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The Korteweg–de Vries equation is known to yield a valid description of surface waves for waves of small 
amplitude and large wavelength. The equation features a number of conserved integrals, but there is no 
consensus among scientists as to the physical meaning of these integrals. In particular, it is not clear 
whether these integrals are related to the conservation of momentum or energy, and some researchers 
have questioned the conservation of energy in the dynamics governed by the equation. In this letter it 
is shown that while exact energy conservation may not hold, if momentum and energy densities and 
fluxes are defined in an appropriate way, then solutions of the Korteweg–de Vries equation give rise to 
approximate differential balance laws for momentum and energy.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The Korteweg–de Vries (KdV) equation

ηt + ηx + ε
3

2
ηηx + ε

1

6
ηxxx = 0 (1.1)

is one of the most widely studied equations in mathematical 
physics today, and it stands as a paradigm in the field of com-
pletely integrable partial differential equations [1,22]. The KdV 
equation admits a large number of closed-form solutions such 
as the solitary wave, the cnoidal periodic solutions, multisolitons 
and rational solutions [1,2,10]. It also features an infinite num-
ber of formally conserved integrals which is one of the hallmarks 
of a completely integrable system. Indeed the conservation can 
be made mathematically rigorous using the techniques developed 
in [9].

While our understanding of this model equation is generally 
rather complete, there appears to be one aspect which has not 
received much attention. Indeed it seems that the link between 
the invariant integrals of the equation and physical conservation 
laws has not been well understood. In the present note we ex-
plore the ramifications of imposing mechanical balance laws such 
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as momentum and energy conservation in the context of the KdV 
equation.

To explain this point further, recall that if the equation is given 
in the form (1.1) then the first three conserved integrals are

∞∫
−∞

ηdx,

∞∫
−∞

η2 dx, and

∞∫
−∞

(
1
3η2

x − η3
)

dx. (1.2)

The first integral is found to be invariant with respect to time t as 
soon as it is recognized that the KdV equation can be written in 
the form
∂

∂t
(η) + ∂

∂x

(
η + ε

3

4
η2 + ε

1

6
ηxx

)
= 0. (1.3)

Recognizing that the unknown η(x, t) represents an approximation 
of the deflection of the free surface from the rest position, it was 
shown in [6] that this relation can be interpreted as a statement 
of approximate mass conservation.

Invariance of the second and third integrals is obtained from 
the identities
∂

∂t

(
η2

)
+ ∂

∂x

(
η2 + εη3 + ε

3
ηηxx − ε

6
η2

x

)
= 0, (1.4)
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η3 − 1

3
η2

x

)

+ ∂

∂x

(
η3 + ε

9

8
η4 + 2
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ηxηt +1

3
η2

x + ε
1

18
η2

xx + ε
1

2
η2ηxx

)
= 0.

(1.5)
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Fig. 1. The schematic elucidates the geometric setup of the problem. The free surface is described by a function η(x, t), and the x-axis is aligned with the flat bed.
When contemplating these formulas, the question naturally 
arises if the invariant integrals in (1.2) and the related quantities 
appearing in (1.4) and (1.5) have a definite physical meaning. As a 
matter if fact, it was noted by the authors of [3] that the densities 
and fluxes appearing in (1.4) and (1.5) do not represent any con-
crete physical quantities. More recent work also clearly casts doubt 
on the exact conservation of energy in the KdV equation [15,16,20]. 
In light of these findings, one may then ask what the appropriate 
densities and fluxes are if momentum and energy conservation are 
to be understood in the context of the KdV equation.

The main result of the present letter is that one may define 
densities and fluxes that represent momentum and energy conser-
vation and lead to approximate, but not exact conservation. Indeed, 
we will show that if these quantities are chosen correctly, then 
momentum and energy conservation hold to the same order as 
the KdV equation is valid. To be more precise, if we call the non-
dimensional momentum density by I(η), and the non-dimensional 
flow force (momentum flux plus pressure force) by qI (η), we ob-
tain the approximate local balance law

∂

∂t
I(η) + ∂

∂x
qI (η) = O(ε2). (1.6)

Similarly, the approximate energy balance

∂

∂t
E(η) + ∂

∂x
qE(η) = O(ε2) (1.7)

follows if the expressions for the energy density E(η) and the en-
ergy flux plus work rate due to pressure force qE (η) are chosen 
appropriately.

The plan of the paper is as follows. In Section 2, we explain the 
physical background against which the KdV equation is used as an 
approximate water-wave model. The developments in Section 2 are 
based on firm mathematical theory which has been developed in 
the last two decades, and is summarized handily in [19]. Then us-
ing this background material, the statements of momentum and 
energy conservation introduced above will be made mathemati-
cally precise in sections 3 and 4.

2. The KdV equation in the context of surface water waves

We study the KdV equation as a model equation for waves at 
the free surface of an incompressible, inviscid fluid running in a 
narrow open channel where transverse effects can be neglected. 
Let h0 be the depth of the undisturbed fluid. Denoting by λ a typ-
ical wavelength and by a a typical amplitude of a wavefield to be 
described, the number ε = a/h0 represents the relative amplitude, 
and μ = h2

0/λ2 measures the inverse relative wavenumber. The ge-
ometric setup of the problem is indicated in Fig. 1. In suitably 
non-dimensionalized variables, the motion of the interface and un-
derlying fluid is described by the system
⎧⎪⎪⎨
⎪⎪⎩

μ∂2
x ϕ + ∂zϕ

2 = 0 in �t,

∂zϕ = 0, at z = 0,

∂tζ − 1
μ(−μ∂xζ∂xϕ + ∂zφ) = 0 at z = 1 + εζ,

∂tϕ + ζ + ε
2 (∂xϕ)2 + ε

2μ(∂zϕ)2 = 0 at z = 1 + εζ,

(2.1)

where �t = {(x, z) | 0 < z < 1 + εζ(x, t)} is the fluid domain 
bounded by the free surface {z = 1 + ζ(x, t)}, and the bottom 
{z = 0}, and ϕ(x, z, t) is the velocity potential associated with the 
flow (i.e. the velocity field is given by v = (∂xϕ, ∂zϕ)T ).

If attention is focused on waves that are predominantly propa-
gating in the direction of increasing values of x, then the surface 
wave profile ζ(x, t) can be shown to satisfy the relation

ζt + ζx + ε
3

2
ζ ζx + μ

1

6
ζxxx = O(ε2, εμ,μ2).

If the wave motion is such that both ε and μ are small and of sim-
ilar size, then we can take equation (1.1) to obtain an approximate 
description of the dynamics of the free surface. The approxima-
tion can be made rigorous using the techniques in [8,11,13,19,21]
and others. Sometimes the Stokes number S = ε/μ is introduced 
in order to quantify the applicability of the equation to a particu-
lar regime of surface waves. Let us assume for the time being that 
the Stokes number is equal to unity, so that we can work with 
a single small parameter ε. In this scaling, we may also assume 
that initial data η0 are given, such that for any k > 0, we have 
‖∂k

x η0‖L2 ≤O(1).
Using the aforementioned techniques, it can be shown that the 

velocity field (ϕx, ϕz) can be approximated to second order ac-
curacy in ε using an approximate potential φ. The approximate 
velocity field is then expressed solely in terms of a solution η(x, t)
of the KdV equation (1.1) by

φx(x, z, t) = η − ε
1

4
η2 + ε

(1

3
− z2

2

)
ηxx, (2.2)

φz(x, z, t) = −εzηx. (2.3)

Similarly, the pressure can be approximated in terms of a solution 
η of the KdV equation as follows. First define the dynamic pressure 
by subtracting the hydrostatic contribution at rest:

p − patm = εp′ − (z − 1).

Since the atmospheric pressure is of a magnitude much smaller 
than the significant terms in the equation, it will be assumed to 
be zero. As shown in [5], the dynamic pressure p′ can the be ap-
proximated to second order in ε by

p′ = η − 1

2
ε(z2 − 1)ηxx. (2.4)

3. Approximate momentum balance

The horizontal momentum balance for a control interval such as 
depicted in Fig. 2 can be written in terms of the non-dimensional 
variables of the full Euler equations (2.1) in the form
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Fig. 2. The flow force qI represents the sum of momentum flux and pressure force on a fluid element of unit width, reaching from the free surface to the bed.
∂

∂t

1+εζ∫
0

εϕx dz + ∂

∂x

1+εζ∫
0

{
ε2ϕ2

x + εp′ − (z − 1)
}

dz = 0.

Using ideas from [4,5], we can define an approximate momen-
tum density I by substituting the approximate free-surface profile 
η(x, t) and the approximate horizontal velocity φx(x, t) given by 
(2.2) into the first integral in the above equality. This substitution 
leads to the expansion

1+εη∫
0

εφx dz = εη + ε2 3
4η2 + ε2 1

6ηxx +O(ε3),

and using the asymptotic analysis delineated in [6], the horizontal 
momentum density in the KdV context is found to be

I = εη + ε2 3
4η2 + ε2 1

6ηxx. (3.1)

The approximate momentum flux is found to be

1+εη∫
0

ε2φ2
x dz = ε2η2 +O(ε3), (3.2)

and the approximate pressure force F p can be constructed using 
the integral

1+εη∫
0

p dz = 1
2 + εη + ε2 1

2η2 + ε2 1
3ηxx +O(ε3). (3.3)

Thus the flow force (horizontal momentum flux plus pressure 
force, as defined by [7]) is

qI = 1
2 + εη + ε2 3

2η2 + ε2 1
3ηxx. (3.4)

The approximate local momentum balance can be formulated as 
follows.

Theorem 1. (Momentum balance) Suppose η is a solution of (1.1) with 
initial data η0 satisfying ‖η0‖Hk = O(1) for some integer k ≥ 5. Then 
there is a constant C , so that the estimate∥∥∥∥ ∂

∂t

{
εη + ε2 3

4η2 + ε2 1
6ηxx

}

+ ∂

∂x

{
1
2 + εη + ε2 3

2η2 + ε2 1
3ηxx

}∥∥∥∥
L2

≤ Cε3

holds for all t ∈ [0, ∞).

Proof. It was shown in Prop. 6 in [9] that given initial data η0 ∈
Hk , there exists a solution η(x, t) which is bounded in the space 
C(0, ∞, Hk). Thus all ensuing computations hold rigorously since 
η(·, t) ∈ Hk . Using the assumption that η satisfies the KdV equation 
and factoring out ε, we can write the integrand in the statement 
of the theorem in the following way.{
εη + ε2 3

4η2 + ε2 1
6ηxx

}
t
+

{
1
2 + εη + ε2 3

2η2 + ε2 1
3ηxx

}
x

= ε
(
ηt + ηx + ε 3

2ηηx + ε 1
6ηxxx

)

+ ε2
(

3
4η2 + 1

6ηxx

)
t
+ ε2

(
3
4η2 + 1

6ηxx

)
x

= 0 + ε2 3
4

(
2ηηt + 2ηηx

)
+ ε2 1

6

(
ηxxt + ηxxx

)

= ε2 3
2η

(
− ε 3

2ηηx − ε 1
6ηxxx

)
+ ε2 1

6 ∂2
x

(
− ε 3

2ηηx − ε 1
6ηxxx

)
.

Since ‖η0‖H5 is on the order of 1, and ‖η(·, t)‖Hk is bounded for 
all time, we have

sup
t

∥∥∥∥ ∂

∂t

{
εη + ε2 3

4η2 + ε2 1
6ηxx

}

+ ∂

∂x

{
1
2 + εη + ε2 3

2η2 + ε62 1
3ηxx

}∥∥∥∥
L2

≤ C2ε3

for some constant C for t ∈ [0, ∞). �
Remark 1. It should be noted that the L2-norm used in the proof 
can be replaced by any Sobolev norm H s so long as the initial data 
are regular enough. Indeed it can be seen immediately from the 
proof that if the approximate momentum balance is to be proved 
in Hs(R), then the initial data should be given in H s+5(R).

Another important point is that the estimate in Theorem 1 is 
independent of the time t . In other words, the momentum bal-
ance is global in the sense that it holds as long as the solution 
of the KdV equation exists. This is in stark contrast to the proofs 
providing the approximation property of the KdV equation for the 
water-wave problem which are generally such that the error is 
bounded by Cε2(1 + t), so that as t gets larger, the approximation 
degenerates, and if t ∼ 1/ε, the approximation is only on the order 
of ε. Thus in this sense the momentum balance is self-consistent 
i.e. it is independent of the approximate nature of the KdV equa-
tion with regards to the water-wave problem.

4. Approximate energy balance

The energy balance for a control interval such as depicted in 
Fig. 3 can be written in terms of the non-dimensional variables of 
the full Euler equations (2.1) in the form

∂

∂t

1+εζ∫
0

{
ε2

2 ϕ2
x + ε

2ϕ2
z + z

}
dz

+ ε
∂

∂x

1+εζ∫
0

{
ε2

2 ϕ3
x + ε

2ϕ2
z ϕx + zϕx

}
dz + ε

∂

∂x

1+εζ∫
0

pϕx dz.
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Fig. 3. Energy balance for a control volume. The rate of change of the mechanical energy in the control volume is balanced by the net flux of energy into the control volume 
due the fluid flow, and the work rate (power) due to the pressure forces on the control volume.
Using ideas from [5,6], we can define an approximate energy 
density E by substituting the horizontal velocity φx given by (2.2)
into the integral

1+εζ∫
0

{
ε2

2 φ2
x + ε

2 φ2
z + z

}
dz,

where the last term in the integrand represents the potential en-
ergy. In the same vein, the energy flux and work rate due to 
pressure force are constructed using the integrals

ε

1+εη∫
−0

{
ε2

2 φ2
x + ε

2 φ2
z + z

}
φx dz

and

ε

1+εη∫
−0

pφx dz = ε2 ∂

∂x

1+εζ∫
0

p′ϕx dz + ε
∂

∂x

1+εζ∫
0

(1 − z)ϕx dz.

In this way, using again the asymptotic analysis explained in [6], 
the horizontal energy density in the KdV context is found to be

E = 1

2
+ εη + ε2η2, (4.1)

the energy flux is found to be

ε

2
η + ε2 7

8
η2 + ε2 1

24
ηxx,

and the work rate on the fluid due to pressure forces is

ε2η2 + εη + ε2 3

4
η2 + ε2 1

6
ηxx − ε

2
η − ε2 7

8
η2 − ε2 1

24
ηxx.

It is convenient to combine the last two expressions to find the 
horizontal energy flux plus work rate due to pressure force to be

qE = εη + ε2 7

4
η2 + ε2 1

6
ηxx. (4.2)

For the energy balance, we have the following theorem.

Theorem 2. (Energy balance) Suppose η is a solution of (1.1) with ini-
tial data η0 satisfying ‖η0‖Hk =O(1) for some integer k ≥ 4. Then there 
is a constant C , so that the estimate

∥∥∥∥ ∂

∂t

{
1
2 + εη + ε2η2

}
+ ∂

∂x

{
εη + ε2 7

4η2 + ε2 1
6ηxx

}∥∥∥∥
L2

≤ O(ε3)

holds for all t ∈ [0, ∞).
Proof. The proof is similar, but simpler. Observe that

∂

∂t

{
1
2 + εη + ε2η2

}
+ ∂

∂x

{
εη + ε2 7

4η2 + ε2 1
6ηxx

}

= εηt + εηx + ε2 3

2
ηηx + ε2 1

6
ηxxx + 2ε2ηηt + 2ε2ηηx

= −3ε3η2ηx − ε3 1

3
ηηxxx. (4.3)

The estimate now follows in the same way as for the momentum 
balance above. �

In some cases, it is convenient to normalize the potential en-
ergy differently, so that the undisturbed state has zero potential 
energy. The approximate energy density E∗ and energy flux q∗

E are 
then defined by substituting the horizontal velocity φx given by 
(2.2) into the energy formula

∂

∂t

1+εζ∫
0

{
ε2

2 ϕ2
x + ε

2ϕ2
z + z − 1

}
dz

+ ε
∂

∂x

1+εζ∫
0

{
ε2

2 ϕ3
x + ε

2ϕ2
z ϕx + (z − 1)ϕx

}
dz + ε

∂

∂x

1+εζ∫
0

pϕx dz.

As shown in [6], in this case, the energy density and energy flux 
(plus work rate due to pressure forces) can then be found to have 
the respective form

E∗ = ε2η2 + 1

4
ε3η3 + 1

6
ε3ηηxx + 1

6
ε3η2

x ,

q∗
E = ε2η2 + 5

4
ε3η3 + 1

2
ε3ηηxx.

Theorem 3. (Energy balance) Suppose η is a solution of (1.1) with ini-
tial data η0 satisfying ‖η0‖Hk =O(1) for some integer k ≥ 6. Then there 
is a constant C such that the estimate∥∥∥∥ ∂

∂t

{
η2 + 1

4
εη3 + 1

6
εηηxx + 1

6
εη2

x

}

+ ∂

∂x

{
η2 + 5

4
εη3 + 1

2
εηηxx

}∥∥∥∥
L2

≤ Cε2

holds for all t ∈ [0, ∞).

Proof. The key computation is as follows.

∂

∂t

{
η2 + ε

1

4
η3 + ε

1

6
ηηxx+ 1

6
εη2

x

}
+ ∂

∂x

{
η2 + ε

5

4
η3 + ε

1

2
ηηxx

}

= 2η(ηt + ηx) + ε
3

4
η2ηt + ε

1

6
ηtηxx + ε

1

6
ηηxxt + ε

1

3
ηxηxt

+ ε
15

η2ηx + ε
1
ηxηxx + ε

1
ηηxxx
4 2 2
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= ε
3

4
η2ηt + ε

1

6
ηtηxx + ε

1

6
ηηxxt + ε

1

3
ηxηxt + ε

3

4
η2ηx

+ ε
1

2
ηxηxx + ε

1

6
ηηxxx

= ε
3

4
η2(ηt + ηx) + ε

1

6
η∂2

x (ηt + ηx) + ε
1

6
ηtηxx + ε

1

3
ηxηxt

+ ε
1

2
ηxηxx

= O(ε2) +O(ε2) + ε
1

2
(ηt + ηx)ηxx + ε

1

3
(−ηtηxx + ηx∂xηt)

= O(ε2) +O(ε2) +O(ε2) + ε
1

3

((
ηx +O(ε)

)
ηxx

+ ηx∂x
( − ηx +O(ε)

))
.

The proof now proceeds along the same lines as above. �
It should be noted that also in the case of the energy balance, 

the L2 norm used in the proofs can be replaced by any Sobolev 
norm Hk as long as the initial data are regular enough.

5. Discussion

In the present letter, it was shown that momentum and en-
ergy conservation hold approximately in the context of the KdV 
equation. The approximate momentum and energy balances can be 
made rigorous solely by using well-posedness results for the KdV 
equation such as provided in [9] and in many other contributions.

One interesting aspect of these approximate balance laws is 
that they hold independently of the fidelity of the KdV solutions as 
an approximation of a solution of the water-wave problem based 
on the full Euler equations. To explain this further, note that it 
was shown in [14] that the momentum density I(η) defined above 
in (3.1) approximates the corresponding quantity in the full Euler 
equations as long as the solution of the KdV equation is a close 
approximation of the full Euler equations. Indeed it was possible 
to show that the estimate

∥∥∥
1+εζ∫
0

ϕx dz − I(η)

∥∥∥
Hs

≤ Cε2(1 + t) (5.1)

holds. Similar estimates can probably be shown for the quantities 
qI , E and qE . Note however, that the estimate (5.1) degenerates as 
t gets larger and approaches t ∼ 1/ε. The results in Theorems 1, 
2 and 3 in the present note have no such restriction. Indeed, they 
hold globally for all t ≥ 0.

We should point out that having the correct form of quanti-
ties such as I , qI , E and qE can be useful when applying the KdV 
equation in situations where knowledge of the free surface profile 
is insufficient. Indeed, there are situations where the internal dy-
namics of the flow are an important factor, and these quantities 
enter into the analysis. An example of such an application is the 
study of the energy balance in undular bores [4] which cannot be 
properly understood in the context of the KdV equation without 
knowledge of the approximate quantities E and qE . The energy 
flux qE was also used in a decisive way in a study of nonlinear 
shoaling in [18].
Finally, it should also be noted that approximate conservation 
laws can sometimes be utilized in the study of existence of solu-
tions for differential equations. Examples for the use of approxi-
mate global conservation laws in two different cases can be found 
in [12,17].
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