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a b s t r a c t

The Serre–Green–Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations
which approximates the full water wave problem. The system is known to describe accurately the wave
motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational
and two-dimensional. The system is an extension of the well known shallow-water system to the
situation where the waves are long, but not so long that dispersive effects can be neglected. In the
current work, the focus is on deriving mass, momentum and energy densities and fluxes associated
with the Serre–Green–Naghdi system. These quantities arise from imposing balance equations of the
same asymptotic order as the evolution equations. In the case of an even bed, the conservation
equations are satisfied exactly by the solutions of the Serre–Green–Naghdi system. The case of variable
bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy
conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the
corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of
the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully
compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically
by approximating solutions of the Serre–Green–Naghdi equations using a finite-element discretization
coupled with an adaptive Runge–Kutta time integration scheme, and it is found that the energy is indeed
conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane
beach is analyzed. It appears that the Serre–Green–Naghdi equations are capable of predicting both the
shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early
stages of shoaling.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we study mechanical balance laws for fully
nonlinear and dispersive shallow-water waves. In particular, the
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Serre–Green–Naghdi (SGN) system of equations with variable
bathymetry is considered. This system was originally derived for
one-dimensional waves over a horizontal bottom in 1953 by F.
Serre [1,2]. Several years later, the same system was rederived
by Su and Gardner [3]. In 1976, Green and Naghdi [4] derived a
two-dimensional fully nonlinear and weakly dispersive system for
an uneven bottom which was integrated in one spatial dimension
by Seabra-Santos et al. [5] and El et al. [6]. Lannes and Bonneton
derived several other systems including the SGN equations using
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a new formulation of the water wave problem, [7]. For more
information and generalizations of the SGN equations we refer to
Lannes [8] and the references therein, while we refer to the paper
by Barthélemy [9] for an extensive review.

The Serre–Green–Naghdi (SGN) system and several variants
of it are extensively used in coastal modeling [10–12,8]. In the
present contribution, the focus is on the derivation and use
of associated mechanical balance equations, and in particular a
differential energy balance equation. While it is known that the
equations admit local conservation equations corresponding to
mass, momentum and energy conservation if the bed is even [13],
it appears that the connection to the mechanical balance laws
of the original Euler equations has not been firmly established
so far. One possible method for establishing the link between
the conservation laws and the requisite physical quantities is
outlined in the work of Miles and Salmon [14]. In this work, the
Serre–Green–Naghdi (SGN) equations are shown to follow from
Hamilton’s principle of least action in the sameway as the full free-
surface water wave problem does if it is assumed that the fluid
moves in vertical columns, or in other words that the horizontal
displacement of fluid particles is uniform throughout the fluid
column. This approximation preserves several of the symmetries
of the full water-wave problem [15], and in particular gives rise to
corresponding conservation laws formass, momentum and energy
through the use of Noether’s theorem.

We follow a different route in that we make the same
approximation in both the evolution equations (Euler equations)
and in the corresponding mechanical balance laws directly. Using
this approach,we show that the first three conservation laws of the
Serre–Green–Naghdi (SGN) equations arise as approximations of
mechanical balance laws in the context of the Euler equations, both
in the case of even beds, and in the case of nontrivial bathymetry.
While one may have doubts about the link between the resulting
approximate balance laws at a mathematical level, it can be
established (see [13]) that these balance equations also arise as
exact consequences of the Serre–Green–Naghdi (SGN) equations.

As it was shown in [16], the Serre–Green–Naghdi (SGN)
equations also admit a fourth conservation law which may be
interpreted as conservation of potential vorticity, and arises from a
certain relabeling symmetry of the Lagrangian density used in [14].
This fourth conservation law can also be shown to be related to a
kinematic identity similar to Kelvin’s circulation theorem [17].

Let us first review some modeling issues regarding the
Serre–Green–Naghdi (SGN) system. Suppose a denotes a typical
amplitude, and l a typical wavelength of a wavefield under study.
Suppose also that b0 represents the average water depth. In order
to be a valid description of such a situation, the SGN equations
require the shallow water condition, β .

= b20/l
2

≪ 1. In contrast,
the range of validity of theweakly nonlinear andweakly dispersive
Boussinesq equations is limited to waves with small amplitude
and large wavelength, i.e. α .

= a/b0 ≪ 1 and β ≪ 1. In this
scaling regime, one also finds theweakly nonlinear, fully dispersive
Whitham equation [8,18,19].

The SGN equations can be derived by depth-averaging the Euler
equations and truncating the resulting set of equations at O(β2)
without making any assumptions on the order of α, other than
α ≤ O(1).

In their dimensionless and scaled form the SGN equations can
be written as

ηt + [hū]x = 0, (1a)

ūt + ūūx + gηx +
1
h


h21

3
P +

1
2

Q


x
− bx

1
2

P + Q


= 0,

(1b)

with P = h

ū2
x − ūxt − ūūxx


and Q = −bx(ūt + ūūx) − bxxū2,

x ∈ R, t > 0, along with the initial conditions h(x, 0) = h0(x),
ū(x, 0) = ū0(x). Here, η = η(x, t) is the free surface displacement,
while

h .
= η + b, (2)

denotes the total fluid depth. The unknown ū = ū(x, t) is the
depth-averaged horizontal velocity, and η0, ū0 are given real func-
tions, such that η0 + b > 0 for all x ∈ R. In these variables, the
location of the horizontal bottom is given by z = −b (cf. Fig. A.1).
For a review of the derivation and the basic properties of this sys-
tem we also refer to [9,20].

Fig. A.1. The geometry of the problem.

In the case of small-amplitude waves, i.e. if β ∼ α, the SGN
equations reduce to Peregrine’s system [21]. On the other hand,
in the case of very long waves, i.e. β → 0, the dispersive terms
disappear, and the system reduces to the nondispersive shallow
water equations.

The SGN system for waves over a flat bottom possesses solitary
and cnoidal wave solutions given in closed form. For example, the
solitary wave with speed cs can be written as

hs(ξ)
.
= hs(x, t) = a0 + a1 sech2(Ks ξ), (3a)

us(ξ)
.
= us(x, t) = cs


1 −

a0
hs(ξ)


, (3b)

where ξ = x − cst, Ks =


3a1/4a20c2s , cs =

√
a0 + a1, and a0 > 0

and a1 > 0. For more information about the solitary and cnoidal
waves and their dynamical properties we refer to [9,22–26].

It is important to note that the SGN system has a Hamiltonian
structure, even in the case of two-dimensional waves over an
uneven bed cf. [24,27–29]. Specifically, any solution (h, ū) of (1)
conserves the Hamiltonian functional

H(t) =
1
2


∞

−∞

gη2 + hū2
− h


hxbx +

1
2
hbxx − b2x


ū2

−
1
3


h3ūx


x ū dx, (4)

in the sense that dH(t)/dt = 0. Note however that (1a), (1b) are
recovered only if a non-canonical symplectic structure matrix is
used.While inmany simplifiedmodels equations, the Hamiltonian
functions does not represent the mechanical energy of the wave
system [30], in the case of SGN, the Hamiltonian does represent
the approximate total energy of the wave system. Thus the Hamil-
tonian can be written in the form

H(t) =


∞

−∞

E(x, t) dx,

where the integrand

E =
1
2


gη2 + hū2

− h

hxbx +

1
2
hbxx − b2x


ū2

−
1
3


h3ūx


x ū


is the depth-integrated energy density. In the present paper, we
also identify a local depth-integrated energy flux qE , such that an
equation of the form

∂E
∂t

+
∂qE
∂x

= 0, (5)
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is satisfied approximately. The procedure of finding the quantities
E and qE follows a similar outline as the derivations in [31] for a
class of Boussinesq systems and [32] for the KdV equation. It is
noted that some other estimates for energy functionals for Boussi-
nesq systems can be found in [33].

The analytical results are put to use in the study of undular
bores. It is well known that the shallow-water theory for bores
predicts an energy loss [34]. In an undular bore, the energy is
thought to be disseminated through an increasing number of
oscillations behind the bore, and the traditional point of view is
that dissipation must also have an effect here [35,36]. However,
recent studies [37] have shown that if dispersion is included
into the model equations, then the energy loss experienced by
an undular bore can be accounted for without making appeal to
dissipative mechanisms.

Indeed, it was argued in [37,38] that the energy loss in an un-
dular bore could be explained wholly within the realm of conser-
vative dynamics by investigating a higher-order dispersive system,
and monitoring the associated energy functional. However, there
was a technical problem in the analysis in these works, as the en-
ergy functional was not the same as the one required by the more
in-depth analysis in [31]. On the other hand, the energy functional
found in [31] did not reduce to the shallow-water theory in the cor-
rect way. In the current contribution, it is our purpose to remedy
this situation by using the SGN system which reduces in the cor-
rect way to the shallow-water equations, and also features exact
energy conservation in the case of a flat bed.

The numerical method to be used is a standard Galerkin/Finite
Element Method (FEM) for the SGN equations with reflective
boundary conditions extending the numerical method presented
in [39]. For the sake of completeness we mention that there are
several numerical methods applied to boundary value problems
of the SGN equations. For example finite volume [40–42], finite
differences [20,43,44], spectral [45,41] and Galerkin methods
[39,46].

The paper is organized as follows: A review of the derivation of
the SGN equations based on [9,20] is presented in Section 2. The
derivation of the mass, momentum and energy balance laws in the
asymptotic order of the SGN equations is presented in Section 3.
Applications to undular bores and solitary waves are discussed
in Section 4. The numerical method to be used in this paper is
presented briefly in the Appendix.

2. The SGN equations over a variable bed

Before introducing the balance laws for the SGN equations, we
briefly review the derivation of the SGN equations from the Eu-
ler equations following the work [9], but in the case of a general
bathymetry. This well known derivation is included here to set the
stage for the development of the approximate mechanical balance
laws in the next section. We consider an inviscid and incompress-
ible fluid, and assume that the fluid flow is irrotational and two-
dimensional. Let a0 be a typical amplitude, l a typical wavelength
and b0 a typical water depth. We perform the change of variables
x̃ = x/l, z̃ = z/b0, t̃ = c0t/l, which yields non-dimensional inde-
pendent variables identified by tildes, where x represents the hori-
zontal and z the vertical coordinate. The limiting long-wave speed
is defined by c0 =

√
gb0, and g denotes the acceleration due to

gravity. The non-dimensional velocity components are defined by
ũ = u/αc0, ṽ = v/

√
βαc0, where α = a0/b0 and β = b20/l

2. Fi-
nally, the free surface deflection, bottom topography and pressure
are non-dimensionalized by taking η̃ = η/a0, b̃ = −b/b0, and
p̃ = p/ρgb0.
In non-dimensional variables, the free-surface problem is
written as follows [47]: The momentum equations are

αũt̃ + α2(ũ2)x̃ + α2(ũṽ)z̃ = −p̃x̃, (6a)

αβṽt̃ + α2βũṽx̃ + α2βṽṽz̃ = −p̃z̃ − 1. (6b)

The equation of continuity and the irrotationality are expressed by

ũx̃ + ṽz̃ = 0, (7a)
ũz̃ − βṽx̃ = 0. (7b)

The boundary conditions at the free surface and at the bottom are
given by

ṽ = η̃t̃ + αũη̃x̃, at z̃ = αη̃(x̃), (8a)
p̃ = 0, at z̃ = αη̃(x̃), (8b)

ṽ = b̃x̃ũ, at z̃ = b̃(x̃). (8c)

The first equation in the system (1) is obtained by integrating
the equation of continuity over the total depth. The result iswritten
in terms of the depth-averaged horizontal velocity

¯̃u =
1

h̃

 αη̃

b̃
ũ dz, (9)

in the form

η̃t̃ + [h̃ ¯̃u]x̃ = 0. (10)

Using the boundary conditions (8a)–(8c), the continuity equation
(10) and the depth-averaged momentum equation (6a) yields

αh̃ ¯̃ut̃ + α2h̃ ¯̃u ¯̃ux̃ + α2 ∂

∂ x̃

 αη̃

b̃


ũ2

− ( ¯̃u)2


dz̃

= −

 αη̃

b̃
p̃x̃ dz̃. (11)

Applying the Leibniz rule to the right-hand side of Eq. (11) yields αη̃

b̃
p̃x̃ dz̃ =

∂

∂ x̃


h̃ ¯̃p

− αηx̃p̃|z̃=αη̃ + b̃x̃p̃|z̃=b̃

=
∂

∂ x̃


h̃ ¯̃p

+ b̃x̃p̃|z̃=b̃. (12)

The momentum equation (6b) is rewritten as

αβΓ (x̃, z̃, t̃) = −1 − p̃z̃, (13)

where

Γ (x̃, z̃, t̃) = ṽt̃ + αũṽx̃ + αṽṽz̃ . (14)

Integrating Eq. (13) from z̃ to αη̃ yields

p̃(x̃, z̃, t̃) = (αη̃ − z̃)+ αβ

 αη̃

z̃
Γ (x̃, ζ , t̃) dζ , (15)

and taking the mean value gives

h̃ ¯̃p =
1
2
h̃2

+ αβ

 αη̃

b̃

 αη̃

z̃
Γ (x̃, ζ , t̃) dζ dz̃. (16)

Therefore, Eq. (11) can be written as

¯̃ut̃ + α ¯̃u ¯̃ux̃ + η̃x̃ +
β

h̃

∂

∂ x̃

 αη̃

b̃
(z̃ − b̃)Γ (x̃, z̃, t̃) dz̃

+
β

h̃
b̃x̃

 αη̃

b̃
Γ (x̃, z̃, t̃) dz̃ =

−α

h̃

∂

∂ x̃

 αη̃

b̃


ũ2

− ( ¯̃u)2


dz̃.

The non-dimensional velocity components are given (cf. [20]) to
first order by

ũ(x̃, z̃, t̃) = ¯̃u(x̃, t̃)+ O(β), (17)
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and

ṽ(x̃, z̃, t̃) = −

z̃ − b̃(x̃)

∂ ¯̃u
∂ x̃

+ ¯̃u
∂ b̃
∂ x̃

+ O(β). (18)

As itwas shown in [20],we can expand the velocity components
using Taylor series in the vertical coordinate around the bottom.
Denoting by ũb and ṽb, respectively, the horizontal and vertical
velocities at the bottom, the bottom kinematic condition (8c)
imposes that ṽb = b̃x̃ũb. In order to determine which terms
should be kept to obtain an approximation for the velocity field,
the incompressibility condition (7a) must hold to the same order
in β as the evolution equations. If the non-dimensional velocity
components are given by

ũ(x̃, z̃, t̃) = ũb(x̃, t̃)+ β(z̃ − b̃)

b̃x̃ũb

x̃ + (b̃x̃ũb)x̃


−
β

2
(z̃ − b̃)2ũb

x̃x̃ + O(β2), (19)

ṽ(x̃, z̃, t̃) = b̃x̃ũb
+ (z̃ − b̃)


−ũb

x̃ + β(b̃x̃(ũbb̃x̃)x̃ + ũb
x̃ b̃

2
x̃)


−
β

2
(z̃ − b̃)2


b̃x̃ũb

x̃x̃ + (b̃x̃ũb
x̃ + (b̃x̃ũb)x̃)x̃


+
β

3!
(z̃ − b̃)3ũb

x̃x̃x̃ + O(β2),

then the incompressibility condition (7a) holds to O(β2). Depth
averaging (19) gives

ũb
= ¯̃u −

β

2
h̃

b̃x̃ ¯̃ux̃ + (b̃x̃ ¯̃u)x̃


+
β

6
h̃2 ¯̃ux̃x̃ + O(β2, αβ2).

Thus the horizontal velocity is

ũ(x̃, z̃, t̃) = ¯̃u − β

b̃x̃ ¯̃ux̃ + (b̃x̃ ¯̃u)x̃

 h̃
2

− (z̃ − b̃)



+β


h̃2

6
−

1
2
(z̃ − b̃)2


¯̃ux̃x̃ + O(β2, αβ2). (20)

Taking squares in Eq. (20)

ũ2(x̃, z̃, t̃) = ¯̃u
2
− β


b̃x̃ ¯̃ux̃

¯̃u + (b̃x̃ ¯̃u)x̃ ¯̃u
 

h̃ − 2(z̃ − b̃)


+β


h̃2

2
− (z̃ − b̃)2


¯̃u ¯̃ux̃x̃ + O(β2, αβ2). (21)

Integrating Eq. (21) from b̃ to αη̃ and after some simplifications it
follows that αη̃

b̃


ũ2

− ( ¯̃u)2


dz̃ = O(β2, αβ2),

and that

Γ (x̃, z̃, t̃) = (z̃ − b̃)

α ¯̃u

2
x̃ − ¯̃ux̃t̃ − α ¯̃u ¯̃ux̃x̃


+ + b̃x̃( ¯̃ut̃ + α ¯̃u ¯̃ux̃)+ αb̃x̃x̃ ¯̃u

2
+ O(β, αβ). (22)

Evaluating the integrals
 αη̃
b̃
Γ dz̃ and

 αη̃
b̃
(z̃ − b̃)Γ dz̃ yields αη̃

b̃
Γ dz̃ =

1
2
h̃P̃ + h̃Q̃,

and αη̃

b̃
(z̃ − b̃)Γ dz̃ =

1
3
h̃2P̃ +

1
2
h̃2Q̃,

where

P̃ = h̃

α ¯̃u

2
x̃ − ¯̃ux̃t̃ − α ¯̃u ¯̃ux̃x̃


, (23)
and

Q̃ = b̃x̃

¯̃ut̃ + α ¯̃u ¯̃ux̃


+ b̃x̃x̃ ¯̃u

2
. (24)

Finally we find the second equation of the system as

¯̃ut̃ + α ¯̃u ¯̃ux̃ + η̃x̃ +
β

h̃

∂

∂ x̃

1
3

P̃ +
1
2

Q̃

h̃2


+ + βb̃x̃
1
2

P̃ + Q̃


= O(αβ2).

By setting the right-hand side equal to zero, and writing the
variables in dimensional form the system reads

ηt + [hū]x = 0, (25a)

ūt + ūūx + gηx +
1
h


h21

3
P +

1
2

Q


x
− bx

1
2

P + Q


= 0,

(25b)

where P = h

ū2
x − ūxt − ūūxx


and Q = −bx(ūt + ūūx)− bxxū2.

In order to determinewhich terms should be kept for the veloc-
ity field at a certain order of approximation, the incompressibility
condition (7a) can be used. Then, the dimensional formof thewater
particle velocities at any location (x, z) in the vertical plane become

u = ū +


h2

6
−

z2

2


ūxx, (26a)

v = −zūx. (26b)

As it was mentioned before, system (1a) and (1b) reduces to the
shallowwater systemwhen β → 0 and to the classical Boussinesq
system when β ∼ α.

An asymptotic expression for the pressure p̃(x̃, z̃, t̃) can be
obtained by substituting formula (22) into (15). Such a formulawas
derived in [48] in the form

p̃(x̃, z̃, t̃) = αη̃ − z̃

+
αβ

2


−¯̃ux̃t̃ − α ¯̃u ¯̃ux̃x̃ + α ¯̃u

2
x̃

 
h̃2

− (z̃ − b̃)2


+αβ

αb̃x̃x̃ ¯̃u

2
+ αb̃x̃ ¯̃u ¯̃ux̃ + b̃x̃ ¯̃ut̃


(αη̃ − z̃)

+ O(αβ2). (27)

3. Mechanical balance laws for the SGN equations

In this section, we derive the mechanical balance laws such
as the mass, momentum and energy conservation for the SGN
equations extending the results related to some Boussinesq
systems found in [31]. The balance laws consist of terms of the
same asymptotic order as in the SGN equations. We start with the
conservation of mass.

3.1. Mass balance

We investigate the mass conservation properties of Eqs. (25a)
and (25b). Our starting point is the totalmass of the fluid contained
in a control volume of unit width, bounded by the lateral sides of
the interval [x1, x2], and by the free surface and the bottom. This
mass is given by

M =

 x2

x1

 η

−b
ρ dz dx.

According to the principle of mass conservation and the fact that
there is no mass flux through the bottom or the free surface, mass
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conservation can be considered in terms of the flow variables as
follows:

d
dt

 x2

x1

 η

−b
ρ dz dx =

 η

−b
ρu(x, z, t) dz

x1
x2

.

In non-dimensional form this equation becomes

d
dt̃

 x̃2

x̃1

 αη̃

b̃
dz̃ dx̃ = α

 αη̃

b̃
ũ(x̃, z̃, t̃) dz̃

x̃1

x̃2

.

Substituting the expression (20) for ũ and integrating with respect
to z̃ yields

d
dt̃

 x̃2

x̃1
h̃dx̃ = α


¯̃uh̃
x̃1
x̃2

+ O(αβ2), (28)

where h̃ = αη̃ − b̃ denotes the nondimensional total depth.
Dividing (28) by x̃2 − x̃1 and taking x̃2 − x̃1 → 0 then the mass
balance equation is written as

h̃t̃ + (α ¯̃uh̃)x̃ = O(αβ2). (29)

Denoting the non-dimensional mass density by M̃ = h̃ and the
non-dimensional mass flux by q̃M = α ¯̃uh̃, then the mass balance is

∂M̃
∂ t̃

+
∂ q̃M
∂ x̃

= O(αβ2).

Using the scaling M = ρb0M̃ and qM = ρb0c0q̃M the dimensional
forms of mass density and mass flux are M = ρh and qM =

ρūh respectively. Then the dimensional form of the mass balance
is obtained by discarding the right-hand side of the scaled mass
balance equation and using the unscaled quantities:

∂M
∂t

+
∂qM
∂x

= 0. (30)

It is noted that themass balance is satisfied exactly by the solutions
of the SGN system, in fact (30) is the same equation as (25a).

The expressions for mass density and the mass flux do not
depend on the shape of the bottom topography, and in particular,
they have the same form for both even and uneven beds. The
dimensional form of (29) coincides with analogous formulas of the
shallow-water wave system and the classical Boussinesq system
[31]. While this may be expected, it should be pointed out that
in the case of other asymptotically equivalent systems, mass
conservation may be satisfied only to the same order as the order
of the equations, [31].

3.2. Momentum balance

The total horizontal momentum of a fluid of constant density ρ
contained in a control volume of the same type as in the previous
section is

I =

 x2

x1

 η

−b
ρu dz dx.

Conservation of momentum implies that the rate of change of I is
equal to the net influx of momentum through the boundaries plus
the net force at the boundary of the control volume. Therefore, the
conservation of momentum is written
d
dt

 x2

x1

 η

−b
ρu dz dx =

 x2

x1
pbx dx

+

 η

−b
ρu2(x, z) dz +

 η

−b
pdz

x1
x2

.

Non-dimensionalization of this expression leads to

α
d
dt̃

 x̃2

x̃1

 αη̃

b̃
ũ dz̃ dx̃ = −

 x̃2

x̃1
P̃bb̃x̃ dx̃

+


α2
 αη̃

b̃
ũ2 dz̃ +

 αη̃

b̃
p̃ dz̃

x̃1

x̃2

,

where P̃b denotes the pressure at the bottom P̃b = h̃ +
αβ

2 [−¯̃ux̃t̃ −

α ¯̃u ¯̃ux̃x̃ + α ¯̃u
2
x̃ ]h̃

2
+ αβ(αb̃x̃x̃ ¯̃u

2
+ αb̃x̃ ¯̃u ¯̃ux̃ + b̃x̃ ¯̃ut̃)h̃. Substituting the

values of ũ and p̃ from Eqs. (20) and (15) and integrating with
respect to z̃ yields

α
d
dt̃

 x̃2

x̃1

¯̃uh̃dx̃ = −

 x̃2

x̃1
P̃bb̃x̃ dx̃

+


α2 ¯̃u

2
h̃ +

h̃2

2
−
αβ

3
h̃3

¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − α( ¯̃ux̃)

2
x̃1

x̃2

+


αβ

2
h̃2

αb̃x̃x̃ ¯̃u

2
+ b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)

x̃1
x̃2

+ O(αβ2).

Applying similar techniques used for the derivation of the mass
balance equation we obtain the momentum balance equation in
the form
α ¯̃uh̃


t̃
+


α2 ¯̃u

2
h̃ +

h̃2

2
−
αβ

3
h̃3

¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − α( ¯̃ux̃)

2


x̃

+


αβ

2
h̃2

αb̃x̃x̃ ¯̃u

2
+ b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)


x̃

= −P̃bb̃x̃ + O(αβ2). (31)

If the non-dimensional momentum density is defined by

Ĩ = α ¯̃uh̃

and the momentum flux plus pressure force is defined by

q̃I = α2 ¯̃u
2
h̃ +

h̃2

2
−
αβ

3
h̃3( ¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − α( ¯̃ux̃)

2)

+
αβ

2
h̃2(αb̃x̃x̃ ¯̃u

2
+ b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃))

then the momentum balance equation can be written as

∂ Ĩ
∂ t̃

+
∂ q̃I
∂ x̃

= −P̃bb̃x̃ + O(αβ2).

Using the scaling I = ρc0b0 Ĩ and qI = ρc20b0q̃I , the dimensional
forms of themomentumdensity andmomentum flux per unit span
are given by

I = ρūh, (32)

and

qI = ρū2h +
ρg
2

h2
−
ρ

3
(ūxt + ūūxx − ū2

x)h
3

−
ρ

2


bxxū2

+ bx(ūūx + ūt)

h2, (33)

respectively.
It turns out that the momentum conservation law is also an

exact consequence of the SGN system (25a)–(25b). Indeed, if the
momentum density is defined by (32), the momentum flux plus
pressure force is defined by (33), and the pressure is defined by
(27), then solutions of the SGN system also satisfy exactly the
equation
∂ I
∂t

+
∂qI
∂x

= bxp.



248 H. Kalisch et al. / Physica D 333 (2016) 243–253
Note that if the bottom z = −b = −b0 is horizontal, then the last
equation is homogeneous and does not depend on the pressure p.

Taking β → 0 in the momentum balance equations (31), and
using dimensional variables and horizontal bottom b = b0, the
momentum density is unchanged, but the flux reduces to

qswI = ρū2h +
ρg
2

h2. (34)

Thus it is plain that both the momentum density I and flux qI
reduce correctly to the nonlinear shallow water approximation. In
the caseβ ∼ α and a flat bottom, the quantities for themomentum
balance law are I = ρū(b0 + η) and qI = ρb0ū2

+
ρg
2 h2

−
ρ

3 b
3
0ūxt ,

which agree with the corresponding quantities of the classical
Boussinesq system.

3.3. Energy balance

The total mechanical energy inside a control volume can be
written as the sum of the kinetic and potential energy as

E =

 x2

x1

 η

−b

ρ
2
(u2

+ v2)+ ρgz


dz dx.

The conservation energy can be expressed as

d
dt

 x2

x1

 η

−b

ρ
2
(u2

+ v2)+ ρgz


dz dx

==

 η

−b

ρ
2
(u2

+ v2)+ ρgz

u + uP


dz
x1
x2

, (35)

and in non-dimensional variables as

d
dt̃

 x̃2

x̃1

 αη̃

b̃


α2

2
(ũ2

+ βṽ2) + z̃


dz̃ dx̃

= α

 αη̃

b̃


α2

2
(ũ3

+ βṽ2ũ)+ z̃ũ + p̃ũ


dz̃

x̃1

x̃2

. (36)

By substituting the expressions (17), (18) and (27) for ũ, ṽ and p̃
respectively, the energy balance equation takes the form

d
dt̃

 x̃2

x̃1


α2

2


¯̃u
2
+ βb̃2x̃ ¯̃u

2

h̃ −

α2β

2
b̃x̃h̃2 ¯̃u ¯̃ux̃

+
α2β

6
h̃3 ¯̃u

2
x̃ +

h̃2

2
+ b̃h̃


dx̃

=


α3

2
¯̃u
3

1 + βb̃2x̃


h̃ +

α

2
h̃2 ¯̃u

+ αb̃ ¯̃uh̃ −
α3β

2
b̃x̃ ¯̃ux̃

¯̃u
2
h̃2

+
α3β

6
¯̃u ¯̃u

2
x̃ h̃

3
x̃1
x̃2

+


α

2
¯̃uh̃2

−
α2β

3
h̃3 ¯̃u


¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − α ¯̃u

2
x̃


−
α2β

2


αb̃x̃x̃ ¯̃u

2
+ αb̃x̃( ¯̃u ¯̃ux̃ + ¯̃ut̃)


h̃2
x̃1
x̃2

+ O(αβ2). (37)
The differential form of the energy balance equation is given by
α2

2


¯̃u
2
+ βb̃2x̃ ¯̃u

2

h̃ −

α2β

2
b̃x̃h̃2 ¯̃u ¯̃ux̃ +

α2β

6
h̃3 ¯̃u

2
x̃ +

h̃2

2
+ b̃h̃


t̃

+


α3

2
¯̃u
3
h̃ +

α3β

3
b̃2x̃ ¯̃u

3
+ α ¯̃uh̃2

+ αb̃ ¯̃uh̃ −
α2β

3
h̃3 ¯̃u

×


¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ −

3
2
α ¯̃u

2
x̃


−
α3β

2
b̃x̃ ¯̃ux̃

¯̃u
2
h̃2


x̃

−


α2β

2
h̃2

αb̃x̃x̃ ¯̃u

2
+ b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)


x̃
= O(αβ2).

Considering the appropriate terms in the energy density and flux
in (36) which are of order zero or one in the differential energy
balance (37), we find that the non-dimensional energy density is

Ẽ =
α2

2
( ¯̃u

2
+ βb̃2x̃ ¯̃u

2
)h̃ −

α2β

2
b̃x̃h̃2 ¯̃u ¯̃ux̃

+
α2β

6
h̃3 ¯̃u

2
x̃ +

h̃2

2
+ b̃h̃,

while the non-dimensional energy flux plus the work rate due to
pressure forces is written as

q̃E =
α3

2
¯̃u
3
h̃ +

α3β

2
b̃2x̃ ¯̃u

3
+ αb̃ ¯̃uh̃ + α ¯̃uh̃2

−
α2β

3
h̃3 ¯̃u


¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ −

3
2
α ¯̃u

2
x̃


−
α3β

2
b̃x̃ ¯̃ux̃

¯̃u
2
h̃2

−
α2β

2
h̃2 ¯̃u


αb̃x̃x̃ ¯̃u

2
+ b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)


.

With these definitions, the energy balance is

∂ Ẽ
∂ t̃

+
∂ q̃E
∂ x̃

= O(αβ2). (38)

Using the scaling E = ρc20b0Ẽ and qE = ρc30b0q̃E , the dimensional
form of energy density per unit span in the transverse direction is
given as the sum of the kinetic and the potential energy by

E =
ρ

2
ū2(1 + b2x)h +

ρ

2
ūūxbxh2

+
ρ

6
ū2
xh

3  
Ek

+
ρg
2

h2
− ρgbh  
Ep

, (39)

and the dimensional form of energy flux plus work rate due to the
pressure force is given by

qE = ρgū(h2
− bh)+

ρ

2
ū3h(1 + b2x)

−
ρ

3
h3ū


ūxt + ūūxx −

3
2
ū2
x


+
ρ

2
ū2ūxbxh2

−
ρ

2
ūh2


bxxū2

+ bx(ūūx + ūt)

.

For a horizontal bed, it is more convenient to normalize the
potential energy of a fluid particle to be zero at the bottom. If this
is done, then the dimensional forms of energy density and energy
flux plus work rate due to pressure forces are given by

E =
ρg
2

h2
+
ρ

2
hū2

+
ρ

6
h3ū2

x , (40)

and

qE = ρgūh2
+
ρ

2
ū3h −

ρ

3
h3ū


ūxt + ūūxx −

3
2
ū2
x


, (41)

respectively. Note that as β → 0 in Eq. (37), the energy balance
reduces to the shallow-water energy conservation with

Esw
=
ρg
2


b20 + 2b0η + η2


+
ρ

2
hū2 (42)
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and

qswE = ρgh2ū +
ρ

2
hū3. (43)

In addition, in the caseα ∼ β , the energy balance reduces correctly
to the case of the classical Boussinesq system, with E =

ρg
2 (b

2
0 +

2b0η + η2)+
ρ

2 b0ū
2 and qE = ρg(b20 + 2ηb0)ū.

It is worth noting that the conservation of the asymptotic
approximation to the total energy with nontrivial bathymetry in
the fully nonlinear regime is satisfied by the solutions of the
SGN equations exactly. This can be seen by performing lengthy
computations using formal integrations by parts, or by recognizing
that potential energy is generally only defined up to a constant, and
E =


E dx differs from the Hamiltonian (4) by the constant term

g
2


b2 dx.

4. Applications

4.1. Evolution of undular bores

In free surface flow, the transition between two states of
different flow depth is called a hydraulic jump if the transition
region is stationary, and a bore if it is moving. Bores are routinely
generated by tidal forces in several rivers around the world, and
may also be generated in wavetank experiments [49,50].

The experimental studies of [49] show that when the ratio
between the difference in flow depths to the undisturbed water
depth is smaller than 0.28, then the bore will feature oscillations
in the downstream part. If this ratio is greater than approximately
0.75, then a so-called turbulent bore ensues. If the ratio is between
0.28 and 0.75, the bore will be partially turbulent, but will also
feature some oscillations. The bore strength can also be expressed
in terms of the Froude number Fr =


[(2h1/h0 + 1)2 − 1]/8, and

more recent studies, such as [50] have found that when Fr ≥ 1.4
approximately, the bore consists of a steep front,while undulations
are growing at the bore front only in the near-critical state Fr ≈ 1.
The different shapes and a transition from the subcritical to the
supercritical regime is described in [51], and in [52] an empirical
critical value Frcrit = 1.3 is suggested in order to determine the
breaking of an undular bore. However the exact characterization
of the transition between these states still remains unclear.

Some of the divergence in the results on the critical bore
strength might be explained by the observation that one single
nondimensional number may not be sufficient to classify all bores.
For example, in [53], a hyperbolic shear-flow model is suggested
which allows the classification of bores with an additional
parameter depending on the strength of the developing shear flow
near the bore front.

The connection between the initial bore strength and the
ensuing highest undulation is fairly well understood. Using
Whithammodulation theory [54], it can be shown that if viscosity
is neglected, the amplitude of the leading wave behind the bore
front is exactly twice the initial ratio of flow depths [47,55]. This
result agrees well with experimental findings. For example, the
amplitude of the leading wave found experimentally in [49] was
2.06 times the initial amplitude ratio.

In this section, we present a numerical study of the energy
balance of undular bores for the SGN equations. The classical
theory of bores relies on an inviscid shallow-water theory and
the examination of exact weak solutions of the shallow-water
equations [34]. It is well known that due to the simplifications
inherent in long-wave shallow-water models, a sharp transition in
both flow depth and flow velocity which respects conservation of
both mass and momentum necessitates a loss of energy across the
front.
Given these assumptions, it is natural to explain the energy loss
across the bore front by pointing to the physical effects neglected in
the shallow-water theory, such as viscosity, frequency dispersion,
and turbulent flow. Indeed, in strong bores, turbulent dissipation
accounts for the lion’s share of energy dissipation, and a long-wave
model can only give a first approximation of the dynamics. Most
of the work investigating the energy loss has focused on weak
undular bores, where long-wave models can be expected to yield
an accurate description of the flow. The loss of energy in weak
bores has been explained by the creation of oscillations in the free
surface behind the front, but it was noted in [35] that an additional
dissipation mechanism is needed. In [36], the bottom boundary
layer was invoked to explain this required additional energy loss,
but itwas noted in [37,38] that invoking frictional effects to explain
the energy loss experienced by a conservative system was not
consistent.

However, as already mentioned, there was a slight technical
problem in the analysis of [38], since the energy functional

EBous =
1
2

 x̃2

x̃1


α2w̃2h̃ +

α2β

3


w̃w̃x̃x̃ + w̃2

x̃


+ h̃2


dx̃, (44)

used in that work could not be obtained in the framework of the
asymptotically correct mechanical balance laws derived in [31].
Indeed, the expressions for the energy and energy flux associated
to the Boussinesq system which were derived in [31] are

Ẽ =
1
2

+ αη̃ +
α2

2
η̃2 +

α2

2
w̃2

=
α

2
h̃2

+
α2

2
w̃2,

and the non-dimensional energy flux (corrected for the work rate
due to pressure forces) as

q̃E = αw̃ + 2α2w̃η̃ +
αβ

2


θ2 −

1
3


w̃x̃x̃

= αw̃ + 2α2w̃η̃ +
αβ

6
w̃x̃x̃,

where w̃ is the nondimensional horizontal velocity component
at height θ = b0

√
2/3 in the water column. It is apparent that

as β → 0, these expressions do not reduce correctly to the
corresponding expressions of the shallow-water theory. However,
since the expressions (40) and (41) do reduce to the correct
shallow-water equivalents, the analysis of the energy loss in the
undular bore can bemade precise in the context of the SGN system.
Nevertheless, the SGN system is an approximation, and ideally, a
study of undular bores should include short-wave effects, bottom
friction and vorticity.

The numerical method that was used to perform the numerical
simulations in this paper is detailed in the Appendix. It is also
noted that for simplicity’s sake we consider the water density ρ =

1 kg/m3. The numerical experiments require initial data. An initial
surface condition that triggers the generation of undular bores is

h(x, 0) = h0 +
1
2
(h1 − h0) tanh(κx),

where κ is the parameter that determines the steepness of the
undular bore. Here we take κ = 1/2. In order to generate a simple
undular bore, i.e. a wave that propagates mainly in one direction,
we consider an initial flow given by the following velocity profile:

u(x, 0) =
δh
h1


g

2h0


2h2

0 + 3(δh)h0 + (δh)2
1/2

× (1 − tanh(κx)) ,

where δh = h1 − h0. One may envision other numerical methods
to create an undular bore, such as the addition of a line source in
the upstream part, such as used in [56]. Nevertheless, the initial
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Table 1
Energy conservation.

h1/h0 Fr qE(x1)− qE(x2) dE/dt

1.1 1.07 3.6481059 3.6481059
1.2 1.15 8.6017456 8.6017456
1.3 1.22 15.100378 15.100378
1.4 1.30 23.394470 23.394470
1.5 1.37 33.746103 33.746103
1.6 1.44 46.429376 46.429376
1.7 1.51 61.730669 61.730669

Table 2
Momentum conservation.

h1/h0 Fr qI (x1)− qI (x2) dI/dt

1.1 1.07 1.1330550 1.1330549
1.2 1.15 2.5898340 2.5898399
1.3 1.22 4.3997850 4.3997849
1.4 1.30 6.5923199 6.5923198
1.5 1.37 9.1968749 9.1968748
1.6 1.44 12.242880 12.242879
1.7 1.51 15.759764 15.759764

conditions described above were sufficient for our purposes. First
we present the computation of the energy budget in an undular
bore for various bore strengths. We consider the control volume
[x1, x2], where x1 is far to the left of the bore front, and x2 is far to
the right. In Table 1 the bore strength is shown in the first column,
and the corresponding Froude number is shown in the second
column. Taking h0 = 1 and h1 between 1.1 and 1.7 we monitor
the energy flux and work rate due to the pressure force, given by
qE(x1) − qE(x2) as defined in (41), and these values are shown in
the third column of the table. We also monitor the gain in energy
in the control interval as given by E(t) =

 x2
x1

E dx. These values
are shown in the fourth column. The particular figures shown in
the table are for T = 30, but the values are nearly constant over
time. It is apparent from the table that energy conservation holds
to at least eight digits, even for large bore strengths. These numbers
confirm our previous finding that the energy is exactly conserved
in the SGN model, and also validates the implementation of the
numericalmethod. In addition, these results confirmour claim that
no dissipation mechanism is necessary to explain the energy loss
in an undular bore.

Fig. A.2. The momentum and the energy of the undular bore for Fr = 1.07, 1.30
and 1.51.

As noted in the previous section, the expression (41) for the
energy flux and work rate due to pressure forces reduces to the
Fig. A.3. Undular bores profiles for various Fr values.

corresponding formula for the shallow-water theory in the case
of very long waves. Since x1 and x2 are relatively far from the
bore front, shallow-water theory should be valid at these points.
Therefore, the usual formula for the energy loss in an undular bore
in the shallow-water theory is valid:

dEsw

dt
+ qswE (x2, t)− qswE (x1, t)

= −
ρ

4
(h1 − h0)

3


1
2
g3


1
h0

+
1
h1


. (45)

Since there is no energy loss in a dispersive system, one may
conclude that the excess energy is fed into oscillations of the free
surface, and the formula (45) furnishes an estimate of the amount
of energy which is residing in the oscillatory motion.

A similar study can be performed on the momentum balance.
Momentum gain in the control interval is given by the momentum
flux through the lateral boundaries and the pressure force as
qI(x1) − qI(x2), with qI given in (33) up to T = 30. Table 2
presents the momentum rates. As in the case of the energy, the
corresponding values agree to about eight digits. In Fig. A.2, we
present the normalized values I(t)/I(0) of the momentum and
E(t)/E(0) of the total energy for the values of the Froude number
Fr = 1.07, 1.30 and 1.51. The slopes of the lines can be found in
Tables 1 and 2.

Fig. A.3 shows the profiles of the undular bores generatedwhen
h1/h0 = 1.3, 1.5 and 1.7. From these figures, we observe that as
the Froude number Fr increases, the peak amplitude of the leading
wave becomes larger, and the shape of the wave envelope is
changing. For example the shape of thewave envelope of Fig. A.3(a)
can be described by a linear function while the shape of the wave
envelope of Fig. A.3(c) can be described by a square-root function.
For the various shapes of the undular bores we refer to [57].

4.2. Shoaling of solitary waves

In this section, we study the conservation of energy in the
case of a nonuniform bathymetry. Specifically, we consider the
experiments proposed in [58,59] related to the shoaling of solitary
waves on a beach of slope 1:35. The shoaling of solitary waves has
been studied theoretically and experimentally inmanyworks, such
as in [58–61]. Next, we study the shoaling of solitary waves with
normalized amplitude A = 0.1, 0.15, 0.2 and 0.25 in the domain
[−100, 34]. In the numerical experiments we take ∆x = 0.05
whilewe translate the solitarywaves such that the peak amplitude
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Table 3
Conserved values of energy (in Joules) and Hamiltonian for shoaling of solitary
waves on a plane beach of slope 1:35.

A E H

0.10 62.4704607870 0.05202930490
0.15 62.7102258381 0.09856973753
0.20 62.9401348199 0.15627417412
0.25 63.1680884219 0.22460417742

is achieved at x = −20.1171 while the bottom is described by the
function

b(x) =


1, x ≤ 0
1 − x/35, x > 0,

but modified appropriately around x = 0 so as to be smooth
enough and to satisfy the regularity requirements of the model.

A comparison between the experimental results on shoaling
waves from [58], and the shoaling solitary waves computed with
numerical approximation of (1) and (A.1) is presented in Fig. A.4.
Overall, we observe a very good agreement between the numerical
results and the experimental data.

Fig. A.4. Comparison of the numerical solution and the experimental data onwave
gauges of [59]. —-: Numerical solution; − · −: Experimental data.

Fig. A.5. Normalized kinetic and potential energy for shoaling of solitary waves on
a plane beach of slope 1:35.

Table 3 presents the conserved values of the total energy E and
of the Hamiltonian H for t ∈ [0, 45] for the computations shown
in Fig. A.4.We observe that the energy is conservedwithmore than
ten decimal digits. Due to the small values of∆x and∆t no energy
dissipation can be observed verifying the efficacy of the numerical
method.

Although the total energy is conserved the kinetic and the
potential energy are not constant with time. Fig. A.5 presents the
normalized kinetic energy Ek(t)/Ek(0) and normalized potential
energy Ep(t)/Ep(0) evaluated in the spatial interval [−100, 34].
As can be seen in Fig. A.5 the kinetic energy is decreasing at the
early stages of shoaling due to the slight decrease in the wave
speed while the potential energy is initially increasing due to
the increase of the wave height. At later stages of the shoaling,
the kinetic energy increases again, due to the increase in particle
velocities, and the potential energy decreases again, due to the
rising bottom, and narrowing wave peak. Nevertheless, the total
energy is constant over time.

5. Summary and conclusions

We have detailed the derivation of mechanical balance laws
for the SGN equations in the case of a horizontal bed and also
in the case of varying bathymetry. The mechanical balance laws
derived here, including the mass, momentum and energy balance
laws, are valid to the same asymptotic order as the SGN system,
providing a firm link between conservation laws associated to the
governing SGN equations, and the above mechanical quantities.
Finally, applications to the energy budget of undular bores and the
development of potential and kinetic energy in shoaling solitary
waves have been presented. In particular, it has been shown
that the energy loss in undular bores is fully compensated for
by the development of surface oscillations, since the energy in
the SGN with a flat bottom is exactly conserved. Indeed, exact
conservation of energy to near machine precision was observed in
our numerical computations, and this gave an additional check on
the implementation of the numerical algorithm.
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Appendix. The numerical method

In this appendix, we consider the initial–boundary value
problem (IBVP) comprised of system (25a)–(25b) subject to
reflective boundary conditions. Rewriting the system in terms of
(h, u), and dropping the bar over the symbol of the horizontal
velocity, yields the IBVP

ht + (hu)x = 0,
hut + huux + gh(h − b)x

+


h2
1
3

P +
1
2

Q


x
− hbx

1
2

P + Q


= 0,

u(A, t) = u(B, t) = 0,
h(x, 0) = h0(x),
u(x, 0) = u0(x),

(A.1)

where P = h

u2
x − uxt − uuxx


,Q = −bx(ut + uux)− bxxu2, x ∈

[A, B] ⊂ R and t ∈ [0, T ]. Considering a spatial grid xi = A+ i∆x,
for i = 0, 1, . . . ,N , where∆x is the spatial mesh-length, such that
∆x = (B − A)/N,N ∈ N. We define the space of cubic splines

S =


φ ∈ C2

[A, B]
φ|[xi,xi+1] ∈ P3, 0 ≤ i ≤ N − 1


,
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where Pk is the space of polynomials of degree k. We also consider
the space

S0 = S ∩


φ ∈ C([A, B])

φ(A) = φ(B) = 0

.

The basis functions of the space S and S0 consist of the usual B-
splines described in [63].

The semi-discrete scheme is reduced in finding ĥ ∈ S and û ∈ S0
such that

(ĥt , φ)+


(ĥû)x, φ


= 0,

B(ût , ψ; ĥ)+


ĥûûx + gĥ(ĥ − b)x, ψ


+


ĥ21

3
P̂ +

1
2

Q̂

, ψx


−


ĥbx(

1
2

P̂ + Q̂), ψ


= 0,

(A.2)

for φ ∈ S, and ψ ∈ S0, and P̂ = ĥ

û2
x − ûûxx


and Q̂ = −bxûûx

− bxxû2. B is defined as the bilinear form that for fixed ĥ is given
by

B(ψ, χ; ĥ) =


ĥ

1 − ĥxbx −

1
2
ĥbxx + b2x


ψ, χ


+

1
3


ĥ3ψx, χx


for ψ, χ ∈ S0. (A.3)

The system of Eqs. (A.2) is accompanied by the initial conditions

ĥ(x, 0) = P {h0(x)}, û(x, 0) = P0{u0(x)}, (A.4)

where P and P0 are the L2-projections onto S and S0 respectively,
satisfying (Pv, φ) = (v, φ) for all φ ∈ S and (P0v, ψ) =

(v, ψ) for all ψ ∈ S0. Upon choosing basis functions φj and ψj
for the spaces S and S0, (A.2) is reduced to a system of ordinary
differential equations (ODEs). For the integration in time of this
system we employ the Dormand–Prince adaptive time-stepping
methods, [64,62]. One may apply the same numerical method
to solve the IBVP with non-homogeneous Dirichlet boundary
conditions. For example ifu(A, t) = uA then the change of variables
u(x, t) = w(x, t)+u0(x) reduces the non-homogeneous system to
a homogeneous IBVP system for the variablew. In all the numerical
experimentswe took∆x = 0.1, while the tolerance for the relative
error of the adaptive Runge–Kutta scheme was taken 5 · 10−14. For
the computations of the integrals, the Gauss–Legendre quadrature
rule with 8 nodes was employed.

The convergence properties of the standard Galerkin method
for the SGN system are very similar to those of the classical
Boussinesq system studied in detail in [65,66]. In order to
compute the convergence rates in various norms, we consider
the nonhomogeneous SGN system with flat bottom admitting the
exact solution h(x, t) = 1 + e2t(cos(πx) + x + 2) and u(x, t) =

e−txx sin(πx) for 0 ≤ x ≤ 1, and for t ∈ (0, T ] with T = 1. We
compute the normalized errors

Es[F ]
.
=

∥F(x, T ;∆x)− Fexact(x, T )∥s

∥Fexact(x, T )∥s
, (A.5)

where F = F(·;∆x) is the computed solution, i.e., either H ≈

h(x, T ) or U ≈ u(x, T ), Fexact is the corresponding exact solution
and s = 0, 1, 2,∞ correspond to the L2,H1,H2 and L∞ norms,
respectively. The analogous rates of convergence are defined as

rate for Es[F ]
.
=

ln(Es[F(·;∆xk−1)]/Es[F(·;∆xk)])
ln(∆xk−1/∆xk)

, (A.6)

where∆xk is the grid size listed in row k in Table A.4. To ensure that
the errors incurred by the temporal integration do not affect the
rates of convergence we use∆t ≪ ∆xwhile we take∆x = 1/N .

Table A.4 presents the spatial convergence rates in the L2 norm.
We observe that the convergence is optimal for the u variable but
Table A.4
Spatial errors and rates of convergence in the L2 norm.

N E0[H] Rate for
E0[H]

E0[U] Rate for
E0[U]

300 0.1211 × 10−8 – 0.6127 × 10−11 –
320 0.9674 × 10−9 3.4793 0.4733 × 10−11 3.9983
340 0.7836 × 10−9 3.4772 0.3714 × 10−11 3.9999
360 0.6422 × 10−9 3.4797 0.2955 × 10−11 3.9977
380 0.5322 × 10−9 3.4754 0.2382 × 10−11 3.9885
400 0.4452 × 10−9 3.4793 0.1939 × 10−11 4.0099

suboptimal for the h variable. Specifically, it appears that ∥h − ĥ∥
∼ ∆x3.5, while ∥u− û∥ ∼ ∆x4. More precisely, as in the case of the
classical Boussinesq system [65], and because the rate of conver-
gence in h appears to be less that 3.5 yields that the error should
be of O(∆x3.5

√
ln(1/∆x)). Similar results obtained for the conver-

gence in theH1,H2 and L∞ norms. Specifically it was observed nu-
merically that∥h−ĥ∥s ∼ ∆x3.5−s, ∥u−û∥1 ∼ ∆x4−s, for s = 0, 1, 2
and ∥h − ĥ∥∞ ∼ ∆x3, while ∥u − û∥∞ ∼ ∆x4 approximately.
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