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Abstract� We study properties of solitary�wave solutions of three evolution

equations arising in the modeling of internal waves� Our experiments indicate

that broad classes of initial data resolve into solitary waves� but also suggest

that solitary waves do not interact exactly� thus suggesting two of these equa�

tions are not integrable� In the course of our numerical simulations� interesting

meta�stable quasi�periodic structures have also come to light�

�� Introduction� In this paper� consideration is given to long�crested unidirec�

tional waves at the interface of a two�layer system of incompressible inviscid �uids�

The top layer is assumed to be in�nitely deep� while the heavier bottom layer has

a �nite depth h� Attention is restricted to waves whose wavelength � is large com�

pared to the depth h of the lower layer� and whose amplitude a is small compared

to h� Moreover� the two small quantities h
�
and a

h
are supposed to be of the same

order� Let �x� y� z� connote a standard Cartesian coordinate system with z the

vertical direction and z � 	 located at the interface between the two �uids in their

rest position� In this situation� the Benjamin�Ono equation�

ut 
 ux 
 uux �Huxx � 	� �����

was �rst proposed by Benjamin �� as an approximate model equation for waves on

the interface whose primary direction of propagation is that of increasing values of x�

which do not vary signi�cantly in the y�direction� and for which the e�ects of surface

tension� viscosity and molecular di�usion may be safely ignored� As mentioned� x is

proportional to distance in the direction of propagation� t is proportional to elapsed

time and u�x� t� is proportional to the vertical deviation of the interface from its rest

position at the point x at time t� The operator H is the Hilbert transform applied
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in the spatial variable� In the derivation of ������ when the variables u� x and t are

non�dimensional and scaled so that the dependent variable and its derivatives are

of order one� ����� takes the revealing form

ut 
 ux 
 �uux � �Huxx � O����� �����

where � is of order h
�
�� a

h
and the O���� connotes terms in the formal approximation

which are of quadratic or higher order in �� The Benjamin�Ono equation obtains

by disregarding all terms of higher order in �� It follows in particular that

ut 
 ux � O���� �����

and the small parameter � appearing in the equation shows the dispersive term

Huxx and the nonlinear term uux to be corrections of the same order to the ba�

sic uni�directional hyperbolic operator ut 
 ux � 	� Under the assumption that

di�erentiation does not alter the ��order of the dependent variable� ����� implies

that

Huxx 
Huxt � O����

so that Huxx may be replaced by �Huxt in ����� to obtain

ut 
 ux 
 �uux 
 �Huxt � O�����

Again� disregarding terms of higher order and then rescaling� there appears the

alternative model

ut 
 ux 
 uux 
Huxt � 	� �����

This equation will be termed the regularized Benjamin�Ono equation� As shown

above� it is formally equivalent to the Benjamin�Ono equation� A rigorous compar�

ison made in �� and ��	 between solutions of ����� and ����� corresponding to the

same� small�amplitude� long�wavelength initial data shows the formal expectations

regarding the size of the di�erence are met in practice over the long time scales

relevant to such models�

For the situation when surface tension cannot be ignored� Benjamin �� later

derived what is now known as the Benjamin equation

ut 
 ux 
 uux �Huxx � Tuxxx � 	� �����

In this equation� T is a constant proportional to the surface tension at the interface�

In the present paper� the primary focus is on the dynamical properties of the

solitary�wave solutions of ������ ����� and ������ Following remarks in Section �

about the mathematical theory for the initial�value problems associated to the

evolution equations in view� we study the resolution of an initial wave pro�le into

solitary waves and the interaction of solitary waves� Our experiments show that all

three of these evolution equations feature resolution into solitary waves in much the

same way as does the Korteweg�deVries equation� Observe that equation ����� is a

hybrid between the Korteweg�deVries and the Benjamin�Ono equation� Since both

of these appear to constitute in�nite�dimensional integrable systems� the question
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naturally arises as to whether or not the same is true for the Benjamin equation�

Section � contains some numerical results which indicate a negative answer to this

question� For the regularized Benjamin�Ono equation� previous experience with the

the regularized long wave or BBM equation

ut 
 ux 
 uux � uxxt � 	

suggests that ����� is not integrable �cf� ���� The numerical experiments reported

here are consistent with this supposition� Finally� we observe an interesting phe�

nomenon� namely what appears to be solutions of the Benjamin equation which at

least over certain time scales consist of two or more leap�frogging solitary waves�

�� Well�Posedness Results� As usual� an initial�value problem

ut 
A�u� � 	�

u�	� � u��
�����

is well�posed in a Banach space X if corresponding to every u� � X � there is a

T � T �ku�kX� � 	 and a unique element u � C��	� T � X� satisfying u��� 	� � u��

such that for each t � �	� T � A�u� has a suitable sense and the evolution equation is

satis�ed at least in a weak sense� Here and below� the symbol C��	� T � X� denotes

the space of functions which are continuous in time and take values in the Banach

space X � It is usually also required that the correspondence u� ��� u be continuous

from X to C��	� T � X�� The initial�value problem ����� is globally well posed if T

can be taken arbitrarily large� Not only are local and global well�posedness results

a central theoretical issue for evolution equations� but they also play an important

role in obtaining error estimates for numerical approximations of solutions� To

describe the situation regarding ������ ����� and ������ we introduce some function

classes� For � � p ��� the space Lp � Lp�R� is the set of measurable real�valued

functions of a real variable whose pth powers are integrable over R� If f � Lp� its

norm is denoted jf jp� The inner product in L� is denoted ��� ���� For s � 	� the

space Hs is the subspace of L��R� consisting of functions such that

kfk�s �
Z �

��

�� 
 j�j��sj �f���j�d� � 
��

with the circum�ex connoting the Fourier transform� Equivalently�

kfks � jJsf j��

where Js � �I � 	�
s
� is the Bessel potential of order s� The space L��R� con�

sists of all measurable� essentially bounded functions on R with norm jf j� �

ess supx jf�x�j� We shall also brie�y refer to the spaces L��	� T�X� of Borel mea�

surable� essentially bounded functions on �	� T  with values in X � Well�posedness

and smoothing results for X � Hs with s � �
�
for the initial�value problem associ�

ated to ����� were provided by Abdelouhab et� al� �� � Ponce ���� ��� and Tom

��	� The Benjamin equation was proven to be well posed in L� by Linares ����
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These results provide a global theory because of the conservation laws which hold

for these equations�

For the regularized Benjamin�Ono equation� we sketch the proof of well�posedness

of the initial�value problem on the real line� Rewriting ����� in the form

�� 
H�x�ut 
 ux 
 uux � 	

leads to the formally equivalent integral equation

ut � K 
 �u
 �

�
u�
�
� �����

where K is given explicitly in terms of its Fourier transform� viz�

�K��� �
�i�

� 
 j�j �

Upon integration with respect to t and imposition of the initial condition u��� 	� � g�

there appears

u�x� t� � g�x� 


Z t

�

�
K 
 �u
 �

�
u���x� ��

�
d� �����

for x � R and t � 	� Using the fact that Hs�R� is a Banach algebra for s � �
�
� a

contraction argument in the Banach space C ��	� t�� H
s� with s � �

�
yields a solution

over a limited time interval �	� t�� The proof shows that t� depends on kgks like

an inverse power and that the solution is unique and depends continuously on the

initial data g� Thus the initial�value problem is locally well�posed in Hs for any

s � �
�
� To extend this solution to an arbitrary time interval �	� T � a priori estimates

are needed� The following lemma is useful in deriving the required estimates� �A

discussion of these results may be found in �����

Lemma �� Let s� s� and s� be non�negative� There exist constants c� and c�

depending only on s� s� and s�� such that

jJs�fg�� fJsgj� � c�

n
jfxj� jJs��gj� 
 jJsf j� jgj�

o
�����

jJsf j� � c�jJs�f j�� jJs�f j���� � �����

where s � 	s� 
 ��� 	�s��

Theorem� Let s � �
�
� If u � C��	� T � Hs� is a solution of ����� in the sense of

distributions on R � �	� T � then there are constants C and Cs � C�ku��� 	�ks� such
that

sup
��t�T

ku��� t�k�s � Cse
CT � �����

For the proof of this theorem� a preliminary lemma is needed�

Lemma �� If u is a solution of ����� in the sense of distributions and u lies in

C��	� T � Hs� for some s � �
�
� then for all t � �	� T �

ku��� t�k �

�

� ku��� 	�k �

�

� �����
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Proof� Since u � C��	� T � Hs� with s � �
�
� each term in the di�erential equa�

tion is a tempered distribution� It follows that ����� holds for u� and hence that

u � C���	� T � Hs�� Let fung�n�� be a sequence in C���	� T � H�� converging to u

in C���	� T � Hs�� and let

F � C���	� T � Hs�� C��	� T � Hs���

be de�ned by

F �v� � vt 
Hvxt 
 vx 
 vvx� �����

Since u solves ������ F �un�� 	 as n�� in C��	� T � Hs��� and hence hun� F �un�i �
	 as n�� in C��	� T �� where h�� �i connotes H �

� �H� �

� duality� Since un is smooth

for each n� it is elementary to compute that

�hun� F �un�i � d

dt
kun��� t�k��

�

�

Hence� for each t � �	� T � we have

kun��� t�k��
�

� kun��� 	�k��
�


 �

Z t

�

hun� F �un�ids�

Taking the limit as n�� in the last formula gives the desired result�

Proof of the Theorem� To establish the estimate in the case s � �
�
� ap�

proximate a solution u in the space C���	� T � H
�

� � by a sequence fung�n�� taken

from C���	� T � H�� as above� Then F �un� � 	 in C��	� T � H
�

� � and f��xung�n��
is bounded in C��	� T � H� �

� �� Consequently� hF �un�� ��xuni � 	 as n � � in

C��	� T �� On the other hand� since un is smooth�

�hF �un�� ��xuni �
d

dt
k�xun��� t�k��

�




Z �

��

��xun�x� t�
�dx� �����

The Sobolev inequality and ����� imply there is a positive constant c� such that for

f � H
�

� �Z �

��

��xf�x�
�dx � j�xf j�� � c�k�xfk��

�

� c�kfk��
�

� c�kfk �

�

kfk��
�

� ����	�

where c� � c�c� and c� is another Sobolev constant� Using ����	� in ������ integrat�

ing the result with respect to t and adding ����� leads to the inequality

kun��� t�k��
�

� kun��� t�k��
�


 k�xun��� t�k��
�

� kun��� 	�k��
�


 k�xun��� 	�k��
�


c�

Z t

�

kun��� 	�k �

�

kun��� s�k��
�

ds
 �

Z t

�

hF �un�� ��xunids�

Taking the limit as n�� yields

kun��� t�k��
�

� �kun��� 	�k��
�


 c�

Z t

�

ku��� s�k��
�

ds� ������



	 HENRIK KALISCH AND JERRY L� BONA

Finally� Gronwall�s lemma implies ����� with C � c� and C �

�

� �kun��� 	�k��
�

� The

general case follows from the the case s � �
�
and an inductive argument� Suppose

the estimate ����� holds for some r� � �
�
� let s � r� 
 
� where 	 � 
 � �

�
and

let r � s � �
�
� As before� the solution u can be approximated by a sequence of

smooth functions fung�n��� Calculations can be made with the un� and a limiting

argument applied to show that the resulting inequalities actually hold for u� The

limiting argument is just as it appeared for the case s � �
�
� and so this procedure is

abbreviated by making formal calculations with a solution u as though it had the

requisite smoothness� Consider the combination

hJru� JrF �u�i � hJru� Jrut 
 JrHuxti
 hJru� Jruxi
 hJru� Jr�uux�i�
Assuming that u is a smooth solution of ������ there follows the relation

d

dt
hJru� Jru
 JrHuxi � ��hJru� uJruxi 
 �hJru� Jr�uux�� uJruxi

� �Jru� uxJ
ru�� 
 �jJruj� jJr�uux�� uJruxj�

� �� 
 �c��juxj�jJruj��
� c�kuksjJruj��
� c�kuksjJr�uj���

where ����� has been used� Integrate this with respect to t over the interval �	� t

where t � T and use the fact that kuks is equivalent to hJru� Jru
 JrHuxi along
with the induction hypothesis to write

ku��� t�k�s � ku��� 	�k�s 
 c�Cr�e
CT

Z t

�

ku��� ��ksd�� ������

From ������� the required a priori estimate for kuks with s � r� 
 
 follows imme�

diately� The induction is thus complete�

Corollary� The initial�value problem for equation ����� is globally well�posed in

Hs�R� for any s � �
�
�

Remark� It is possible to obtain existence of a weak solution of ����� in L��	��� H
�

� �

by a standard limiting procedure� For initial data g � H
�

� � let fgng�n�� be a se�

quence of H��functions converging in H
�

� to g� and let fung�n�� be the associated
globally de�ned solutions whose existence is guaranteed by the last result� Because

of ������ the sequence fung�n�� is bounded in L��	� T�H
�

� �� From ����� and the

Sobolev inequality� it follows that f�tung�n�� is bounded in L��	� T� L��� Using a

Cantor diagonalization construction and the Aubin�Lions compactness lemma ����

a subsequence funkg�k��may be extracted so that

unk � u weak� in L��	� T�H
�

� �� ������

�tunk � �tu weak� in L��	� T� L��� ������

unk � u pointwise almost everywhere in �	� T � R� ������
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Following standard reasoning �cf� ���� ����� it is inferred that u � C��	� T � L���

that u�	� � g and that u satis�es ����� in a weak sense� Moreover� it can be

arranged via a further diagonalization that the same subsequence converges as in

������������� for any value of T � 	� It follows in particular that u � L��	��� H
�

� ��

�� Numerical Results� Since the operators appearing in the linear part of the

equations featured here may be interpreted as Fourier multiplier operators� it is

convenient to use a Fourier�Collocation method to e�ect a spatial discretization�

This forces periodic boundary conditions� hence a large spatial domain is needed

to simulate the problem on the real line� The nonlinear terms are handled pseudo�

spectrally� which is to say they are evaluated in physical space� The details of the

numerical scheme together with a convergence study are given in the Appendix�

Here� we focus on the numerical experiments� For numerical study� we put the

Benjamin equation in the normalized form

ut 
 uux 
Huxx 
 uxxx � 	� �����

This form of the equation reverses the sense of time� However� the structure of the

equation is unchanged since the dispersion relation is odd�

Resolution Properties

As a choice of initial waveform� we use a two�parameter family of Gaussian functions

u�x� 	� � Ae��
x
� �

�

�����

where A represents the amplitude and � the wavelength� The evolution according

to the Benjamin�Ono and regularized Benjamin�Ono equations is shown in Figures

� and �� In these �gures� the height u of the wave pro�le is graphed against the

x�axis at t � 	 and at successive times� In Figure �� observe that the Gaussian

disintegrates into one solitary wave and an oscillatory tail for both the Benjamin�

Ono and the regularized Benjamin�Ono equation when � � �� Raising � to �

results in two solitary waves in both equations� however� the second solitary wave

for the regularized equation in Figure � has signi�cantly smaller amplitude than

its Benjamin�Ono counterpart� Increasing A seems to only a�ect the height and

width of the emerging solitary waves� Figures � and � show the evolution according

to the Benjamin equation� Three solitary waves emerge if A � � and � � ��

demonstrating that solutions to the Benjamin equation behave quite di�erently

from correspondingly initiated solutions of the Benjamin�Ono equation� When

� � �� there emerges a pair of �orbiting� solitary waves� The evolution of a pair

of such waves may be described as follows� At �rst� the leading wave is taller than

the trailing wave� so it seems that it should outpace the smaller wave and separate�

However� just before that happens� the leading wave loses height and speed� This

loss is picked up by the trailing wave which now grows taller and faster� thereby

gaining upon the leading wave� It comes to a near interaction� but just before the

trailing wave begins to pass the leading wave� it in turn looses height and speed

and falls behind again� Although not visible in Figure �� after this near interaction�
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Figure �� Evolution of initial data as in ����� with A � � and � � ��

the shedding of a small dispersive tail is observed� Increasing � results in resolution

into a doublet as just described together with more single solitary waves up to

a point where instead of the leading state being a leap�frogging pair� a triplet of

orbiting solitary waves along with the same number of detached single solitary

waves emerges� Increasing � further increases the number of single solitary waves�

but ultimately a quadruple of orbiting solitary waves emerges� It cannot be said

with certainty that these orbiting solitary waves represent a dynamically stable

state of the system� Indeed� we observed that on occasion one of a group of �ve

or more orbiting solitary waves separated from the rest after some time� It seems

possible that after a long enough time� even the pair of orbiting solitary waves will

separate� In fact� we followed the evolution of a pair of bound solitary waves for a

long time and observed that the maximum separation of the two� occurring when

their amplitudes are identical� increases over time� This strongly suggests that

the two leap�frogging solitary waves represent an intermediate state of the system

which may eventually transform into two separately propagating solitary waves�

This point warrants further numerical and analytical investigation�

Solitary Waves

For the Benjamin�Ono equation� Benjamin �� found solitary�wave solutions in the

form

�d�y� �
�d

� 
 d�y�
� �����

for any d � 	� Solitary waves for the regularized equation can be obtained by a

simple rescaling� viz�

�d�y� �
�d

� 
 � d
d��

��y�
� �����
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Figure �� Evolution of initial data as in ����� with A � � and � � ��
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These exact solutions were used to test our numerical schemes �see Appendix��

Solitary�wave solutions of the Benjamin equation satisfy the equation

��
 �� 
 ��H�� 
 ��� � 	� �����

where

� �
�

�
p
c

and c � 	 is the wavespeed� Exact solutions are not currently available� However�

it has been shown �see ��� �� and ���� that there exists a family of stable solitary

waves with 	 � � � �� The extremal � � 	 corresponds to the solitary wave of the

Korteweg�deVries equation� In ��� Albert et� al� used a continuation technique

to approximate solutions of ������ Tuck and Wiryanto ��� performed numerical

constructions comparing solutions of ����� to solutions of the full Euler equations�

In this report� we use a technique favored by Bona and Chen �� to generate ap�

proximate solitary waves utilizing the time�dependent code� The technique can be

explained as follows� As observed in the last section� certain initial data evolve

into a train of solitary waves� Attention is focused on one of those and the rest

are manually deleted from the solution pro�le� The stripped pro�le is not in fact

a solitary wave� and upon evolving further in time it sheds a dispersive tail� After

the tail separates from the solitary wave� it is deleted� the solitary wave translated

to the left and the result used as initial data� This procedure is repeated a number

of times� resulting in due course in a very good approximation to a solitary wave�

To gain some con�dence in the approximate solutions generated by this procedure�

a quantitative analysis of their properties is presented in Tables � and �� These

tables feature data related to two approximate solutions of ����� with � � 	�����

and � � 	������ respectively� These waves were used as initial data in our evolution

code� integrated over the time interval �	� T  with T � �	� and several aspects of

the results monitored to understand just how close the solutions are to true solitary

waves� One question in this direction is how well the approximations resemble the

exact solitary waves in shape� To understand this� we determine the shape error as

follows� integrate the approximate solitary wave to a time T � use a spline interpola�

tion to �nd the peak� and translate the pro�le back so that the peak is in its original

position� Then compare the result with the initial waveform in the L�� and the

L��norm� As can be seen in Table �� the error in shape is on the order of �	��� For

the de�nition of the L�� and the L��error� see the Appendix� The maximal error in

height and energy is about �	��� This calculation was done on the spatial domain

�	� ��		 using N � ���� Fourier modes and a time step k � 	�		�� As a reference�

we repeated the same calculation with an exact solitary wave for the Benjamin�Ono

equation� obtaining similar results� However� choosing the time step and the grid

size smaller� it was possible to decrease the error in the Benjamin�Ono situation�

whereas for the approximate Benjamin solitary waves� this was not possible� In

the latter case� the size of the discrepancy is clearly limited by the error remaining

from the generating procedure�
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� � 	����� � � 	�����

L� �����e�	� �����e�	�

L� �����e�	� �����e�	�

Table �� Maximum error in shape up to T � �	 for approximate

solitary� wave solutions of the Benjamin equation�

Value Error Value Error

Height ����� ��	��e�	� 	���� �����e�	�

Energy ����� �����e�	� ��	�� ��	��e�	�

Speed ���	� �����e�	� 	���� �����e	�

� 	����� 	�����

Table �� Maximum error until T � �	 in height� energy and speed

for approximate solitary waves for the Benjamin equation�

Interaction

The interaction of two solitary�wave solutions of a nonlinear dispersive evolution

equation can give clues about the integrability of the equation� While the Benjamin�

Ono equation is known to be integrable� our experiments indicate that both the

regularized Benjamin�Ono and the Benjamin equation are not integrable� In each

case� the interaction of two solitary waves is shown to leave behind an oscillatory

wavetrain� For the regularized Benjamin�Ono equation� we used as the initial wave

pro�le a solitary wave of height � preceded by a solitary wave of height �� For the

Benjamin equation we used the two solitary waves shown in Figures � and �� In

each case� the taller wave travels to the right at a higher speed� so it overtakes

the smaller wave in due course� Because of the quadratic decay of the tails� it

was necessary to situate the solitary waves so that the peaks were far from each

other� In the experiments reported here� the peaks were separated by approximately

��		� This brought the overlap down to about �	��� Another di�culty is the

arti�cial periodicity in the numerical approximation� To minimize this e�ect� the

experiments were performed on a rather large domain �	� L with L � ��		� This

was su�cient to have the decaying tail at the endpoints on the order of �	�� and

to follow the evolution of the waves without one of them wrapping around and

reentering at the other end� The two solitary waves coalesced at about t � ���	�

To prepare for the experiment� we tested the setup by letting a single solitary wave

evolve until t � ��		� Since the exact form of solitary waves is known for the

regularized Benjamin�Ono equation� it was possible to determine the error in this

case �see Table ��� A spline interpolation showed that the error in shape is near

machine precision� Similarly� for a single solitary wave evolving to t � ��		� the

error in height is near machine precision� even when using a time step as coarse as
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k Height � Height �

	�	� ���	�e�� �����e��

	�	�� �����e�� �����e��

	�	��� �����e�� �����e��

Table �� L��Error for a single solitary�wave solution of the reg�

ularized Benjamin�Ono equation at T���		�

k � 	�	�� For the Benjamin equation� we could only determine the error between

the computed solution and the approximate solitary wave we started with� For

the evolution of a single solitary wave� we obtained an error similar to that shown

in Tables � and �� indicating that our approximate solitary waves are close to

exact solitary�wave solutions and that the numerical scheme is capable of accurately

making long�time integrations�

In Figures � and � some details of the interaction for the regularized Benjamin�

Ono equation are shown� Note the presence of an oscillatory tail trailing behind the

smaller wave after the interaction� Although not shown here� this tail is strongest

right after the interaction and becomes progressively weaker as it lags behind the

smaller wave and spreads out� To check the accuracy of the numerical solution in

the region of the dispersive tail� we ran calculations with k � 	�	� and k � 	�	���

and compared the dispersive tail in these approximations with a calculation using

k � 	�	���� The di�erence was �����e�	� and �����e�	�� respectively� This is better

than the factor of �� guaranteed by the �th�order convergence of the Runge�Kutta

time�stepping scheme used for the regularized Benjamin�Ono equation�

In the case of the Benjamin equation� an oscillatory tail also appears after the

interaction� Again� the tail lengthens� decays slowly and separates from the solitary

waves� To integrate the Benjamin equation� the time step had to be quite a bit

smaller� Calculations with k � 	�		�� k � 	�		� and k � 	�		� were made� and then

compared to a solution obtained using k � 	�		�� In this case� it was observed that

the di�erence went down by a factor of � which is in accordance with the �nd�order

convergence of our temporal integration method for the Benjamin equation�

As a reference� we also studied the interaction of two solitary�wave solutions of

the Benjamin�Ono equation using the same scheme� As expected� the interaction is

clean� meaning that no dispersive tail appears after the interaction� The interaction

for the Benjamin�Ono equation was also studied by Thome�e and Vasudeva Murthy

��� using a �nite�di�erence scheme and by Dougalis and Pelloni ��� using a Fourier

spectral method� In both these works� the interaction was found to be elastic�
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Figure �� Interaction of two solitary waves for the regularized

Benjamin�Ono equation�
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� Interaction of two solitary waves for the Benjamin equation�
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equation� close�up of the oscillatory tail�
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Figure ��� Interaction of two solitary waves for the Benjamin�

Ono equation� The dashed line shows the initial data� while the

solid line shows the solution pro�le at t � �		�

�� Appendix� The discrete Fourier transform of a function u on the interval �	� �

is given by

�un �
�

N

N��X
j��

u�xj�e
�inxj �

where the grid points are chosen to be xj �
��j
N

for 	 � j � N and�N
�
� n � N

�
���

The inverse Fourier transform is de�ned by

UN�x� �

N
�X

n��N
�
��

�uke
inx�
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This is an exact expression at the grid points since Jackson�s formula gives

UN�xj� �

N
�X

n��N
�

�uke
inxj � u�xj��

so that one may think of UN as the N th�order trigonometric interpolant of u� To

de�ne the discrete Fourier transform on the interval �	� L� an appropriate scaling

has to be used�

The Benjamin Equation

Approximating the solution u to ����� by UN � we obtain the semi�discrete equation

d

dt
UN 
 �

�
D�UN

�� 
HD��UN � 
D�UN � 	�

where D denotes the Fourier�collocation derivative� The time discretization is

achieved by a Crank�Nicholson scheme for the linear part and an Adams�Bashforth

method for the nonlinear term� We demonstrate the case of the Benjamin�Ono

equation� dropping the subscript N for the sake of clarity� In the case of the Ben�

jamin equation� the third�order dispersive term has to be added� Let k be size of

the time step� Denoting the solution at the nth time level by Un� Un�� is computed

according to

Un�� � Un

k
�

HD�Un�� 
HD�Un

�



�

�

�
�D�U��n �D�U��n��

�
�

This scheme has local truncation error of order k�� so that second�order convergence

is expected� This expectation is con�rmed by the results described in Table �� The

norm used to calculate the error is the normalized discrete L��norm

kuk�N�� �
�

N

NX
i��

ju�xi�j��

The L��error is then de�ned to be

E� �
ku� UkN��

kukN��

�

The L��norm is

kukN�� � max
��i�N

ju�xi�j�
and the L��error is

E� �
ku� UkN��

kukN��
�

We used the exact solitary�wave solution of the Benjamin�Ono equation ����� with

d � 	�� on a domain �	� L� where L � �		� For the calculations shown� �	�� grid

points were used and the solution was integrated to the �nal time T � �� The bene�

�t of using a spectral method with the above scheme is that the highest order term

can be evaluated very simply� Since the nonlinear term is treated explicitly� there

is potential nonlinear instability� For the Benjamin equation� this is not a serious
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k L��error Ratio

	��			 ����	e��

	�	�		 �����e�� ����

	�	��	 �����e�� ����

	�	��� �����e�� ��	�

	�		�� �����e�� ��		

	�		�� �����e�� ��		

	�		�� �����e�� ��		

	�			� �����e�� ��		

	�			� �����e�� ����

	�			� ���	�e�� ����

Table �� Benjamin�Ono equation� error due to temporal discretization�

N L��error Ratio

��� �����e��

�	�� �����e�� ���	

�	�� �����e�� �����

�	�� �����e�� �������

���� ��		�e��	 ����

Table �� Benjamin�Ono equation� error due to spatial discretization�

problem� Since the dispersive smoothing mechanism is weaker for the Benjamin�

Ono equation� one has to choose more grid points and a smaller time step in this

case� However� another advantage of the spectral method is that relatively few

grid points are needed to obtain good spatial accuracy� so that we were able to

numerically simulate the Benjamin�Ono equation without di�culty� Moreover� for

smooth solutions the error due to the spatial discretization decreases exponentially�

To isolate the error introduced by the spatial discretization� we chose a very small

time step k � 	�					� and did some calculations with varying grid size� We see

exponential convergence in Table � until we run into the error due to the temporal

discretization and the algebraic decay of the solution� The calculations shown in

Table � are for the setup just described� except the size of the domain was doubled�

Since we integrate for a long time� it is important to know how the error grows in

time� From Figure �� it is apparent that the error for the Benjamin�Ono equation

grows less than quadratically with T � As mentioned before� an exact solution of the

Benjamin equation is not available� To test the proposed scheme for the Benjamin

equation� a calculation with time step k � 	�			� was made� Several runs with

much larger time steps were then made and compared to the simulation with the

very �ne time step� In this way an estimate of the temporal convergence rate of

the scheme was obtained� The result is shown in Table �� The number of modes in
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this calculation was N � �	��� the solution was determined up to T � � and the

initial data was u� � �	c�sech��c�x��

k L��error Ratio

	��					 ��	��e��

	�	�				 ����	e�� ����

	�	��			 ����	e�� ��	�

	�	���		 ����	e�� ��		

	�		���	 �����e�� ��		

	�		���� �����e�� ��		

Table �� Benjamin equation� error due to temporal discretization�

The Regularized Benjamin�Ono Equation

To discretize the regularized version of the Benjamin�Ono equation� use is made

of the equivalent formulation ������ There are no problems with stability as the

resulting semidiscrete system is not sti�� We therefore use an explicit fourth�order

Runge�Kutta scheme for the time�discretization� The Runge�Kutta algorithm has

the form

Un�� � Un 
 k
�

�
��� 
 �

�
�� 
 �

�
�� 
 ��� �

where the �i are de�ned by

v� � Un �� � F �v��

v� � Un 
 �

�
k�� �� � F �v��

v� � Un 
 �

�
k�� �� � F �v��

v� � Un 
 k�� �� � F �v��
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k L� �error Ratio

	�� �����e�	�

	�� ���	�e�	� ������

	�� ��		�e�	� ������

	�	� �����e�	� ������

	�	�� ��	��e�	� �����

	�	��� ���	�e�	� ���	�

Table �� Regularized Benjamin�Ono � error due to temporal discretization�

N L��error Ratio

�	�� �����e�	�

�	�� �����e�	� ��	�

�	�� �����e�	� �����

���� �����e�	� �	����

����� �����e�	� �	���	�

����� �����e�	� ����

Table �� Regularized Benjamin�Ono equation� error due to spa�

tial discretization�

and F is given in terms of the discrete form of the convolution operator K by
�F �V �n � �in

��jnj

�
�Vn 
��V ��n

�
� To check the algorithm� we used the exact form

����� of the regularized Benjamin�Ono solitary waves� A representative result for

a wave of height � is given in Tables � and �� In this calculation� the solution

was approximated from T � 	 to T � ��� and the size of the domain was ��		�

In the computations shown in Table �� ���� Fourier modes were used� The �th�

order convergence of the scheme is apparent up to k � 	�	��� when the error

became dominated by the spatial discretization and the arti�cial periodicity� Table

� displays the spatial convergence rate for a calculation with k � 	�	���� We

observe exponential convergence before reaching the limit set by the size of the

time step and the arti�cial periodicity� Similar results obtain for other solitary

waves with heights between 	�� and �� For smaller waves� a larger interval has to

be used� while for taller waves� the number of Fourier modes needs to be increased�
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