Hs+4

)
. (4.11)

Theorem 1 is complemented by the following result, which shows the solution’s stability
with respect to perturbations and is very useful for justifying asymptotic approximations to the
exact solution. The solution V= (ξ,v)T and time T in the following statement are provided by
theorem 1.

Theorem 2 (A stability property). Suppose that the assumption of theorem 1 is satisfied and
moreover assume that there exists Ṽ= (ξ̃, ṽ)T ∈ C

(
[0,T/ε],Xs+1(R)

)
such that{

ξ̃t+
(
1− 1

6ε∂
2
x

)
ṽx+ ε

(
ξ̃ṽ
)
x
= r̃ ,(

1− 2
3ε∂

2
x

)
ṽt+

(
1− 1

6ε∂
2
x

)
ξ̃x+ εṽṽx = R̃ ,

with F̃= (̃r, R̃)T ∈ L∞
(
[0,T/ε],Hs+5(R)

)
. Then for all t ∈ [0,T/ε], the error V= V− Ṽ=

(ξ,v)T− (ξ̃, ṽ)T with respect to V given by theorem 1 satisfies for all 0⩽ t⩽ T/ε the following
inequality ∣∣V∣∣

L∞([0,t],Xs(R)) ⩽ C̃
(∣∣V|t=0

∣∣
Xs+1(R) + t

∣∣F̃∣∣
L∞([0,t],Hs+5(R))

)
, (4.12)
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where the constant C̃ is depending on h−1
min, |V|L∞([0,T/ε],Xs(R)) and |Ṽ|L∞([0,T/ε],Xs+1(R)).

Proof. The proof is a direct and classical consequence of similar energy estimates evaluated

in [27] consists on the evaluation of 1
2
d
dt

∣∣V∣∣2
Xs(R) combined with Grönwall’s inequality. The

key step of the proof that we shall omit, is subtracting the equations satisfied by V and Ṽ then
proceeding as in [27].

As a conclusion, we are able now to provide the full justification of system (4.6) through
the below theorem.

Theorem 3 (Full justification of (4.6)). Let ε ∈ (0,1), t0 > 1/2, s⩾ t0 + 2 and (η0,ψ0,x)
T ∈

Hs+N+1(R)×Hs+N(R) satisfying condition (2.10) where N sufficiently large (mainly greater
than 8). Then there exists T> 0, independent of ε such that

• There exists a unique solution (η,ψx) ∈ C([0,T/ε];Hs+N+1(R)×Hs+N(R)) to the
water-wave equations (1.6), and to which one associates through ∂xφ |z=0

= wEuler ∈
C([0,T/ε];Hs+N−6) the bottom horizontal velocity.

• There exists a unique solution (ξ,v) ∈ C([0,T/ε];Xs+N−6)⊂ C([0,T/ε];Xs+N−11) to (4.6)
with initial data (ξ0,v0) = (η0,ψ0,x+

1
2εψ0,xxx)+O(ε2).

• The following error estimate holds, for all 0⩽ t⩽ T/ε,

|ξ− η|W2,∞ ⩽ ε2 (1+ t)C
(
h−1
min,εmax, |η0|Hs+N+1 , |w0|Hs+N−6 , |ψ0,x|Hs+N

)
, (4.13)

|v−w|W2,∞ ⩽ ε2 (1+ t)C
(
h−1
min,εmax, |η0|Hs+N+1 , |w0|Hs+N−6 , |ψ0,x|Hs+N

)
, (4.14)

and
|v−wEuler|W2,∞ ⩽ ε2 (1+ t)C

(
h−1
min,εmax, |η0|Hs+N+1 , |w0|Hs+N−6 , |ψ0,x|Hs+N

)
. (4.15)

Proof. In view of the large assumption made on N, we refer to [theorem 4.16, p 102, [26]] for
the deduction of the existence and uniqueness of a solution to (1.6). To prove the regularity of
wEuler, we recall that w= ∂xφ

app
|z=0

and remark that

|wEuler −w|Hs+N−6 ⩽ |u|z=0
|Hs+N−5 =

∣∣∣ˆ 1+εη

0
∂zu dz

∣∣∣
Hs+N−5

⩽ ε3C
(
h−1
min,εmax, |η|Hs+N−3∨t0+1 , |ψx|Hs+N

)
. (4.16)

Here we did similar proof to that of (3.24) by using (3.1). Hence, the regularity of w holds.
The second point follows directly from theorem 1. For the third point, proposition 6 implies
that {

ηt+
(
1− 1

6ε∂
2
x

)
wx+ ε(ηw)x = ε2R1 ,(

1− 2
3ε∂

2
x

)
wt+

(
1− 1

6ε∂
2
x

)
ηx+ εwwx = ε2R2 ,

with |R1|Hs + |R2|Hs ⩽ C
(
h−1
min,εmax, |η|Hs+7 , |ψx|Hs+6

)
on [0,T/ε]. Now by theorem 2, with V=

(ξ,v) and Ṽ= (η,w) ∈ C([0,T/ε];Xs+N−10) and F̃= ε2(R1,R2), the stability property (4.12)
implies that

16
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|V− Ṽ|L∞([0,t],Xs+N−11(R)) =
∣∣ξ− η

∣∣
L∞([0,t],Hs+N−8(R)) +

∣∣v−w
∣∣
L∞([0,t],Hs+N−7(R))

⩽ ε2 (1+ t)C
(
h−1
min, |(η,w) |Xs+N−10 , |(ξ,v) |Xs+N−11 , |(R1,R2) |Hs+N−6

)
⩽ ε2 (1+ t)C

(
h−1
min,εmax, |η0|Hs+N+1 , |ψ0,x|Hs+N

)
.

For the latter inequality we used the size estimate (4.11) and that |w0|Hs+N−6 ⩽ 2|ψ0,x|Hs+N−4 .
Finally, from the assumption made on N (mainly greater than 8) and the Sobolev embedding
Hs−2(R)⊂ L∞(R), the desired estimates (4.13) and (4.14) holds. The last estimate (4.15)
follows from (4.14) and (4.16) combined with a triangle inequality.

4.2. Full justification of the KdV equation

It’s known that the KdV equation

ηKdVt + ηKdVx +
3
2
εηKdVηKdVx +

1
6
εηKdVxxx = 0, (4.17)

can be derived from (4.6) by assuming a certain relation between the horizontal velocity
and the surface deflection. We prove in this section that one can associate to the solutions
of (4.17) a family of approximate solutions consistent with the fully symmetric Boussinesq
equations (4.6) in the following sense:

Definition 4. Let ε� 1 and T > 0. We say that a family (ηKdV,wKdV) is consistent at order
O(ε2) with the fully symmetric Boussinesq equations (4.6) if for all s⩾ 0,{

ηKdVt +
(
1− 1

6ε∂
2
x

)
wKdV
x + ε

(
ηKdVwKdV

)
x
= ε2r1 ,(

1− 2
3ε∂

2
x

)
wKdV
t +

(
1− 1

6ε∂
2
x

)
ηKdVx + εwKdVwKdV

x = ε2r2 ,

with (r1,r2) ∈ L∞
(
[0,T/ε];Hs(R)2

)
.

The following proposition shows that there is one-parameter family of KdV equations of
the form (4.17) which is consistent in the same sense of definition 4 with the fully symmetric
Boussinesq equations (4.6).

Proposition 7. Let ε� 1. Then there exists n ∈ N (mainly greater than 7), such that for all
s⩾ 0 and T> 0, and for all bounded families ηKdV ∈ C([0, Tε ];H

s+n(R)) solving (4.17), the
family (ηKdV,wKdV), such that

wKdV := ηKdV − 1
4
ε
(
ηKdV

)2
+

1
3
εηKdVxx , (4.18)

is consistent of order O(ε2) on [0, Tε ] with the fully symmetric Boussinesq equations (4.6).

Remark 1. The KdV equation (4.17) is in fact globally well posed as shown in [8], but this is
not needed for our present purposes.

Proof. Let n be large enough (mainly greater than 7), and suppose ηKdV ∈ C([0, Tε ];H
s+n(R))

is a solution of the KdV equation (4.17).We seek a functionW(x, t) such that ifwKdV = ηKdV +
εW and ηKdV solves (4.17), then the first equation of (4.6) is satisfied up to O(ε2) term. This
is equivalent to checking that

ηKdVt + ηKdVx + εWx−
1
6
εηKdVxxx + 2εηKdVηKdVx = 0.

17
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Since ηKdV is a solution of the KdV equation (4.17), then replace ηKdVt + ηKdVx =
− 3

2εη
KdVηKdVx − 1

6εη
KdV
xxx . Therefore, it holds that

εWx =−1
2
εηηx+

1
3
εηxxx .

If we integrate the last equation with respect to x, then one can choose

W=−1
4

(
ηKdV

)2
+

1
3
ηKdVxx .

Consequently,

wKdV = ηKdV − 1
4
ε
(
ηKdV

)2
+

1
3
εηKdVxx .

Now, it is straightforward that the pair of functions (ηKdV,wKdV) satisfies the first equation
of (4.6) up to O(ε2) containing ∂5xη

KdV as a highest derivative. On the other hand, for the
second equation of (4.6), use the fact that ηKdVt =−ηKdVx +O(ε) so that this equation is also
satisfied up to O(ε2) terms containing ∂7xη

KdV as a highest derivative.

A consequence of the following proposition is a stronger result: this consistent family
(ηKdV,wKdV) of solutions of the KdV equation (4.17) constructed, provides a good approx-
imation of the exact solutions (ξ,v) of the fully symmetric Boussinesq equations (4.6) with
same initial data in the sense that (ξ

0
,v0) = (ηKdV0 ,wKdV

0 )+O(ε2) for times of order ε−1.

Proposition 8. Suppose that the assumption of theorem 3 is satisfied, then it holds that:

• There is a unique family (ηKdV,wKdV) ∈ C
(
[0,T/ε];Hs+N+1(R)×Hs+N−1(R)

)
given by the

resolution of (4.17) with initial condition ηKdV0 = η0 and formula (4.18).
• There exists a unique solution (ξ,v) ∈ C

(
[0,T/ε];Hs+N−2(R)×Hs+N−1(R) = Xs+N−5

)
to (4.6) with initial data (ξ

0
,v0) = (η0,wKdV

0 = η0 − 1
4εη

2
0 +

1
3εη0,xx)+O(ε2).

• The following error estimate holds, for all 0⩽ t⩽ T/ε,

|ξ− ηKdV|W2,∞ ⩽ ε2 (1+ t)C
(
h−1
min,εmax, |η0|Hs+N+1

)
, (4.19)

|v−wKdV|W2,∞ ⩽ ε2 (1+ t)C
(
h−1
min,εmax, |η0|Hs+N+1

)
. (4.20)

Proof. The first point of this proposition is a direct consequence from the well posedness the-
ory of the KdV equation (4.17) (see for instance [15, 18, 21]). The second point is deduced
using theorem 1. For the third point, we know from proposition 7 that (ηKdV,wKdV) is con-
sistent with the fully symmetric Boussinesq equations (4.6) in the sense of definition 4, this
implies that {

ηKdVt +
(
1− 1

6ε∂
2
x

)
wKdV
x + ε

(
ηKdVwKdV

)
x
= ε2r1 ,(

1− 2
3ε∂

2
x

)
wKdV
t +

(
1− 1

6ε∂
2
x

)
ηKdVx + εwKdVwKdV

x = ε2r2 ,

with |r1|Hs + |r2|Hs ⩽ C
(
εmax, |ηKdV|Hs+7

)
on [0,T/ε]. Now by theorem 2, with V= (ξ,v) ∈

C([0,T/ε];Xs+N−11) and Ṽ= (ηKdV,wKdV) ∈ C([0,T/ε];Xs+N−10) and F̃= ε2(r1,r2), the sta-
bility property (4.12) implies that
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|V− Ṽ|L∞([0,t],Xs+N−11(R)) =
∣∣ξ− ηKdV

∣∣
L∞([0,t],Hs+N−8(R))

+
∣∣v−wKdV

∣∣
L∞([0,t],Hs+N−7(R))

⩽ ε2 (1+ t)C
(
h−1
min, |

(
ηKdV,wKdV

)
|Xs+N−10 , |

(
ξ,v

)
|Xs+N−11 , |(r1,r2) |Hs+N−6

)
⩽ ε2 (1+ t)C

(
h−1
min,εmax, |η0|Hs+N+1

)
,

where for the latter inequality we used the size estimate (4.11). Finally, from the assumption
made onN (mainly greater than 8) and the Sobolev embeddingHs−2(R)⊂ L∞(R), the desired
estimates (4.19) and (4.20) holds.

So far, proposition 3 states that the fully symmetric Boussinesq system (4.6) provide
good approximation to the water wave equations (1.6), and proposition 8 states that the KdV
equation (4.17) provide good approximation the fully symmetric Boussinesq system (4.6).
Consequently, for small initial data we can deduce that the KdV equation (4.17) is also a good
approximation for water wave equations (1.6).

Corollary 1. Suppose that the assumption of theorem 3 is satisfied. Moreover, assume that
max(|η0|Hs+N−2 , |ψ0,x|Hs+N−2)⩽ ε, then for all 0⩽ t⩽ T/ε, it holds that:

|ηEuler − ηKdV|W2,∞ ⩽ |ηEuler − ηKdV|Hs+N−8 ⩽ ε2 (1+ t)C
(
h−1
min,εmax, |η0|Hs+N+1 , |ψ0,x|Hs+N

)
, (4.21)

|wEuler −wKdV|W2,∞ ⩽ ε2 (1+ t)C
(
h−1
min,εmax, |η0|Hs+N+1 , |ψ0,x|Hs+N

)
, (4.22)

and in addition we have

|ψx−wKdV|L∞ ⩽ ε2 (1+ t)C
(
h−1
min,εmax, |η0|Hs+N+1 , |ψ0,x|Hs+N

)
. (4.23)

Proof. The proof requires similar estimates between the solutions of the Boussinesq systems
mentioned in propositions 3 and 8. By theorem 2, with Ṽ= (ξ,v) ∈ C([0,T/ε];Xs+N−5)⊂
C([0,T/ε];Xs+N−6) and V= (ξ,v) ∈ C([0,T/ε];Xs+N−6)⊂ C([0,T/ε];Xs+N−7) and F̃=
(0,0), the stability property (4.12) implies that

|ξ− ξ|Hs+N−4 + |v− v|Hs+N+3 ⩽ |η0 −ψ0,x|Hs+N−2 + εC(|η0|Hs+N+1 , |ψ0,x|Hs+N) .

The first two estimates follows from the Sobolev embedding Hs−2(R)⊂ L∞(R) combined
with a triangular inequality. The last estimate is a direct consequence of the second one com-
bined with (4.16) and the fact that w= ψx+

1
2εψxxx+O(ε2).

Remark 2. The precision of the KdV approximation is O(
√
ε) if no additional assumption

was made on the initial data (see corollary 7.2, p 180, [26]). Otherwise, in order to improve
the precision into O(ε), a smallness assumption is required on the initial data (as assumed
here) or under an additional decay assumption on the initial data (see corollary 7.12, p 188,
[26]) or one may assume that η0 = ψ0,x.

5. Velocity field and pressure in the KdV equation

So far, in the context of the KdV equation, we have developed a formula for the horizontal
velocity component at the bed. In the KdV equation, this variable is given in terms of the prin-
cipal unknown ηKdV aswKdV = ηKdV − 1

4ε(η
KdV)2 + 1

3εη
KdV
xx . To understandmass, momentum,

and energy balances in the context of the KdV equation, approximate expressions for the velo-
city field and pressure in the entire fluid column must be available. These variables will thus be
expressed not only in terms of x and t, but also in terms of z. The goal of this section is to create
formulas for these variables and demonstrate that they converge to the appropriate quantities
defined in the context of the full Euler equations as the small parameter ε approaches zero.
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Here and throughout the rest of this paper we denote by C any constant depending on h−1
min,

εmax, |η0|Hs+N+1 , |ψ0,x|Hs+N with N⩾ 8.

5.1. Velocity field

We denote that approximate velocity field to be reconstructed from knowledge of the solution
η(x, t) of the KdV equation by (4.17) by (φKdV

x ,φKdV
z ). It will be shown presently that at any

non-dimensional height z in the fluid column, the approximated velocities can be defined by

φKdV
x (x,z, t) := ηKdV − 1

4
ε
(
ηKdV

)2
+ ε

(
1
3
− z2

2

)
ηKdVxx , (5.1)

φKdV
z (x,z, t) :=−εzηKdVx . (5.2)

Consequently, we will prove the following.

Lemma 3. Suppose that the assumption of corollary 1 is satisfied. Then for all 0⩽ t⩽ T/ε,
we have:

||φKdV
x −φapp

x ||L∞Hs ⩽ ε2 (1+ t)C , (5.3)

and

||φKdV
z −φapp

z ||L∞Hs ⩽ ε3 (1+ t)C . (5.4)

Proof. From section 2, we have

φapp = ψ − 1
2
ε
(
z2 − 1

)
ψxx+ ε2r ,

where the residual term r depend on the error term R that appears in (2.8) given in terms of
z and derivatives of (η,ψ) (see the proof of proposition 1). Therefore, as for (3.15), we have
that |r|Hs ⩽ C(|η|Hs+2)|ψx|Hs+5 . Continuing, using (4.1) twice, we may re-write the expression
to read

φapp = f − ε
1
2
z2fxx+ ε2r ,

Recalling that w= fx is the approximate horizontal velocity in the context of the Euler
equations at the bottom, we write

φapp
x = w− ε

1
2
z2wxx+ ε2r . (5.5)

Inserting in (5.5) the wKdV from the KdV theory (4.18), it holds that

φapp
x =

(
w−wEuler

)
+
(
wEuler −wKdV

)
− ε

1
2
z2
[(
wxx−wEuler

xx

)
+
(
wEuler
xx −wKdV

xx

)]
+wKdV − ε

1
2
z2wKdV

xx + ε2r .

Now, it is not hard to check that using (4.18) we have wKdV − ε
1
2
z2wKdV

xx = φKdV
x + ε2r ′ with

|r ′|Hs ⩽ C(|ηKdV|Hs+4). Consequently, the latter equations combined with (4.16) and (4.22)
yields the first estimate (5.3). Similarly, for the second estimate we have

φapp
z −φKdV

z = εz
[(
wKdV −wEuler

)
x
+
(
wEuler −w

)
x

]
+ ε2r⩽ ε3 (1+ t)C .
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We are interested inmechanical quantities due to the flow through a slice of the fluid domain
and they are therefore integrated over the vertical coordinate. With this in mind we find it
convenient to make a definition.

Definition 5. Let φEuler be a solution of the Euler equations, then we define its integral
representation as

φEuler =

ˆ 1+εηEuler

0
φEuler (x,z, t) dz.

and similarly for any other quantity Φ
( · )

.

Also, let us introduce the following inequality that we shall use in our analysis. By Fubini’s
theorem we have∣∣∣∣ˆ 0

−1
f dẑ

∣∣∣∣
Hs

⩽ ‖f‖L∞Hs . (5.6)

We now turn to the main results of the section, needed to estimate energies associated to the
KdV approximation.

Corollary 2. Suppose that the assumption of corollary 1 is satisfied. Then for all 0⩽ t⩽ T/ε,
we have:

|φxEuler −φx
KdV|Hs ⩽ ε2 (1+ t)C , (5.7)

and

|φzEuler −φz
KdV|Hs ⩽ ε3 (1+ t)C . (5.8)

Proof. We start by proving the first estimate. We have to control the following integral

φx
Euler −φx

KdV =

ˆ 1+εηEuler

0
φEuler
x −φapp

x dz−
ˆ 1+εηEuler

0
φKdV
x −φapp

x dz−
ˆ 1+εηKdV

1+εηEuler

φKdV
x dz

= I+ II+ III .

We refer to (3.23) for estimating I. For estimating III, using the expression (5.1) we have

III=
[
ηKdV − 1

4

(
ηKdV

)2
+

1
3
εηKdVxx − 1

6
εηKdVxx

(
3+ 3εηEuler + 3εηKdV

+ε2
(
ηEuler

)2
+ ε2

(
ηKdV

)2
+ ε2ηEulerηKdV

)]
ε
(
ηEuler − ηKdV

)
.

Therefore, using the assumption of the corollary and (4.21), we have |III|Hs ⩽ ε3(1+ t)C. For
estimating II, we change variables in the integral using the transformationΣ defined in (2.12).
Consequently, denote by hEuler = 1+ εηEuler, using (5.6) combinedwith (5.3) and (5.4), it holds
that

|II|Hs =
∣∣∣ˆ 0

−1

[
hEuler

(
φKdV
x −φapp

x

)
+(ẑ+ 1)εηEulerx

(
φKdV
ẑ −φapp

ẑ

)]
◦Σ dẑ

∣∣∣
Hs

⩽ ε2 (1+ t)C .

For the second estimate we have to control the following integral

21



Nonlinearity 37 (2024) 025013 S Israwi et al

φz
Euler −φz

KdV =

ˆ 1+εηEuler

0
φEuler
z −φapp

z dz−
ˆ 1+εηEuler

0
φKdV
z −φapp

z dz−
ˆ 1+εηKdV

1+εηEuler

φKdV
z dz

= I+ II+ III .

We refer to (3.24) for estimating I. For estimating III, using the expression (5.2) combined
with (4.21), we get

∣∣III∣∣
Hs =

1
2
ε2
∣∣∣ηKdVx

(
ηKdV − ηEuler

)(
2+ εηKdV + εηEuler

)∣∣∣
Hs

⩽ ε4 (1+ t)C .

For estimating II, by changing variables in the integral using the transformation Σ defined
in (2.12) and using (5.6) with (5.4), we get

|II|Hs =
∣∣∣ˆ 0

−1
φKdV
ẑ −φapp

ẑ dẑ
∣∣∣
Hs

⩽ ‖φKdV
ẑ −φapp

ẑ ‖L∞Hs ⩽ ε3 (1+ t)C .

Similarly we have another important result.

Corollary 3. Suppose that the assumption of corollary 1 is satisfied. Then for all 0⩽ t⩽ T/ε,
we have:

|φ2
x
Euler

−φ2
x
KdV

|Hs ⩽ ε2 (1+ t)C , (5.9)

and

|φ2
z
Euler

−φ2
z
KdV

|Hs ⩽ ε3 (1+ t)C . (5.10)

Proof. We start by proving the first estimate. We have to control in Hs the following integral

φ2
x
Euler

−φ2
x
KdV

=

ˆ 1+εηEuler

0

(
φEuler
x

)2 − (φapp
x )

2 dz+
ˆ 1+εηEuler

0
(φapp

x )
2

−
(
φKdV
x

)2
dz−

ˆ 1+εηKdV

1+εηEuler

(
φKdV
x

)2
dz=: I+ II+ III .

We refer to (3.17) for estimating I. For estimating III, using the expression (5.1), it is not
hard to check that as for III in the proof of corollary 2, we have |III|Hs ⩽ ε3(1+ t)C. For
estimating II, we change variables in the integral using the transformationΣ defined in (2.12).
Consequently, denote by hEuler = 1+ εηEuler and using the identity (3.19), one may write

II=
ˆ 0

−1
hEuler

(
φ
app
x +φKdV

x

)(
φ
app
x −φKdV

x

)
◦Σ dẑ+ 2

ˆ 0

−1
(ẑ+ 1)εηEulerx

[
φ
app
x φ

app
ẑ −φKdV

x φKdV
ẑ

]
◦Σ dẑ

+

ˆ 0

−1

1
hEuler

(ẑ+ 1)ε2
(
ηEulerx

)2 (
φ
app
ẑ +φKdV

ẑ

)(
φ
app
ẑ −φKdV

ẑ

)
◦Σ dẑ

=: II1 + II2 + II3 .

To control II1, from the expression (5.2) we have that ‖φKdV
x ‖L∞Hs ⩽ C(|ηKdV|Hs+2), then com-

bining (5.6) and (5.3), it holds that

|II1|Hs ⩽
(
|hEuler − 1|Hs + 1

)(
∥φKdV

x −φ
app
x ∥L∞Hs + 2∥φKdV

x ∥L∞Hs

)
∥φKdV

x −φ
app
x ∥L∞Hs ⩽ ε2 (1+ t)C .
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To control II2, note that

φapp
x φapp

ẑ −φKdV
x φKdV

ẑ =
(
φapp
x −φKdV

x

)(
φapp
ẑ −φKdV

ẑ

)
+

(
φapp
x −φKdV

x

)
φKdV
ẑ +

(
φapp
ẑ −φKdV

ẑ

)
φKdV
x .

Now using the latter identity combinedwith (5.6), (5.3), (5.4) and expressions (5.1) and (5.2), it
holds that |II2|Hs ⩽ ε4(1+ t)C. Similarly, using in addition the non-cavitation condition (2.10),
it holds that |II3|Hs ⩽ ε5(1+ t)C. For the proof of the second estimate, we have to control in
Hs the following integral

φ2
ẑ

Euler
−φ2

ẑ

KdV
=

ˆ 1+εηEuler

0

(
φEuler
ẑ

)2 − (φapp
ẑ

)2
dz+

ˆ 1+εηEuler

0

(
φapp
ẑ

)2
−
(
φKdV
ẑ

)2
dz−

ˆ 1+εηKdV

1+εηEuler

(
φKdV
ẑ

)2
dz .

Similarly, with (3.18) and (5.2) in hands, It is not hard to check that as above the desired
estimate holds.

Similarly we have another important result.

Corollary 4. Suppose that the assumption of corollary 1 is satisfied. Then for all 0⩽ t⩽ T/ε,
we have:

|φ3
x
Euler

−φ3
x
KdV

|Hs ⩽ ε2 (1+ t)C ,

and

|φ3
z
Euler

−φ3
z
KdV

|Hs ⩽ ε3 (1+ t)C .

Proof. We start by proving the first estimate. We have to control in Hs the following integral

φ3
x
Euler

−φ3
x
KdV

=

ˆ 1+εηEuler

0

(
φEuler
x

)3 − (φapp
x )

3 dz+
ˆ 1+εηEuler

0
(φapp

x )
3 −
(
φKdV
x

)3
dz

−
ˆ 1+εηKdV

1+εηEuler

(
φKdV
x

)3
dz=: J1 + J2 + J3 .

We refer to (3.25) for estimating J1. For estimating J3, using the expression (5.1), it is not hard
to check that as for III in the proof of corollary 2, we have |J3|Hs ⩽ ε3(1+ t)C. For estimating
J2, denote by h= 1+ εηEuler, we first write

J2 =
ˆ 1+εη

0

(
(φapp

x )
2 −
(
φKdV
x

)2)(
φapp
x −φKdV

x

)
dz+

ˆ 1+εη

0
φKdV
x

(
(φapp

x )
2 −
(
φKdV
x

)2)
dz

+

ˆ 1+εη

0

(
φKdV
x

)2 (
φapp
x −φKdV

x

)
dz

= J21 + J22 + J23 .

To control J22 + J23, first remark that by definition (5.1), it holds that∣∣ sup
z∈(0,1+εη)

φKdV
x

∣∣
Hs ⩽ C(εmax, |η|Hs+2) . (5.11)
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Consequently, using the latter inequality combined with the estimates (3.17)–(3.23)–(5.7)–
(5.9), we get that |J22 + J23|Hs ⩽ ε2(1+ t)C. To control J21, we start by using the transforma-
tion Σ. In view of (3.19) and (3.21), denote by Φ = φapp −φKdV, one may check that

J21 =
ˆ 0

−1
h
(
Φ x+ 2φKdV

x

)
Φ 2
x dẑ+ 2

ˆ 0

−1
(ẑ+ 1)εηx

(
Φ xΦ ẑ−Φ xφ

KdV
ẑ +Φ ẑφ

KdV
x

)
Φ x dẑ

+

ˆ 0

−1

1
h
(ẑ+ 1)2 ε2η2x

(
Φ ẑ+ 2φKdV

ẑ

)
Φ ẑΦ x dẑ+

ˆ 0

−1
ε(ẑ+ 1)ηx (Φ x+ 2φapp

x )Φ xuẑ dẑ

+ 2
ˆ 0

−1

1
h
(ẑ+ 1)2 ε2η2x

(
Φ xΦ ẑ−Φ xφ

KdV
ẑ +Φ ẑφ

KdV
x

)
Φ ẑ dẑ

+

ˆ 0

−1

1
h2

(ẑ+ 1)3 ε3η3x
(
Φ ẑ+ 2φKdV

ẑ

)
Φ 2
ẑ dẑ .

The latter integrals can are controlled by ε3(1+ t)C. Indeed, we used (5.3), (5.4), (5.6), (2.10),
and from expressions (5.1)–(5.2) the fact that ‖φKdV

x ‖L∞Hs ⩽ C(|ηKdV|Hs+2) and ‖φKdV
z ‖L∞Hs ⩽

εC(|ηKdV|Hs+1). The proof of the second estimate follows similarly.

Similarly we have another important result.

Corollary 5. Suppose that the assumption of corollary 1 is satisfied. Then for all 0⩽ t⩽ T/ε,
we have: ∣∣∣ˆ 1+εηEuler

0

(
φEuler
z

)2
φEuler
x dz−

ˆ 1+εηKdV

0

(
φKdV
z

)2
φKdV
x dz

∣∣∣
Hs

⩽ ε2 (1+ t)C .

Proof. We have to control in Hs the following integral

ˆ 1+εηEuler

0

(
φEuler
z

)2
φEuler
x dz−

ˆ 1+εηKdV

0

(
φKdV
z

)2
φKdV
x dz=

ˆ 1+εηEuler

0

[(
φEuler
z

)2
φEuler
x −

(
φapp
z

)2
φ
app
x

]
dz

+

ˆ 1+εηEuler

0

[(
φapp
z

)2
φ
app
x −

(
φKdV
z

)2
φKdV
x

]
dz

−
ˆ 1+εηKdV

1+εηEuler

(
φKdV
z

)2
φKdV
x dz

= ℓ1 + ℓ2 + ℓ3 .

We refer to (3.28) for estimating ℓ1. For estimating ℓ3, using the expressions (5.1) and (5.2), it
is not hard to check that as for III in the proof of corollary 2, we have |ℓ3|Hs ⩽ ε3(1+ t)C. For
estimating ℓ2, remark that

ℓ2 =

ˆ 1+εηEuler

0

[
(φapp

z )
2 −
(
φKdV
z

)2](
φapp
x −φKdV

x

)
dz+

ˆ 1+εηEuler

0

(
φKdV
z

)2 (
φapp
x −φKdV

x

)
dz

+

ˆ 1+εηEuler

0
φKdV
x

[
(φapp

z )
2 −
(
φKdV
z

)2]
dz= ℓ21 + ℓ22 + ℓ23 .

To control ℓ22 + ℓ23, first remark that by definition (5.2), it holds that∣∣ sup
z∈(0,1+εη)

φKdV
z

∣∣
Hs ⩽ C(εmax, |η|Hs+1) .
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Consequently, using the latter inequality combined with (5.11) and the estimates (3.18)–
(3.23)–(5.7)–(5.10), we get that |ℓ22 + ℓ23|Hs ⩽ ε2(1+ t)C. To control ℓ21, we start by using
the transformation Σ. In view of (3.19), denote by Φ = φapp −φKdV, one may check that

ℓ21 =

ˆ 0

−1

(
Φẑ+ 2φKdV

z

)
ΦẑΦx dẑ+ ε

ˆ 0

−1

1
hEuler

ηEuler
(
Φẑ+ 2φKdV

z

)
Φ2
ẑ dẑ .

The latter integrals can are controlled by ε3(1+ t)C. Indeed, we used (5.6), (5.3), (5.4),
(2.10), and from expressions (5.1) and (5.2) the fact that ‖φKdV

x ‖L∞Hs ⩽ C(|ηKdV|Hs+2) and
‖φKdV

z ‖L∞Hs ⩽ εC(|ηKdV|Hs+1).

5.2. Pressure

The forces that cause the momentum to change are the fluid’s forces on itself, which is the
pressure force. At any point, cut the liquid. The liquid on each side of your cut exerts a force
equal to the pressure on the opposite side of the cut. The force is always directed normal to the
cut. In this sense, the weight is distributed equally in all directions. Because the fluid is pushed
far from where the pressure is high, the gradient of pressure per unit volume is the opposite of
these forces. The dynamic pressure of the fluid is defined as

(P ′)
Euler

= P−Patm+ gz.

Since the atmospheric pressure is of a magnitude much smaller than the significant terms in the
equation, it will be assumed to be zero. Therefore (P ′)Euler can be written by using Bernoulli’s
dimensionless form of (1.5) of the water wave problem as:

(P ′)
Euler

:=−φEuler
t − 1

2

(
ε
(
φEuler
x

)2
+
(
φEuler
z

)2)
. (5.12)

We show in the next proposition that (P ′)Euler can be approximated by the pressure defined
in the context of KdV equation as follows:

(P ′)
KdV

:= ηKdV − 1
2
ε
(
z2 − 1

)
ηKdVxx , (5.13)

in the meaning of convergence. Indeed, we obtain:

Proposition 9. Let ηKdV be a solution of the KdV equation (4.17), and (ηEuler,ψx) be a solution
of the water-wave problem (1.6). Define the non-dimensional pressure by (5.13) in the KdV
approximation. Then for all time t ∈ [0,T/ε] we have the estimate

|P ′Euler −P ′KdV|Hs ⩽ ε2 (1+ t)C .

Proof. Consider the pressure formulated in the full Euler equations is given by (5.12). We
may rewrite this equation by adding and subtracting convenient terms,

P ′Euler =−

[ˆ 1+εηEuler

0

(
φEuler
t −φ

app
t

)
dz+

1
2
ε
(
φ2
x
Euler

−φ2
x
KdV

)
+

1
2

(
φ2
z
Euler

−φ2
z
KdV

)]

−
ˆ 1+εηKdV

0
φ
app
t dz−

1
2
ε

ˆ 1+εηKdV

0

(
φKdV
x

)2
dz−

ˆ 1+εηEuler

1+εηKdV

φ
app
t dz−

1
2

ˆ 1+εηKdV

0

(
φKdV
z

)2
dz .

We then find that the Hs-norm of each term within the brackets are controlled by ε2(1+ t)C as
a result of proposition 1 and corollary 3. While the Hs-norm of the last term, defined by (5.2)
is also of the same order after a simple integration.
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To complete the proof we need to prove that the remaining terms given by

−φapp
t − 1

2
ε
(
φKdV
x

)2
, (5.14)

corresponds to the definition of (P ′)KdV. From its definition (2.1) and using (4.1) twice, we
obtain

φapp
t = ψt−

1
2
ε
(
z2 − 1

)
ψxxt+ ε2R

= ft−
1
2
εz2fxxt+ ε2R ,

where the residual term R depend on the error term ∂tR that appears in (2.8) given in terms of
z and derivatives of (η,ψ) (see the proof of proposition 1). Therefore, as for (3.15) and (3.16),
we have that |R|Hs ⩽ C(|η|Hs+7)|ψx|Hs+6 .
Recognizing the formulation of ηEuler by (4.3) and using the usual trick ηx =−( fx)t+O(ε),
gives

φapp
t =−ηEuler + ε

2

(
z2 − 1

)
fxxt−

1
2
εf2x + ε2 (R+R ′) ,

=−ηEuler + ε

2

(
z2 − 1

)
ηEulerxx − 1

2
εf2x + ε2 (R+R ′) .

where R ′ depending on the same remainders R1 and R2 of definition 3 stemming from the
proof of proposition 6. Consequently, we have |R ′|Hs ⩽ C(|η|Hs+7)|ψx|Hs+6 . Again, adding and
subtracting convenient terms and noting that fx = w, it holds that

φapp
t =−

(
ηEuler − ηKdV

)
− ηKdV +

ε

2

(
z2 − 1

)(
ηEulerxx − ηKdVxx

)
+
ε

2

(
z2 − 1

)
ηKdVxx

− 1
2
ε
((
wEuler

)2 − (wKdV
)2)− 1

2
ε
(
wKdV

)2
+ ε2 (R+R ′) .

As a result of corollary 1, most terms can be neglected in the sense of converging in the L∞-
norm, we therefore consider relation (5.14) in the following way

−φapp
t − 1

2
ε
(
φKdV
x

)2
= ηKdV − 1

2
ε
(
z2 − 1

)
ηKdVxx + ε2R , (5.15)

where we also used the relations (5.1) and (4.18) to deal with remaining terms so that |R|Hs ⩽
(1+ t)C. Thus, by definition of the dynamic pressure in the KdV (5.13) the proof is complete.
With this in hands, it remains to control the following integral as follows

−
ˆ 1+εηEuler

1+εηKdV

φapp
t dz=

ˆ 1+εηEuler

1+εηKdV

[
1
2
ε
(
φKdV
x

)2
+ ηKdV − 1

2
ε
(
z2 − 1

)
ηKdVxx + ε2R

]
dz= I1 + ..+ I4 .

As for III in the proof of corollary 2, we have |I1 + I2 + I3|Hs ⩽ ε3(1+ t)C by a simple integ-
ration combined with (4.21). Finally, it is not hard to check that I4 ⩽ ε2(1+ t)C.

Corollary 6. Suppose that the assumption of corollary 1 is satisfied. Then for all 0⩽ t⩽ T/ε,
we have: ∣∣∣ˆ 1+εηEuler

0
(P ′)

Euler
φEuler
x dz−

ˆ 1+εηKdV

0
(P ′)

KdV
φKdV
x dz

∣∣∣
Hs

⩽ ε2 (1+ t)C .
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Proof. Recall the pressure formulated in the full Euler equations given by (5.12). We may
rewrite this equation by adding and subtracting convenient terms

ˆ 1+εηEuler

0
(P ′)EulerφEuler

x dz=−
[ˆ 1+εηEuler

0
(φEuler

t φEuler
x −φapp

t φapp
x ) dz+

1
2
ε
(
φ3
x
Euler

−φ3
x
KdV)

+
1
2

ˆ 1+εηEuler

0
(φEuler

z )2φEuler
x dz− 1

2

ˆ 1+εηKdV

0
(φKdV

z )2φKdV
x dz

]
−
ˆ 1+εηKdV

0
φapp
t φapp

x dz− 1
2
ε

ˆ 1+εηKdV

0
(φKdV

x )3 dz

−
ˆ 1+εηEuler

1+εηKdV

φapp
t φapp

x dz− 1
2

ˆ 1+εηKdV

0
(φKdV

z )2φKdV
x dz

=Υ1 + ..+Υ8 .

As a result of proposition 5 and corollary 5 we have |Υ1 + ..+Υ4|Hs ⩽ ε2(1+ t)C. While
the Hs-norm of the last term Υ8, defined by (5.1) and (5.2) is also of the same order after a
simple integration. To complete the proof we need first to write φapp

x in terms of φKdV
x . From

definition (2.1) and using (4.1) twice with fx = wEuler combined with (4.18) and (4.22), we
obtain

φapp
x = wKdV − 1

2
εz2wKdV

xx +
(
wEuler −wKdV

)
− 1

2
εz2
(
wEuler
xx −wKdV

xx

)
+ ε2r

= φKdV
x + ε2r , (5.16)

such that |r|Hs ⩽ C. Now, combining the two approximate equations (5.15) and (5.16) yields
the desired estimations to complete the proof.

6. Estimates for densities and fluxes

In the present section, we will prove that for some mechanical quantities of time, the approx-
imation between the equation of KdV and Euler system may be rendered mathematically rig-
orous. The results in the following theorems shows therefore that the mechanical laws in the
Euler equations converges to the mechanical laws defined in terms of the function of solution
of the KdV equation for a perfect fluid when the physical parameter ε goes to zero. We recall
that C is any constant depending on h−1

min, εmax, |η0|Hs+N+1 , |ψ0,x|Hs+N with N⩾ 8.

6.1. Mass balance

We now look at the convergence of the mass density and flux for the KdV equation. Recall
from [4] that the (depth-integrated) mass density for the KdV equation in non-dimensional
variables is given byMKdV = 1+ εηKdV. On the other hand, the mass density in the full Euler

approximation is given byMEuler =
´ 1+εηEuler

0 dz. Taking the difference of these two quantities
yields the estimate

|MEuler −MKdV|L∞ ⩽ ε|ηEuler − ηKdV|L∞ . (6.1)

Thus we have the following theorem.
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Theorem 4. Suppose that the assumption of corollary 1 is satisfied. Let (ηEuler,ψx) be a
solution of the full water-wave problem (1.6), with initial data regular enough given by
(ηEuler0 ,ψ0,x). Let ηKdV be a solution of the KdV equation (4.17) with corresponding initial
data. Then there exists a constant C, so that we have the estimate∣∣MEuler −MKdV

∣∣
L∞

⩽ ε3 (1+ t)C . (6.2)

Proof. Using the above inequality (6.1) in connectionwith the estimate (4.21) yields the result.

Next we consider the mass flux through a section of the fluid which is defined in the context

of the Euler equations asQM
Euler =

ˆ 1+εηEuler

0
φEuler
x dz. It was shown in [4] that the mass flux

in the KdV approximation is given by QM
KdV = ηKdV + ε 34 (η

KdV)2 + ε 16η
KdV
xx . As noted in

[4], this expression is identical with the approximate momentum density I defined in (1.4).

Theorem 5. Suppose that the assumption of corollary 1 is satisfied. Let (ηEuler,φEuler) be a
solution of the water-wave problem defined below, with initial data given by (ηEuler0 ,φEuler

0 )
which is regular enough. Let ηKdV be a solution of the KdV equation (4.17) with initial data
ηKdV0 = ηEuler0 . Then there exists a constant , so that we have the estimate∣∣QM

Euler −QM
KdV
∣∣
L∞

⩽ ε2 (1+ t)C . (6.3)

Proof. Firstly, let us denote by

Q∗
M :=

ˆ 1+εηKdV

0
φKdV
x dz .

Then one can use corollary 2 to ensure the existence of a constant C independent of ε. Such
that

|QM
Euler −QM

∗|L∞ ⩽ ε2 (1+ t)C .

To complete the proof, we approximate QM
∗ by QM

KdV. Recall equation (5.1), it is clear
from direct computation that

QM
∗ −QM

KdV = εηKdV
(
ηEuler − ηKdV

)
− 1

4
ε2ηEuler

(
ηKdV

)2 − 1
6
ε2ηEulerηKdVxx

− 1
2
ε3
(
ηEuler

)2
ηKdVxx − 1

6
ε4
(
ηEuler

)3
ηKdVxx .

Hence, using the estimate (4.21), we conclude

|QM
∗ −QM

KdV|L∞ ⩽ ε2 (1+ t)C .

6.2. Momentum balance

This section is devoted to finding a rigorous approximate expression for momentum
density and flux. The momentum density associated to the full Euler equations IEuler =´ 1+εηEuler

0 φEuler
x dz correspondswith themass fluxQEuler

M . On the other hand,momentum density
for the KdV equation in non-dimensional variables is given by IKdV =QKdV

M and is therefore
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covered by theorem 5. Moreover, one may prove that the momentum density IKdV =QKdV
M

converges to the physical momentum density defined in terms of the governing Euler equation
for a perfect fluid if ε tends to zero. The precise statement is as follows:

Theorem 6. Suppose that the assumption of corollary 1 is satisfied. Let ηKdV be a solution
of the KdV equation (4.17), and (ηEuler,φEuler) be a solution of the water-wave problem (1.5).
Then for all time t ∈ [0,T/ε] we have the estimate∣∣∣∂xφ |z=0

− ηKdV − ε
3
4

(
ηKdV

)2 − ε
1
6
ηKdVxx

∣∣∣
L∞

⩽ ε2 (1+ t)C , (6.4)

and ∣∣∣ψx− ηKdV − ε
3
4

(
ηKdV

)2 − ε
1
6
ηKdVxx

∣∣∣
L∞

⩽ ε2 (1+ t)C , (6.5)

One can deduce that∣∣∂xφ |z=0
−ψx

∣∣
L∞

⩽ ε2 (1+ t)C .

Proof. Remark that using (4.18) we have∣∣∣∂xφ |z=0
− ηKdV − ε

3
4

(
ηKdV

)2 − ε
1
6
ηKdVxx

∣∣∣
L∞

⩽ |wEuler −wKdV|L∞ + ε|
(
ηKdV

)2
+

1
6
ηKdVxx |L∞ .

Then using (4.22) the first estimate holds. The second estimate follows similarly using (4.23).
The last estimate is a direct outcome of the latter two estimates.

Regarding the momentum flux we have the following theorem.

Theorem 7. Suppose that the assumption of corollary 1 is satisfied. Let ηKdV be a solution of
the KdV equation (4.17), and (ηEuler,φEuler) be a solution of the water-wave problem (1.5). Let
(P ′)Euler be the corresponding dynamic pressure. Define the non-dimensional momentum flux

QI
KdV =

1
2
+ εηKdV +

3ε2

2

(
ηKdV

)2
+
ε2

3
ηKdVxx .

Then for all time t ∈ [0,T/ε] we have the estimate∣∣∣ˆ 1+εηEuler

0

(
ε2
(
φEuler
x

)2
+ ε(P ′)

Euler − (z− 1)
)
dz−QI

KdV
∣∣∣
L∞

⩽ ε3 (1+ t)C . (6.6)

Proof. Firstly, let us denote by

QI
∗ :=

ˆ 1+εηKdV

0

(
ε2
(
φKdV
x

)2
+ ε(P ′)

KdV− (z− 1)
)
dz .

Then one can use the proposition 9 and corollary 3 to ensure the existence of a constant C
independent of ε. Such that

|QI
Euler −QI

∗|L∞ ⩽ ε3 (1+ t)C .

To complete the proof, we approximateQI
∗ byQI

KdV. Recall equation (5.1) and (5.13), it is
clear from direct computation that
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QI
∗ =

ˆ 1+εηKdV

0
ε2
(
ηKdV

)2
+ εηKdV − 1

2
ε2
(
z2 − 1

)
ηKdVxx − (z− 1) dz+ ε3R

=QI
KdV + ε3R .

Hence, as R depend on ηKdV,ηKdVx and ηKdVxx , we conclude

|QI
Euler −QI

KdV|L∞ ⩽ Cε3 (1+ t) .

Attention is now turned to the energy balance in the fluid.

6.3. Energy balance

Suppose that the assumption of corollary 1 is satisfied. In this section we would like to prove
results analogous to the work presented in [16] concerning the energy formulated in the KdV
approximation.

Theorem 8. Let ηKdV be a solution of the KdV equation (4.17), let (ηEuler,φEuler) be a solution
of the water-wave problem (1.5). Define the energy density of the wave by

EKdV =
1
2
+ εηKdV + ε2

(
ηKdV

)2
. (6.7)

Then for all time t ∈ [0,T/ε], we have the estimate∣∣∣ˆ 1+εηEuler

0

(
ε2

2

(
φEuler
x

)2
+
ε

2

(
φEuler
z

)2
+ z

)
dz−EKdV

∣∣∣
L∞

⩽ ε3 (1+ t)C . (6.8)

Proof. The estimate is again a direct consequence of corollary 3, using the general formulation
of the energy density in terms of φKdV by

E∗ :=

ˆ 1+εηKdV

0

(
ε2

2

(
φKdV
x

)2
+
ε

2

(
φKdV
z

)2
+ z

)
dz .

While the formula (6.7) is derived from the formulas forφKdV
x andφKdV

z given by (5.1) and (5.2)
respectively. Indeed,

E∗ =

ˆ 1+εηKdV

0

(
ε2

2

(
ηKdV

)2
+ z

)
dz+O

(
ε3
)

=
1
2
+ εηKdV + ε2

(
ηKdV

)2
+O

(
ε3
)
.

Therefore one can find a constant C independent of ε such that for all time t ∈ [0,T/ε]

|EEuler −EKdV|L∞ ⩽ ε3 (1+ t)C .

Theorem 9. Suppose that the assumption of corollary 1 is satisfied. Let ηKdV be a solution of
the KdV equation (4.17), and (ηEuler,φEuler) be a solution of the water-wave problem (1.5). Let
(P ′)Euler be the corresponding pressure. Define the non-dimensional energy flux

QE
KdV = εηKdV +

7ε2

4

(
ηKdV

)2
+
ε2

6
ηKdVxx .
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Then for all time t ∈ [0,T/ε] we have the estimate

∣∣∣ˆ 1+εηEuler

0

((
ε3

2

(
φEuler
x

)2
+
ε2

2

(
φEuler
z

)2
+ ε2 (P ′)

Euler
)
φEuler
x + εφEuler

x

)
dz−QE

KdV
∣∣∣
L∞

⩽ ε3 (1+ t)C . (6.9)

Proof. The proof follows by the same argument as in theorem 7 by turning to the general form
of QE

∗ and apply corollaries 2, 4 and 5, combined with corollary 6 to handle the cross terms.
Moreover we have the following equality up to O(ε3):

QE
∗ :=

ˆ 1+εηKdV

0

(
ε3

2

(
φKdV
x

)3
+
ε2

2

(
φKdV
z

)2
φKdV
x + ε2 (P ′)

KdV
φKdV
x + εφKdV

x

)
dz

=QE
KdV +O

(
ε3
)
.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

B K is funded by the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie Grant Agreement No. 101034309. H K was supported by
the Research Council of Norway under Grant No. 239033/F20. S I would like to thank the
department of mathematics at UiB, especially, H K for his kind hospitality when part of this
work was undertaken.

ORCID iD

Bashar Khorbatly https://orcid.org/0000-0001-9912-1707

References

[1] Ablowitz M J and Segur H 1979 On the evolution of packets of water waves J. Fluid Mech.
92 691–715

[2] Ali A and Kalisch H 2010 Energy balance for undular bores C. R. Mécanique 338 67–70
[3] Ali A and Kalisch H 2012 Mechanical balance laws for Boussinesq models of surface water waves

J. Nonlinear Sci. 22 371–98
[4] Ali A and Kalisch H 2014 On the formulation of mass, momentum and energy conservation in the

KdV equation Acta Appl. Math. 133 113–31
[5] Amick C J 1984 Regularity and uniqueness of solutions to the Boussinesq system of equations J.

Differ. Equ. 54 231–47
[6] Bona J L, Chen M and Saut J-C 2004 Boussinesq equations and other systems for small-amplitude

long waves in nonlinear dispersive media. II: the nonlinear theory Nonlinearity 17 925–52
[7] Bona J L, Colin T and Lannes D 2005 Long wave approximations for water waves Arch. Ration.

Mech. Anal. 178 373–410
[8] Bona J L and Smith R 1975 The initial value problem for the Korteweg-de Vries equation Proc. R.

Soc. A 278 555–601

31

https://orcid.org/0000-0001-9912-1707
https://orcid.org/0000-0001-9912-1707
https://doi.org/10.1017/S0022112079000835
https://doi.org/10.1017/S0022112079000835
https://doi.org/10.1016/j.crme.2010.02.003
https://doi.org/10.1016/j.crme.2010.02.003
https://doi.org/10.1007/s00332-011-9121-2
https://doi.org/10.1007/s00332-011-9121-2
https://doi.org/10.1007/s10440-013-9861-0
https://doi.org/10.1007/s10440-013-9861-0
https://doi.org/10.1016/0022-0396(84)90160-8
https://doi.org/10.1016/0022-0396(84)90160-8
https://doi.org/10.1088/0951-7715/17/3/010
https://doi.org/10.1088/0951-7715/17/3/010
https://doi.org/10.1007/s00205-005-0378-1
https://doi.org/10.1007/s00205-005-0378-1
https://doi.org/10.1098/rsta.1975.0035
https://doi.org/10.1098/rsta.1975.0035


Nonlinearity 37 (2024) 025013 S Israwi et al

[9] Borluk H and Kalisch H 2012 Particle dynamics in the KdV approximation Wave Motion
49 691–709

[10] Carter J D, Curtis C W and Kalisch H 2020 Particle trajectories in nonlinear Schrödinger models
Water Waves 2 31–57

[11] Constantin A and Lannes D 2009 The hydrodynamical relevance of the Camassa-Holm and
Degasperis-Procesi equations Arch. Ration. Mech. Anal. 192 165–86

[12] Craig W 1985 An existence theory for water waves and the Boussinesq and Korteweg-de Vries
scaling limits Commun. PDE 10 787–1003

[13] Deny J and Lions J-L 1953–54 Les espaces de Beppo Levi Ann. Inst. Fourier Grenoble 5 497–522
[14] Düll W-P 2012 Validity of the Korteweg-de Vries approximation for the two-dimensional water

wave problem in the arc length formulation Commun. Pure Appl. Math. 65 381–429
[15] Israwi S 2010 Variable depth KdV equations and generalizations to more nonlinear regimesM2AN

Math. Model. Numer. Anal. 44 347–70
[16] Israwi S and Kalisch H 2021 A mathematical justification of the momentum density function asso-

ciated to the KdV equation C. R. Mathématique 359 39–45
[17] Israwi S and Kalisch H 2019 Approximate conservation laws in the KdV equation Phys. Lett. A

383 854–8
[18] Israwi S and Talhouk R 2013 Local well-posedness of a nonlinear KdV-type equation C. R.

Mathématiques 351 895–9
[19] Karczewska A, Rozmej P and Infeld E 2015 Energy invariant for shallow-water waves and the

Korteweg-de Vries equation: doubts about the invariance of energy Phys. Rev. E 92 053202
[20] Karczewska A, Rozmej P, Infeld E and Rowlands G 2017 Adiabatic invariants of the extended KdV

equation Phys. Lett. A 381 270–5
[21] Khorbatly B and Israwi S 2020 A conditional local existence result for the generalized nonlinear

Kawahara equation Math. Meth. Appl. Sci. 43 5522–31
[22] Khorbatly B and Israwi S 2023 Full justification for the extended Green-Naghdi system for an

uneven bottom with/without surface tension Publ. Res. Inst. Math. Sci. 59 587–631
[23] Khorbatly B andKalisch H 2023 Rigorous estimates onmechanical balance laws in the Boussinesq-

Peregrine equations Stud. Appl. Math. 1–21
[24] Khorbatly B, Zaiter I and Isrwai S 2018 Derivation and Well-Posedness of the extended Green-

Naghdi system for flat bottoms with surface tension J. Math. Phys. 59 071501
[25] Lannes D 2005 Well-posedness of the water-waves equations J. Am. Math. Soc. 18 605–54
[26] Lannes D 2013 The Water Wave Problem (Mathematical Surveys and Monographs vol 188)

(American Mathematical Society)
[27] Saut J-C and Xu L 2012 The Cauchy problem on large time for surface waves Boussinesq systems

J. Math. Pures Appl. 97 635–62
[28] Schneider G and Wayne C E 2000 The long-wave limit for the water wave problem. I. The case of

zero surface tension Commun. Pure Appl. Math. 53 1475–535
[29] Schneider G andWayne C E 2002 The rigorous approximation of long-wavelength capillary gravity

waves Arch. Ration. Mech. Anal. 162 247–85
[30] Schonbek M E 1981 Existence of solutions for the Boussinesq system of equations J. Differ. Equ.

42 325–52
[31] Wu S 1997 Well-posedness in Sobolev spaces of the full water wave problem in 2-D Invent. Math.

130 39–72
[32] Wu S 1999 Well-posedness in Sobolev spaces of the full water wave problem in 3-D J. Am. Math.

Soc. 12 445–95

32

https://doi.org/10.1016/j.wavemoti.2012.04.007
https://doi.org/10.1016/j.wavemoti.2012.04.007
https://doi.org/10.1007/s42286-019-00008-7
https://doi.org/10.1007/s42286-019-00008-7
https://doi.org/10.1007/s00205-008-0128-2
https://doi.org/10.1007/s00205-008-0128-2
https://doi.org/10.1080/03605308508820396
https://doi.org/10.1080/03605308508820396
https://doi.org/10.1002/cpa.21381
https://doi.org/10.1002/cpa.21381
https://doi.org/10.1051/m2an/2010005
https://doi.org/10.1051/m2an/2010005
https://doi.org/10.5802/crmath.143
https://doi.org/10.5802/crmath.143
https://doi.org/10.1016/j.physleta.2018.12.009
https://doi.org/10.1016/j.physleta.2018.12.009
https://doi.org/10.1016/j.crma.2013.10.032
https://doi.org/10.1016/j.crma.2013.10.032
https://doi.org/10.1103/PhysRevE.92.053202
https://doi.org/10.1103/PhysRevE.92.053202
https://doi.org/10.1016/j.physleta.2016.11.035
https://doi.org/10.1016/j.physleta.2016.11.035
https://doi.org/10.1002/mma.6292
https://doi.org/10.1002/mma.6292
https://doi.org/10.4171/PRIMS/59-3-6
https://doi.org/10.4171/PRIMS/59-3-6
https://doi.org/10.1111/sapm.12666
https://doi.org/10.1063/1.5020601
https://doi.org/10.1063/1.5020601
https://doi.org/10.1090/S0894-0347-05-00484-4
https://doi.org/10.1090/S0894-0347-05-00484-4
https://doi.org/10.1016/j.matpur.2011.09.012
https://doi.org/10.1016/j.matpur.2011.09.012
https://doi.org/10.1002/1097-0312(200012)53:123.0.CO;2-V
https://doi.org/10.1002/1097-0312(200012)53:123.0.CO;2-V
https://doi.org/10.1007/s002050200190
https://doi.org/10.1007/s002050200190
https://doi.org/10.1016/0022-0396(81)90108-X
https://doi.org/10.1016/0022-0396(81)90108-X
https://doi.org/10.1007/s002220050177
https://doi.org/10.1007/s002220050177
https://doi.org/10.1090/S0894-0347-99-00290-8
https://doi.org/10.1090/S0894-0347-99-00290-8

	Convergence of mechanical balance laws for water waves: from KdV to Euler
	1. Introduction
	1.1. Statement of the results
	1.2. Notation

	2. The approximate potential φapp
	3. Regularity estimates
	4. Mathematical justification of the KdV equation
	4.1. The intermediate system
	4.2. Full justification of the KdV equation

	5. Velocity field and pressure in the KdV equation
	5.1. Velocity field
	5.2. Pressure

	6. Estimates for densities and fluxes
	6.1. Mass balance
	6.2. Momentum balance
	6.3. Energy balance

	References


