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Abstract

We explore numerically different aspects of periodic traveling-wave solutions of the Camassa–Holm equation. In

particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked

and cusped waves is studied.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The Camassa–Holm equation
0960-0

doi:10.

* C

E-m
ut � utxx þ 3uux þ 2xux ¼ 2uxuxx þ uuxxx; x 2 R; t > 0; ð1:1Þ
arises as a model for the unidirectional propagation of shallow water waves over a flat bottom, u(x, t) representing the

water�s free surface in non-dimensional variables, and x being a constant related to the critical shallow water speed.

Equation (1.1) was first obtained in [19] as an abstract bi-Hamiltonian equation with infinitely many conservation laws,

and was subsequently derived from physical principles [2]. For a discussion of the physical relevance of (1.1) in the con-

text of water waves we refer to [20]. In another context, (1.1) is a re-expression of the geodesic flow in the group of

compressible diffeomorphisms of the circle [10,11,29]. Let us also point out that for a large class of initial data, Eq.

(1.1) is an infinite-dimensional completely integrable Hamiltonian system: for the periodic case see [4,12], and for as-

pects of the direct/inverse scattering see [1,5,23]. Furthermore, the smooth solitary waves of (1.1) are solitons

[16,21]. The Camassa–Holm equation models wave breaking [2,3,6,8,9,17,28,30] and admits wave solutions that exist

indefinitely in time [3,7,8].

It was observed in [2] that Eq. (1.1), in addition to smooth waves, also admits peaked traveling-wave solutions (peak-

ons)—see Fig. 1(c) and (d). Subsequently, it was observed through phase-plane analysis (see [27]) that also cusped waves

exist—see Fig. 1(e) and (f). These non-smooth waves are weak solutions in the sense of Eq. (2.2) (see [26]).

Recently, a classification of the traveling-wave solutions of (2.2) was provided in [26], and it was found that a new

peculiar class of weak traveling-wave solutions is obtained by combining cusps and peaks into traveling waves—see
779/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Traveling-wave solutions of the Camassa–Holm equation: (a) smooth periodic; (b) smooth with delay; (c) periodic peakon;

(d) peakon with decay; (e) periodic cuspon; (f) cuspon with decay and (g) composite waves.
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Fig. 1(g). However, even though these wave patterns are mathematical solutions of (1.1), the question arises whether

they can actually be observed physically.

The orbital stability of the smooth solitary waves of (1.1) was proved in [16]. Moreover, the peaked solutions,

whether solitary waves or periodic waves, are orbitally stable [14,15,24,25].

In this paper we investigate numerically different aspects of the periodic traveling-wave solutions. We explore the

time evolution of peaked, cusped and composite traveling waves. Furthermore, the interaction of peakons and cuspons

is examined. It turns out that the numerical scheme confirms that all wave patterns, even the more exotic ones, travel

unchanged. This affirms the validity of the definition of weak solutions of equation (1.1) given in the next section. Addi-

tionally, our study indicates that the cuspons interact elastically—suggesting a degree of rigidity in their shapes.

In Section 2 some notation is reviewed. The numerical algorithm is explained in Section 3. In Sections 4 and 5 we

present our main results.
2. Preliminaries

2.1. Periodic distributions

Let S be the circle of length 2p. All functions are assumed to be real-valued. C1ðSÞ denotes the set of smooth func-

tions on S. We let D0ðSÞ be the space of distributions on S, i.e. continuous linear functionals on C1ðSÞ. If f 2 D0ðSÞ,
we write fx for its distributional derivative defined by
hfx;wi ¼ �hf ;wxi; w 2 C1ðSÞ;
where hÆ , Æiis the pairing between D0ðSÞ and C1ðSÞ.
We denote, for s 2 R, by HsðSÞ the space of f 2 D0ðSÞ such that
kf k2Hs ¼
X1
k¼�1

ð1þ k2Þsjf̂ ðkÞj2 < 1;
where the Fourier coefficients are defined by
f̂ ðkÞ ¼ hf ; expð�ik�Þi; k 2 Z:
The Hilbert spaces HsðSÞ are endowed with the inner products
ðf ; gÞHs ¼
X1
k¼�1

ð1þ k2Þsf̂ ðkÞ�̂gðkÞ:
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2.2. Weak solutions and stability

The functionals
H 0½u� ¼
Z
S

udx; H 1½u� ¼
1

2

Z
S

ðu2 þ u2xÞdx; H 2½u� ¼
1

2

Z
S

ðu3 þ uu2x þ 2xu2Þdx ð2:1Þ
are formally conserved under the flow of the Camassa–Holm equation. Eq. (1.1) can be written as
ut þ
1

2
u2 þ ð1� o2xÞ

�1 u2 þ 1

2
u2x þ 2xu

� �� �
x

¼ 0: ð2:2Þ
Indeed, applying ð1� o2xÞ to both sides gives (1.1). Following [13], by a solution of (1.1) with initial data u0 2 H 1ðSÞ, we
mean a function u 2 Cð½0; T Þ;H 1ðSÞÞ such that u(0) = u0, (2.2) holds in distributional sense, and the functionals H0, H1

and H2 are conserved.

A traveling-wave solution u(x, t) = u(x � ct) of (1.1) is said to be orbitally stable if for every � > 0 there is a d > 0 such

that if v 2 Cð½0; T Þ;H 1ðSÞÞ is a solution to (1.1) with
kvð�; 0Þ � ukH1ðSÞ < d;
then
inf
n2S

kvð�; tÞ � uð� � nÞkH1ðSÞ < � for t 2 ð0; T Þ:
Since H 1ðSÞ � L1ðSÞ, orbital stability ensures that the shape of the traveling wave is stable. Therefore the traveling

wave is likely to be numerically observable.

We say that a continuous function u has a peak at x if u is smooth on either side of x and
0 6¼ lim
y"x

uxðyÞ ¼ � lim
y#x

uxðyÞ 6¼ �1:
Wave profiles with peaks are called peaked waves or peakons (cf. [2,26]), indicating that they interact elastically.

Similarly, a continuous function u is said to have a cusp at x if u is smooth locally on both sides of x and
lim
y"x

uxðyÞ ¼ � lim
y#x

uxðyÞ ¼ �1:
We will call waves with cusps cusped waves or cuspons.
3. Numerical algorithm

The numerical simulations of Eq. (1.1) are carried out by means of a pseudospectral scheme. In order to explain the

approach we assume u(x, t) to be a solution of (1.1) with period L. We let v 2 Cð½0; T Þ;H 1ðSÞÞ be the scaled function
vðx; tÞ ¼ 1

a
uðax; tÞ; x 2 S; t 2 ½0; T Þ;
where a ¼ L
2p. Then v satisfies
a2vt � vtxx þ 3a2vvx þ 2axvx ¼ 2vxvxx þ vvxxx:
We rewrite this as
a2vt � vtxx ¼ �2axv� 3

2
a2v2 þ 1

2
ðv2Þxx �

1

2
v2x

� �
x

:

Applying the Fourier transform, we get
ða2 þ k2Þv̂t ¼
ik
2

�4axv̂� 3a2 bv2 � k2 bv2 � bv2x� �
; ð3:1Þ
which can be written as
v̂t ¼ F ðv̂Þ; ð3:2Þ
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where
Table

Conse

N

28

29

210

211

212
F ðv̂Þ ¼ ik

2ða2 þ k2Þ
ð�4axbv � 3a2 bv2 � k2 bv2 � bv2x Þ: ð3:3Þ
If the wave profile v(Æ, t) is known at a particular time t, an explicit four-stage Runge–Kutta method is adopted to

compute v(Æ, t + h). More explicitly, we let
V 1 ¼ v̂ð�; tÞ; C1 ¼ F ðV 1Þ;

V 2 ¼ V 1 þ
h
2
C1; C2 ¼ F ðV 2Þ;

V 3 ¼ V 2 þ
h
2
C2; C3 ¼ F ðV 3Þ;

V 4 ¼ V 3 þ hC3; C4 ¼ F ðV 4Þ:
Finally, these functions are combined to yield
v̂ð�; t þ hÞ ¼ v̂ð�; tÞ þ h
6
ðC1 þ 2C2 þ 2C3 þ C4Þ:
This scheme is formally fourth-order convergent. That is, for smooth functions, decreasing the time step by a factor

of 2 will lower the error by a factor of 16.

In the numerical implementation, a finite number N (N = 2n for some n 2 N) of spatial grid points xj ¼ 2pj
N ,

j = 0,1, . . ., N � 1, are used to approximate functions. The discrete Fourier transform of a function v : S ! R is defined

by
v̂ðkÞ ¼ 1

N

XN�1

j¼0

vðxjÞe�ikxj ; k ¼ �N
2
þ 1; . . . ;

N
2
:

The inverse Fourier transform is
V N ðxÞ ¼
XN=2

k¼�N=2þ1

v̂ðkÞeikx; x 2 S:
Note that this is an exact expression at the grid points:
V N ðxmÞ ¼
1

N

XN=2

k¼�N=2þ1

XN�1

j¼0

vðxjÞeik2pðm�jÞ=N ¼ vðxmÞ; 0 6 m 6 N � 1:
Derivatives are computed as
vxðxÞ ¼
XN=2

k¼�N=2þ1

ikv̂ðkÞeikx; x 2 S:
To validate the code we examine the functionals Hi, i = 0,1,2, given in (2.1), which ought to be conserved with time.

For a fixed time T > 0 and initial data u(Æ, 0), let u(Æ,T) be the wave at time T obtained via the numerical algorithm. We

are interested in the convergence of jHi[u(Æ,T)] � Hi[u(Æ, 0)]j due to the space and time discretization. For initial data

uðx; 0Þ ¼ sinðxÞ, period L = 2p, and T = 1 we get the results presented in Table 1, which shows that these errors go down

at a definite rate.
1

rvation of the functionals Hi, i = 0,1,2

h H0-error Ratio H1-error Ratio H2-error Ratio

2�8 7.92e�4 2.20e�2 5.81e�4

2�9 1.98e�4 4.00 1.08e�2 2.03 1.45e�4 4.02

2�10 4.95e�5 4.00 5.42e�3 2.00 3.61e�5 4.00

2�11 1.24e�5 4.00 2.71e�3 2.00 9.04e�6 4.00

2�12 3.10e�6 4.00 1.35e�3 2.00 2.26e�6 4.00
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4. Numerical results—traveling-wave solutions

In this section, we investigate numerically the different kinds of traveling-wave solutions for the Camassa–Holm

equation. The experiments are carried out as follows. For given initial data u( Æ ) = u(Æ, 0) and a fixed T > 0 we compare

the wave u(Æ,T) obtained by the numerical algorithm with the translated wave u(Æ � cT). Decreasing the time step h and

increasing the number of spatial grid points N, we investigate the convergence of the L2- and L1-errors.

We will henceforth assume x = 0. Moreover, all simulations are performed with speed c = 1. The statements con-

cerning traveling waves of (1.1) can be found in [26].

4.1. Smooth traveling waves

To describe the traveling waves we use three parameters m;M ; z 2 R, where z = c � M � m. If z < m < M < c, then

there is a smooth periodic traveling wave u(x � ct) of (1.1) with m ¼ minx2RuðxÞ and M ¼ maxx2RuðxÞ, given implicitly

by
Table

For th

numbe

N

8

16

32

64

128

Table

The er

approx

h

0.075

0.075 Æ
0.075 Æ
0.075 Æ
0.075 Æ
jx� x0j ¼
Z u

u0

ffiffiffiffiffiffiffiffiffiffiffi
c� y

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM � yÞðy � mÞðy � zÞ

p dy; ð4:1Þ
where u(x0) = u0. This integral has singularities at y = m and y = M. However, the change of variables
u ¼ mþ ðM � mÞsin2h
transforms (4.1) into
jx� x0j ¼ 2

Z h

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� sin2t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ sin2t

p dt; ð4:2Þ
where
A ¼ c� m
M � m

and B ¼ m� z
M � m

: ð4:3Þ
Since B > 0, (4.2) supplies a numerically more convenient expression for the traveling waves. To construct initial data

we use (4.2) to compute x(uj) for a dense grid of uj�s. Performing a spline interpolation we obtain u as a function of x.

We study a smooth periodic traveling wave with m = 0.3 and M = 0.7. This wave has period L � 6.56. We choose

T = L/4 and h = 0.0005 Æ T. The error due to spatial discretization decreases quickly as the number of grid points N is

increased (see Table 2). If we instead keep N = 128 fixed and decrease the time step we get the result shown in Table 3.
2

e smooth traveling wave with m = 0.3, M = 0.7, and c = 1, the error due to spatial discretization decreases spectrally as the

r of grid points N is increased

L2-error Ratio

7.45e�3

9.00e�5 82.81

8.32e�8 1082.04

3.64e�9 22.83

3.65e�9 1.00

3

ror decreases as h! 0 for the smooth periodic traveling wave with m = 0.3, M = 0.7, and c = 1. The formal ratio of 16 is

imately achieved for the first three calculations

L1-error Ratio

2.77e�6

2�1 1.53e�7 18.04

2�2 1.37e�8 11.21

2�3 2.21e�8 0.62

2�4 2.27e�8 0.97
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Thanks to the smoothness of the wave, we observe convergence close to the expected rate in both cases until the error

due to other factors is reached.

4.2. Cusped traveling waves

Whenever z < m < c < M, there is a cusped periodic traveling wave u(x � ct) of (1.1) given implicitly by (4.1) with

m ¼ minx2RuðxÞ and c ¼ maxx2RuðxÞ. Again we make the change of variables
Fig. 2.

Table

Conve

N

256

512

1024

2048

4096
u ¼ mþ ðM � mÞsin2h;
and find
jx� x0j ¼ 2

Z h

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� sin2t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ sin2t

p dt;
where A and B are given by (4.3). Note that this time h ranges only from 0 to arcsinð
ffiffiffi
A

p
Þ < p

2
. Locally at its crest a

cuspon behaves like (see [26])
uðxÞ ¼ c� ajx� x0j2=3 þOððx� x0Þ4=3Þ as x ! x0 ð4:4Þ
for some constant a > 0.

Since the cuspons have singularities at their crests, it is to be expected that a large number of grid points need to be

used in their numerical simulation. For our experiment (Fig. 2) we choose m = 0 andM = 1.1, which gives L � 6.89. For

T = L/4 and h = 0.0001 Æ T, Table 4 shows the convergence due to increasing N. The order of convergence appears to be

approximately 0.67. This value will be explained further momentarily.
0 1 2 3 4 5 6 7
0.2

0

0.2

0.4

0.6

0.8

1

1.2

T=0 T=L/4

The cusped traveling wave with m = 0, M = 1.1, and c = 1 displayed at time zero (solid) and at time T = L/4 � 1.72 (dashed).

4

rgence of cusped wave with m = 0, M = 1.1, and c = 1

L1-error Ratio

2.49e�2

1.39e�2 1.79

8.01e�3 1.73

4.86e�3 1.65

3.04e�3 1.60



H. Kalisch, J. Lenells / Chaos, Solitons and Fractals 25 (2005) 287–298 293
4.3. Composite traveling waves

For any fixed c 2 R and a > � c2

3
, the equation
Table

Error

N

128

256

512

1024

2048

0
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Fig. 3.

(dashe
a ¼ �Mm� ðM þ mÞðc�M � mÞ; ð4:5Þ
describes an ellipse in the (m,M)-plane with center ðc
3
; c
3
Þ and major axis in the direction (1,�1). For any

(m,M) 2 {z 6 m < c 6M} [ {z P m > cP M} there is a corresponding cuspon or peakon given implicitly by (4.1).

A countable number of cuspons and peakons corresponding to points (m,M) that belong to the same ellipse, may

be joined at their crests where u = c, to form a composite wave u. If the Lebesgue measure l(u�1(c)) = 0, then u is

a traveling wave of (1.1).

To construct a composite wave, assume that the first cusp has parameters (m1,M1). From (4.5) we find the corre-

sponding a. Solving for M in (4.5) yields
M ¼ c� m
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 2mc� 3m2 þ 4a

p
: ð4:6Þ
Thus, if the minimum m2 of the second cuspon is given, M2 defined by (4.6) will give a point on the same ellipse.

Table 5 shows the data obtained for a composite wave traveling at speed c = 1 consisting of two cuspons with

m1 � 0.71, M1 = 3, m2 = 0.5, and M2 given by (4.6). Here m1 is chosen so that the two crests of the initial data are sit-

uated at x = 0 and x ¼ 3
8
L. This way there will always be a grid point at the very top, which gives a more even conver-

gence. In the simulation L � 0.88, T = L/8, and h = 0.0005 Æ T (see Fig. 3).

The importance of the constant a in the construction of the composite waves is easily seen numerically. When two

cuspons or peakons corresponding to different ellipses are joined into a traveling wave, one crest rises while the other

one subsides. A balance is struck only for equal a�s.
Admittedly, the error for the cusped and composite waves converges rather slowly to zero, albeit at a definite rate.

One way of understanding the rate of convergence is as follows. A glance at the magnified picture of the crest in Fig. 3,

shows that the error is due to the left one of the two grid points at the top. If x0 is the position of the cusp, it is therefore

reasonable to expect the L1-error to decrease like E(N) = c � u(x0 � Dx) as N! 1 where Dx ¼ 2p
N . In view of the

asymptotic formula (4.4) we have
5

due to spatial discretization of a composite traveling wave with two cusps

L1-error Ratio

6.02e�2

4.28e�2 1.41

2.96e�2 1.44

2.00e�2 1.48

1.13e�2 1.52

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.42 0.425 0.43 0.435 0.44 0.445 0.45 0.455 0.46

0.95

0.96

0.97

0.98

0.99

1

1.01(a) (b)

The composite wave at time T = L/8 � 0.11, obtained via the numerical scheme (solid) and compared with the translated wave

d). The right picture is a close-up of the second cusp.
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0.9

0.9

0.9

0.9

1

1.0
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Fig. 4

cuspon

Table

Error

N

27

28

29

210

211

212

213

214

0

0

1
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c� uðx0 � DxÞ � ajDxj2=3 as Dx ! 0
for some constant a > 0. We infer that the expected ratio of convergence for the L1-error is
EðNÞ
Eð2NÞ �

2p
N

� 	2=3
2p
2N

� 	2=3 ¼ 22=3 � 1:587:
This agrees well with the numbers shown in Tables 4 and 5.
0 0.5 1 1.5 2 2.5 3 3.5

8

9

2

4

6

8

2

4

T=0

0 0.5 1 1.5 2 2.5 3 3.5

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

T=L/8

(a) (b)

. Composite wave at time T = 0 and T = L/8 � 0.44. The first and seventh wave parts from the left are peakons; the other

s.

6

due to spatial discretization of a composite traveling wave consisting of eight cuspons and two peakons

L1-error Ratio

5.69e�3

4.91e�3 1.16

3.39e�3 1.45

2.37e�3 1.43

1.90e�3 1.25

1.40e�3 1.35

8.88e�4 1.58

6.90e�4 1.29

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.8

.85

0.9

.95

1

.05

T=0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.8

0.85

0.9

0.95

1

1.05

T=L/8

(a) (b)

Fig. 5. Composite traveling wave—cuspons organized in a fractal pattern at times T = 0 and T = L/8 � 0.18.
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To give another example, we construct a composite wave with eight cuspons and two peakons—see Fig. 4. The wave

has period L � 3.5 and we choose T = L/8. We obtain results as shown in Table 6. The convergence is slightly uneven

because some grid distributions match the positions of the crests better than others. Similarly, we can construct a com-

posite wave with a fractal appearance as in Fig. 5.
5. Numerical results—interaction

In this section we explore the behavior of two interacting traveling waves of different sizes. Being an integrable equa-

tion, we anticipate the traveling waves of the Camassa–Holm equation to be solitons. Indeed, the smooth solitary waves

of (1.1) have the spectral characteristics of solitons [16]. Moreover, in [2] it was found (see also [7]) that in the case of

solitary waves, the two peakon interaction can be expressed as a Hamiltonian system. Indeed, the solution is
–2

0

2

4

6

8

10

–2

0

2

4

6

8

10
uðx; tÞ ¼ p1ðtÞe�jx�q1ðtÞj þ p2ðtÞe�jx�q2ðtÞj; x; t 2 R;
where the positions and heights of the two peaks evolve according to the Hamiltonian system
q01 ¼ p1 þ p2 e
�jq1�q2 j; q02 ¼ p1 e

�jq1�q2 j þ p2;

p01 ¼ p1p2 signðq1 � q2Þe�jq1�q2 j; p02 ¼ p1p2 signðq2 � q1Þe�jq1�q2 j:
Using an algebraic transformation of Eq. (1.1) into a deformed sinh-Gordon equation (see [22]), the interaction of cus-

pons was studied in [18]. Their results indicate clean interactions.
0 5 10 15 20 25 30

T=2

0 5 10 15 20 25 30

–2

0

2

4

6

8

10

T=5

0 5 10 15 20 25 30

T=8

0 5 10 15 20 25 30

–2

0

2

4

6

8

10

T=10

Fig. 6. Interaction of two peaked traveling waves.
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It was proved in [26] that the traveling waves depend continuously on the parameters m and M in the H 1
loc-norm. In

particular, this implies that a periodic traveling wave converges to the corresponding solitary wave as the period

L !1. Moreover, the solitary waves have exponential decay at infinity. Therefore, when investigating interaction

of two traveling waves, we expect a simulation on a large interval to be a good approximation of the case of solitary

waves.

On the other hand, whenever we approximate the evolution of a peakon or cuspon numerically, a small oscillatory

tail is generated by the singularity at the crest after a certain number of time steps. As noticed in the previous section

this error is due to the spatial discretization, and decreases at a definite rate as N is increased. However, this effect makes

it disadvantageous to numerically integrate (1.1) over a long period of time for non-smooth initial data. Therefore, a
Table 7

Size of the dispersive tail generated by the interaction of two peakons

N h L1-norm Ratio

28 T Æ 2�8 5.52e�2

29 T Æ 2�9 2.62e�2 2.11

210 T Æ 2�10 1.42e�2 1.85

211 T Æ 2�11 7.96e�3 1.78

212 T Æ 2�12 4.58e�3 1.74

213 T Æ 2�13 2.65e�3 1.73

0 5 10 15 20 25 30
–0.5

0

0.5

1

1.5

2 T=2

0 5 10 15 20 25 30
–0.5

0

0.5

1

1.5

2 T=5

0 5 10 15 20 25 30
–0.5

0

0.5

1

1.5

2 T=8

0 5 10 15 20 25 30
–0.5

0

0.5

1

1.5

2 T=10.5

(a) (b)

(c) (d)

Fig. 7. Interaction of two cusped traveling waves.
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very large initial separation of the two peakons or cuspons before their interaction introduces unnecessary

complications.

In our study of interactions, we compromise and take a small enough initial separation, so that the singularities in

the initial data do not affect the approximation before the interaction takes place.

5.1. Peakon interaction

The peakons are the only traveling waves for which there is a simple explicit formula. Indeed, for a given period L

and speed c there is a unique peaked traveling-wave solution of the Camassa–Holm equation given by
Table

Size of

N

28

29

210

211

212

213

214

215

–

–

Fig. 8.
uðxÞ ¼ c
coshðL=2Þ cosh jx� x0j; jx� x0j 6 L=2; ð5:1Þ
where x0 is the position of the trough.

We take L = 30 and study the interaction of a peakon of height 2 with one of height 1, as shown in Fig. 6. As ex-

pected, the peakons exhibit a soliton-like behavior—the taller wave overtakes the shorter one, and afterwards both

waves retain their original shapes. To ascertain a clean interaction we measure the size of the oscillatory tail generated

by the interaction. In Table 7, the L1-norm of the dispersive tail is shown for different grid sizes, and it is apparent that

the size of this tail decreases at a definite rate. Thus it is plausible that the dispersive tail is due to slight numerical insta-

bility in computations where the discretization is too coarse.

5.2. Cuspon interaction

To investigate the interaction of two cusped waves we take m = 0, M = 1 + 10�6, c = 1, and use the implicit formula

(4.1) to construct the corresponding cuspon. These values yield the period L � 30.4. Using the linear dependence of the

traveling waves on the speed, viz. uc = cu1, we construct a translated wave of twice the size. After translating the cusp of
8

the oscillatory tail produced by the interaction of two cuspons

h L1-error Ratio

T Æ 2�8 6.75e�2

T Æ 2�9 2.67e�2 2.53

T Æ 2�10 1.42e�2 1.89

T Æ 2�11 8.07e�3 1.76

T Æ 2�12 4.67e�3 1.73

T Æ 2�13 2.71e�3 1.72

T Æ 2�14 1.57e�3 1.73

T Æ 2�15 9.10e�4 1.72
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Dispersive tail generated by the interaction of two cuspons for N = 210 and h = T Æ 2�10, respectively N = 212 and h = T Æ 2�12.
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one of the two cuspons, they are then superimposed to yield the initial data. We obtain an interaction as shown in Fig.

7. Note that a small oscillatory tail is generated. However, just as for the peakon interaction, it is found that the size of

the tail decreases at a definite rate as the grid is refined—see Table 8 and Fig. 8. The simulation therefore indicates an

elastic interaction.
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