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The shallow-water equations for two-dimensional hydrostatic flow over a bottom bathymetry b(x) are

ht + (uh)x = 0,

ut + (
gh + u2/2 + gb

)
x = 0.

It is shown that the combination of discontinuous free-surface solutions and bottom step transitions 
naturally lead to singular solutions featuring Dirac delta distributions. These singular solutions feature a 
Rankine–Hugoniot deficit, and can readily be understood as generalized weak solutions in the variational 
context, such as defined in [13,22]. Complex-valued approximations which become real-valued in the 
distributional limit are shown to extend the range of possible singular solutions. The method of complex-
valued weak asymptotics [22,23] is used to provide a firm link between the Rankine–Hugoniot deficit and 
the singular parts of the weak solutions. The interaction of a surface bore (traveling hydraulic jump) with 
a bottom step is studied, and admissible solutions are found.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The standard theory of hyperbolic conservation laws in one spa-
tial dimension can be applied to systems which are strictly hyper-
bolic and genuinely nonlinear. If initial data are given which have 
small enough total variation, then it can be shown that there is a 
solution which exists for all times [16,18,33]. This solution will in 
general be discontinuous, featuring a number of jumps. However, if 
one of the above hypotheses is not satisfied, the initial-value prob-
lem cannot in general be resolved (see e.g. [4–6,8,11,27,19,29,34]) 
and further restrictions on the data need to be introduced, such 
as for example in [34]. In fact, in some cases, even the Riemann 
problem cannot be solved.

Starting with the work reported on in [26], existence of so-
lutions was shown to be possible if the space of solutions was 
extended to include Radon measures. In particular, such non-
standard solutions were shown to contain Dirac δ-distributions 
attached to the location of certain discontinuities. As was shown 
in [25], the incorporation of such δ-shocks is equivalent to relaxing 
one or more of the required Rankine–Hugoniot conditions for clas-
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sical shocks, and it may be shown that the strength of the Dirac 
δ-distribution associated to a certain shock is a precise measure of 
the deficit in the Rankine–Hugoniot conditions which are required 
to obtain a solution.

In the present work, we consider the shallow-water system, and 
show how δ-shocks arise naturally if this theory is to describe the 
physics of the underlying problem adequately. Indeed, unlike the 
situation from [23] where the δ-distribution was adjoined to the 
surface excursion, here we shall see that δ-naturally appears as 
part of the velocity as a measure of the Rankine–Hugoniot deficit. 
An alternative approach for physical explanation of the appearance 
of delta functions and Rankine–Hugoniot deficits in this context 
was given in [14], where a localized jet is considered. Singular so-
lutions may also occur in shallow-water systems for two-layer flow 
[7,21] and in mixing closures for two-layer systems [20].

In the context of surface waves, the shallow-water system de-
scribes the flow of an inviscid fluid in a long channel of small 
uniform width, is used as a standard model in hydraulics, and is 
fundamental in the study of bores and storm surges in rivers and 
channels [18,35]. If the bottom is flat (such as in a laboratory situ-
ation), the system is usually written in the form

∂th + ∂x (uh) = 0, (mass conservation), (1.1)

∂t(uh) + ∂x

(
u2h + g h2

2

)
= 0, (momentum balance), (1.2)
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Fig. 1. Left panel: Surface profile of a traveling hydraulic jump (undular bore). Right panel: shallow-water approximation.

Fig. 2. Left panel: Surface profile over a bottom transition. Right panel: shallow-water approximation.
where h denotes the total flow depth, u represents an average hor-
izontal velocity, and g is the gravitational constant. For smooth 
solutions, an equivalent system is

∂th + ∂x (uh) = 0, (1.3)

∂t u + ∂x

(
u2

2 + gh
)

= 0, (1.4)

and it is immediately clear that mass and momentum conserva-
tion in discontinuous solutions lead to a Rankine–Hugoniot deficit 
in (1.4). One might conclude that it would therefore be best to 
avoid the system (1.3)–(1.4) in favor of the system (1.1)–(1.2). The 
theory for this system is well developed, and both the initial-value 
problem and the Riemann problem can be solved [18]. It is well 
known that the conservation of energy is formulated as

∂t

(
h u2

2 + g h2

2

)
+ ∂x

(
guh2 + h u3

2

)
= 0 (1.5)

and this then serves as a mathematical entropy [2,3,35].
On the other hand, in many practical situations, the assumption 

of a flat bottom is too restrictive. If an uneven bed is introduced, 
the equations take the form

∂th + ∂x (uh) = 0 (mass conservation) (1.6)

∂t u + ∂x

(
gh + u2

2

)
= −gbx (1.7)

∂t(uh) + ∂x

(
u2h + g h2

2

)
= −ghbx (momentum balance) (1.8)

∂t

(
h u2

2 + g h2

2 + bh
)

+ ∂x

(
guh(h + b) + h u3

2

)
= 0

(energy balance) (1.9)

In this system, the function b(x) measures the rise of the bed 
above a certain reference level at z = 0. The function h(x, t) mea-
sures the flow depth of the fluid, so that b(x) + h(x, t) measures 
the position of the free surface relative to the reference point z = 0
(see Fig. 1 and Fig. 2).

Again, for discontinuous solutions, mass and momentum con-
servation are to be satisfied, so that (1.7) and the energy equa-
tion (1.9) will feature a Rankine–Hugoniot deficit. In the case of a 
shock over a bottom step, momentum is not conserved because of 
the lateral pressure force appearing in (1.8), and in this case en-
ergy conservation needs to be specified. Therefore, in this case a 
Rankine–Hugoniot deficit will be introduced in (1.8).

In this paper we will address the relatively simple situation 
of a flow of a shock wave over a bottom step. The shock wave 
is governed by the Rankine–Hugoniot conditions originating from 
mass and momentum conservation, i.e. by (1.6) and (1.8). On the 
other hand, as explained above, a discontinuity over a bottom step 
is governed by the Rankine–Hugoniot conditions originating from 
mass and energy conservation, i.e. by (1.6) and (1.9). Thus it is 
plain that it is not possible to resolve the underlying physical prob-
lem with the use of only two governing equations. If the goal is 
to maintain the classical modeling approach of describing a situ-
ation with a certain fixed set of equations so that the number of 
equations and unknowns is the same, it is necessary to allow for 
Rankine–Hugoniot deficits and the corresponding incorporation of 
singular delta shocks.

Thus in order to salvage the classical modeling approach, we 
propose the following procedure. Use the system (1.6)–(1.7) as the 
system to be solved, and use the corresponding Rankine–Hugoniot 
conditions for momentum or energy conservation in the appro-
priate places. Since these can be made explicit via delta-shock 
waves, the system is self-sufficient. For further study, the system 
(1.6)–(1.7) can be cast in conservative form by writing

∂th + ∂x(uh) = 0,

∂t u + ∂x

(
gh + u2

2 + gb
)

= 0.

}
(1.10)

The plan of the present paper is as follows. In Section 2, sur-
face discontinuities over a flat bottom are studied, and it is shown 
that if these discontinuous solutions satisfy mass and momentum 
conservation, and the required energy loss, then the total head 

1
2g u2 + h cannot be conserved. Thus a Rankine–Hugoniot deficit 
is needed in the second equation in (1.10). The solution is verified 
both in the weak asymptotic context, and in the weak variational 
context. In Section 3, bottom step transitions are studied. In Sec-
tion 4, the interaction of a discontinuous moving surface profile 
with a bottom step is investigated.

2. Surface discontinuities

In this section, we briefly review the theory surrounding dis-
continuous solutions of the shallow-water system, and we show 
that an admissible weak solution conserving mass and momentum, 
and dissipating mechanical energy must give rise to a Rankine–
Hugoniot deficit for the conservation equation for the total head. 
Then, it is described how such a singular solution can be under-
stood as a delta shock wave in the framework of the weak asymp-
totic method, and in the generalized variational framework.
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2.1. Traveling hydraulic jump

A traveling hydraulic jump traveling over an even bottom must 
respect the conservation of mass (1.1) and momentum (1.2). In the 
shallow-water theory, it is useful to consider the jump as having 
a discontinuity at the bore front. This modeling approach leads to 
the Rankine–Hugoniot conditions

c(hr − hl) = urhr − ulhl,

c(urhr − ulhl) =
(

u2
r hr + 1

2
gh2

r

)
−

(
u2

l hl + 1

2
gh2

l

)
.

(2.1)

Here the subscripts l and r indicate the left and right states of 
the shock, respectively. From these relations, the velocity can be 
expressed as

c = urhr − ulhl

hr − hl
=

(
u2

r hr + 1
2 gh2

r

)
−

(
u2

l hl + 1
2 gh2

l

)
urhr − ulhl

. (2.2)

Algebraic manipulation of equation (2.2) gives the expression

ur − ul = ±(hr − hl)

√
g

2

(
1

hr
+ 1

hl

)
. (2.3)

In particular, we see from this relation that ur �= ul if and only if 
hr �= hl . Inserting this relation into (2.2) gives

c = ul ± hr

√
g

2

(
1

hr
+ 1

hl

)
= ur ± hl

√
g

2

(
1

hr
+ 1

hl

)
. (2.4)

It is clear that solving the square root gives rise to two possible 
solutions. In order to pick the one which is physically reasonable, 
use is made of the conservation of mechanical energy (1.5).

Mass conservation through the jump discontinuity is derived 
from the first equation in (2.1) and equation (2.4) as

m = hr(ur − c) = hl(ul − c) = ∓hrhl

√
g

2

(
1

hr
+ 1

hl

)
. (2.5)

Momentum conservation through the discontinuity is derived sim-
ilarly from the second equation in (2.1) and equation (2.4) in the 
form

hr(ur − c)ur + 1

2
gh2

r = hl(ul − c)ul + 1

2
gh2

l .

Using the expression in (2.5) simplifies this equation to

mur + 1

2
gh2

r = mul + 1

2
gh2

l . (2.6)

The mechanical energy dissipates in the jump but remains bal-
anced in areas where the solution is smooth. Using the Rankine–
Hugoniot condition for equation (1.9) which has the form

c

[(
1

2
u2

r hr + 1

2
gh2

r

)
−

(
1

2
u2

l hl + 1

2
gh2

l

)]

=
(

1

2
u3

r hr + gurh2
r

)
−

(
1

2
u3

l hl + gulh
2
l

)
,

an expression for the mechanical energy loss per unit time is

1

ρY
�E =

(
1

2
u2

r + 1

2
ghr

)
hr(ur − c) −

(
1

2
u2

l + 1

2
ghl

)
hl(ul − c)

+ g
(urh2

r − ulh
2
l ).
2

This can be simplified further by using equations (2.5) and (2.6) to 
obtain1

1

ρY
�E = −mg(hr − hl)

3

4hrhl
. (2.7)

This shows that the mechanical energy, which should be chosen as 
the entropy condition for picking the valid solution, decreases as 
the solution passes through the discontinuity. As a consequence of 
(2.7), it is noted that

�E < 0 if m(hr − hl) > 0. (2.8)

Since energy gain is impossible, it is clear that these inequalities 
together with the expression in equation (2.5) lead to the relations

hr > hl ⇒ ur > c and ul > c,

hr < hl ⇒ ur < c and ul < c.
(2.9)

What is not yet established is the relation between the left state, 
ul , and the right state, ur , variables. From equations (2.3) and (2.5)
it is found that

ur − ul = −m(hr − hl)

hrhl
, (2.10)

and the inequalities in equation (2.8) require that this expression 
obeys the condition

ur < ul. (2.11)

This condition plays an important role in analyzing the Rankine–
Hugoniot jump condition for the equation (1.4). Indeed, as it turns 
out, energy per unit mass cannot be constant through the shock, 
and we have the following theorem.

Theorem 2.1. An admissible shock-wave solution satisfying the Rankine–
Hugoniot conditions arising from mass and momentum conservation, 
and featuring the required energy loss must feature a Rankine–Hugoniot 
deficit in equation (1.4).

Equation (1.4) can be interpreted as a balance equation involv-
ing horizontal velocity and total hydraulic head H = u2

2g + h, and it 
is convenient to state the result in the following form:

g�H = (ur − c)ur − (ul − c)ul + 1

2
(u2

l − u2
r ) + g(hr − hl).

Using the expression for m in (2.5) gives2

g�H = m

(
ur

hr
− ul

hl

)
+ 1

2

(
u2

l − u2
r

)
+ g(hr − hl). (2.12)

Considering different cases for hr and hl and using the above in-
equalities, it is not hard to check that �H cannot be zero. From 
the above equation we obtain the expression

g�H = 1

2

(
(ur − c)2 − (ul − c)2 + 2g(hr − hl)

)
. (2.13)

To simplify this expression further we obtain from (2.5) the fol-
lowing relations

(ur − c)2 = gh2
l

2

(
1

hr
+ 1

hl

)
,

(ul − c)2 = gh2
r

2

(
1

hr
+ 1

hl

)
.

1 Note that the quantity on the left has been divided by the density ρ and the 
width of the channel Y in order to get the units of energy per unit time. It will be 
convenient in the following to assume that both ρ and Y are unity.

2 It appears most convenient here to present this quantity as head loss �H per 
unit time. The quantity has been multiplied by g in order to get the right units.
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Insert these expressions into (2.13) to obtain

g�H = 1

2

(
g

2
(h2

l − h2
r )

(
1

hr
+ 1

hl

)
+ 2g(hr − hl)

)
,

which is simplified by algebraic manipulations to

g�H = g(hl − hr)
3

4hlhr
. (2.14)

From this expression it is obvious that g�H is nonzero so long as 
hl �= hr .

2.2. Weak asymptotics

One available tool for the description of singular shock waves 
is the method of weak asymptotics [9,10,12,15,28,30,32]. This 
method was recently extended to the case where complex-valued 
approximations are allowed which significantly extended its range 
of applicability [22–24].

Define D(R) to be the standard space of test functions, and let 
D′(R) be the dual space of distributions (see e.g. [31]). In order 
to define complex-valued weak asymptotic solutions of (1.10), we 
first recall the definition of a vanishing family of distributions.

Definition 2.1. Let fε(x) ∈ D′(R) be a family of distributions de-
pending on ε ∈ (0, 1). We say that fε = oD′(1) if for any test 
function φ(x) ∈D(R), we have the estimate

〈 fε,φ〉 = o(1), as ε → 0. (2.15)

Thus a family of distributions vanishes in the sense defined 
above if for a given test function φ, the pairing 〈 fε, φ〉 converges 
to zero with ε. For families of distributions depending on t , we say 
fε = oD′(1) ⊂ D′(R) if (2.15) holds uniformly in t . In other words, 
fε vanishes if

〈 fε(·, t),ϕ〉 ≤ CT g(ε) for t ∈ [0, T ],
for a function g depending on ϕ(x, t) and tending to zero with 
ε → 0, and where the constant CT should only depend on T . Next 
we define solutions of (1.10) in the weak asymptotic sense.

Definition 2.2. The collection of smooth complex-valued distribu-
tions (uε) and (hε) represent a weak asymptotic solution to (1.10)
if there exist real-valued distributions u, v ∈ C(R+; D′(R)), such 
that for every fixed t ∈R+

uε ⇀ u, hε ⇀ h as ε → 0,

in the sense of distributions in D′(R), and

∂thε + ∂x (uεhε) = oD′(1),

∂t uε + ∂x

(
ghε + u2

ε
2 + gb

)
= oD′(1).

}
(2.16)

In addition, if initial data are given, we require

uε(x,0) ⇀ u(x,0) and hε(x,0) ⇀ h(x,0), (2.17)

where the weak convergence designates convergence in the sense 
of distributions as ε tends to 0.

In order to state an existence theorem in the context of the 
above definitions, we define the functions

H0(x) =
{

hl, if x < 0,

hr, if x > 0,
(2.18)

and

U0(x) =
{

ul, if x < 0,

ur, if x > 0.
(2.19)
Theorem 2.2. If the constants hl, hr , ul and ur are chosen such that the 
functions H0(x − ct) and U0(x − ct) (with c given by (2.2)) represent an 
admissible (energy-dissipating) shock wave which conserves both mass 
and momentum, then there are weak asymptotic solutions hε and uε of 
the system (1.3)–(1.4), such that the families (hε) and (uε) have distri-
butional limits

h(x, t) = H0(x − ct), (2.20)

u(x, t) = U0(x − ct) + α(t)δ(x − ct), (2.21)

where

α′(t) = g�H.

In order to prove this theorem, let ρ ∈ C∞
c (R) be non-negative, 

smooth, compactly supported even function such that

supp ρ ⊂ (−1,1),

∫
R

ρ(z)dz = 1, ρ ≥ 0.

Let Cρ,2 = ∫
R

ρ2(z)dz, and take

δε(x, t) = 1

2ε
ρ

(
x − ct − 4ε

ε

)
+ 1

2ε
ρ

(
x − ct + 4ε

ε

)
,

Rε(x, t) = i

2ε
ρ

(
x − ct − 2ε

ε

)
− i

2ε
ρ

(
x − ct + 2ε

ε

)
,

Sε(x, t) = 1√
ε

1√
Cρ,2

ρ

(
x − ct

ε

)
.

Now let the functions Uε and Hε be defined by

Uε(x, t) =

⎧⎪⎨
⎪⎩

ul, x < ct − 30ε,

0, ct − 20ε ≤ x ≤ ct + 20ε,

ur, x ≥ ct + 30ε,

Hε(x, t) =

⎧⎪⎨
⎪⎩

hl, x < ct − 30ε,

0, ct − 20ε ≤ x ≤ ct + 20ε,

hr, x ≥ ct + 30ε.

Notice in particular that we have

Rε ⇀ 0, and Sε ⇀ 0.

Moreover, we also have the identities

Uεδε = 0, Uε Rε = 0, Uε Sε = 0, δε Rε = 0, δε Sε = 0, and

Rε Sε = 0.

Furthermore, it is not hard to check that

Hεδε = 0, Hε Rε = 0, and Hε Sε = 0.

In addition, the following limit is obtained:

S2
ε ⇀ δ. (2.22)

Now make the ansatz

hε(x, t) = Hε(x − ct),

uε(x, t) = Uε(x − ct) + α(t)(δε(x − ct) + Rε(x − ct))

+ √
2cα(t)Sε(x − ct),

and substitute it into equations (1.10). Notice first of all that

u2
ε(x, t) = U 2

ε + α2(t)(R2
ε + δ2

ε) + cα(t)S2.

Focusing on the expression R2
ε + δ2

ε , we take ϕ ∈ C∞
c (R) and con-

sider the integral



1142 H. Kalisch et al. / Physics Letters A 381 (2017) 1138–1144
∫
R

(R2
ε + δ2

ε)ϕ dx.

Noting the relation∫
R

1
ε2

(
ρ2((x − ct + αε)/ε) + ρ2((x − ct − βε)/ε)

)
ϕ(x) dz

=
∫
R

1
ε ρ2(z) (ϕ(ct + ε(z − α)) + ϕ(ct + ε(z + β))) dz

=
∫
R

1
ε ρ2(z)

(
2ϕ(ct) + εϕ′(ct)(β − α)

)
dz +O(ε),

for α,β ∈R,

which follows by making the changes of variables (x − ct + αε)/

ε = z and (x − ct − βε)/ε = z, and observing that 
∫

zρ2(z)dz = 0
since ρ is an even function, the above integral can be rewritten as

1

4

∫
R

1
ε2

(
− ρ2((x − ct + 2ε)/ε) − ρ2((x − ct − 2ε)/ε)

+ ρ2((x − ct + 4ε)/ε) + ρ((x − ct − 4ε)/ε)
)
ϕ dx = O(ε).

Finally, collecting terms, we have

∂t Uε + 1

2
∂xU 2

ε + ∂x Hε + α′(t)δε − cα(t)δ′ + cα∂x S2
ε = oD′(1).

(2.23)

Note that the last two terms on the left cancel by (2.22). There-
fore, taking into account Definition 2.2, we see that the Rankine–
Hugoniot deficit is

α′(t) = (ur − ul)c + 1

2
(u2

l − u2
r ) + g(hr − hl) = g�H.

From Theorem 2.1, we see that α′(t) must be nonzero. The first 
equation in (2.16) is verified in a similar fashion, but this is even 
simpler thanks to the choice of the constant c which was found 
from the Rankine–Hugoniot condition corresponding to the first 
equation.

2.3. Generalized weak solutions

We will show that the weak asymptotic solutions constructed 
above represent solutions to the shallow-water system also in the 
framework introduced in [13]. Following [13], we let � = {γi |
i ∈ I} be a graph in the closed upper half plane, consisting of Lip-
schitz curves γi , i ∈ I , with I a finite index set. I0 is the subset 
of I containing the indices of all curves which touch the x-axis, 
and �0 = {x0

k | k ∈ I0} is the set of initial points of the curves 
γk with k ∈ I0. We denote the singular part of the solution by 
α(x, t)δ(�) = ∑

i∈I αi(x, t)δ(γi). The expression ∂ϕ(x,t)
∂l designates 

the tangential derivative of a function ϕ on the arc γi , and 
∫
γi

de-
notes the line integral over the set γi .

Definition 2.3. A graph � and a couple of distributions (h, u)

where U is given by

u(x, t) = U (x, t) +
∑
i∈I

αi(x, t)δ(γi),

with h, U ∈ L∞(R × R+), αi ∈ C1(�), i ∈ I , is called a generalized 
δ-shock wave solution of system (1.10) with initial data h0(x) and 
U0(x) + ∑

I αk(xk , 0)δ
(
x − x0

)
if the integral identities
0 0 k
∫
R+

∫
R

(h∂tϕ + (Uh)∂xϕ)dxdt +
∫
R

h0(x)ϕ(x,0) dx = 0, (2.24)

∫
R+

∫
R

(
U∂tϕ +

(
U 2

2 + g(h + b)
)

∂xϕ
)

dxdt (2.25)

+
∑
i∈I

∫
γi

αi(x, t) ∂ϕ(x,t)
∂l +

∫
R

U 0(x)ϕ(x,0) dx

+
∑
k∈I0

αk(x0
k ,0)ϕ(x0

k ,0) = 0,

hold for all test functions ϕ ∈D(R ×R+).

It is straightforward to check the solutions defined by (2.20)
and (2.21) satisfy this weak definition. Indeed, the requirement 
(2.24) is exactly of the same form as the usual definition of a weak 
solution. Requirement (2.25) contains the more interesting singu-
lar part. As above, consider the case of a flat bed at b = 0. Using 
(2.20) and (2.21), standard computations lead to the identity∫
R+

(
c[U ] − [U 2/2 + gh]

)
ϕ(ct, t) dt −

∫
R+

α′(t)ϕ(ct, t) dt = 0,

where [U ] = ur − ul and similarly [U 2/2 + gh] = (
u2

r /2 + ghr
) −(

u2
l /2 + ghl

)
. Since α(0) = 0, the conclusion follows from the form 

of α(t) defined in (2.14). Thus we have the following theorem:

Theorem 2.3. If the constants hl, hr , ul and ur are chosen such that the 
functions H0(x − ct) and U0(x −ct) (with c given by (2.2)) represent an 
admissible (energy-dissipating) shock wave which conserves both mass 
and momentum, and α(t) is given by (2.14), then the functions defined 
in (2.20) and (2.21) represent a solution of the Riemann problem corre-
sponding to the system (1.10) in the sense of Definition 2.3.

3. Bottom step transitions

Consider a smooth bottom topography function defined by

b(x) =
{

bl, if x < 0,

br, if x > 0.
(3.1)

For this bottom step, in the shallow-water approximation, the mass 
and energy of a flow have to be conserved. Since the shock-wave 
solution over a bottom step is stationary, the Rankine–Hugoniot 
conditions are written as

ulhl = urhr (3.2)

gurhr(hr + br) + hr
u3

r

2
= gulhl(hl + bl) + hl

u3
l

2
. (3.3)

As it turns out, the second condition can be replaced by the sim-
pler condition

g(hr + br) + u2
r

2
= g(hl + bl) + u2

l

2
, (3.4)

and the conditions (3.2) and (3.4) are the standard relations in 
hydraulic theory [17]. Since the hydraulic fall over a step does 
not require a Rankine–Hugoniot deficit in the second equation of 
(1.10), it is clear that this is a weak solution in the classical sense, 
and satisfies Definition 2.3 without the singular part.
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4. Flow of a bore over a bottom step

To be concrete, we study a bore (traveling hydraulic jump) ap-
proaching a bottom step from the left. In order to describe the 
interaction of the traveling jump with the bottom step, we need 
to solve the Riemann problem over a bottom step. In [1], it was 
found that there are 26 different solutions, but the authors did not 
investigate the admissibility of these solutions. Here, we find ad-
missible solutions involving two shocks, one propagating to the left 
and the other propagating to the right of the step.

Definition 4.1. The shock defined by

u(x, t) =
{

ul, if x < ct,

ur, if x > ct,
(4.1)

connecting a left state (hl, ul) and a right state (hr, ur) is i-admis-
sible if the shock speed c satisfies the Lax entropy conditions

λi(hr, ur) ≤ c ≤ λi(hl, ul), (4.2)

for i = 1, 2.

Consider a bottom step function where bl = 0 and br = 1 and 
the initial data

h |t=0 =
{

4, if x < −1,

1, if x > −1,
u |t=0 =

{
5.14, if x < −1,

−2.29, if x > −1.

(4.3)

For the given initial data the shock

h(t, x) =
{

4, if x < c1t − 1,

1, if x > c1t − 1,

u(t, x) =
{

5.14, if x < c1t − 1,

−2.29, if x > c1t − 1,
(4.4)

where c1 = 7.61 is a 2-shock and reaches the step at t = 1/c1. At 
that moment we need to solve the system (1.10) at the step. It 
is important to note that out of the step the process is still gov-
erned by (1.1) and (1.2). The shock (4.4) will be split into a 1-shock 
corresponding to (1.1) and (1.2), a 2-shock corresponding to (1.1)
and (1.2) and a stationary shock (SS) corresponding to (1.10). The 
goal is to obtain one system which describes the entire flow phe-
nomenon. This can be done through the δ-shock concept where δ
will actually describe deficiency of the model. To achieve this we 
consider the system (1.10) with initial data given in (4.3). The next 
task is to find two constant states (h2, u2) and (h3, u3) which are 
located to the left and right of the bottom step respectively. These 
states are obtained by simultaneously solving the equations

u2 − ul = −(h2 − hl)

√
g

2

(
1

h2
+ 1

hl

)
,

ur − u3 = (hr − h3)

√
g

2

(
1

hr
+ 1

h3

)
,

g(h2 + bl) + u2
2

2
= g(h3 + br) + u2

3

2
,

u2h2 = u3h3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

The first two equations in (4.5) are obtained from the Rankine–
Hugoniot conditions that describe the relations between the states 
on both sides of the left and right going shocks and the last two 
Fig. 3. Flow of a bore over a bottom step. The incoming shock δS2 meets the bot-
tom step at time t0 = 1/c1. For t > t0, δS1 is a left going delta shock, the bottom 
transition is at x = 0, and δS2 is a right going delta shock.

Fig. 4. A 1-shock moving left, a stationary step transition located at x = 0 and a 
2-shock moving right.

equations describe the bottom condition. To the left of the bottom 
step, the constant state (h2, u2) is connected to (hl, ul) by a left 
going 1-shock whereas to the right of the step the constant state 
(h3, u3) is connected to (hr, ur) by a right going 2-shock and a sta-
tionary shock is located at the step x = 0 as shown in Fig. 3. The 
state-wave diagram for this case is

(hl, ul)
δS1−−→ (h2, u2)

SS−−→ (h3, u3)
δS2−−→ (hr, ur). (4.6)

The flow pattern corresponding to the above diagram is shown 
in Fig. 4. The undisturbed water surface is located at η(x, t) = h j +
b(x) for j ∈ {l, r, 2, 3}. The left going shock is travelling at the speed 
c2 = −2.62 and the right going shock has the approximate speed 
c3 = 7.07. The physically relevant solution has the form

h(t, x) = χ[0,t0](t)
{

4, if x < c1t − 1,

1, if x > c1t − 1,

+ χ(t0,+∞)(t)

{
4, if x < c2(t − t0),

5.28, if c2(t − t0) < x < 0,

+ χ(t0,+∞)(t)

{
3.76, if 0 < x < c3(t − t0),

1, if c3(t − t0) < x,
(4.7)

and

u(t, x) = χ[0,t0](t)α1δ(x − c1t − 1)
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+ χ[0,t0](t)
{

5.14, if x < c1t − 1,

−2.29, if x > c1t − 1,

+ χ(t0,+∞)(t)

{
5.14, if x < c2(t − t0),

3.25, if c2(t − t0) < x < 0,

+ χ(t0,+∞)(t)

{
4.58, if 0 < x < c3(t − t0),

−2.29, if c3(t − t0) < x,

+ χ(t0,+∞)(t)α2δ(x − c2(t − t0))

+ χ(t0,+∞)(t)α3δ(x − c3(t − t0)), (4.8)

where the Rankine–Hugoniot deficits are given by

α1 =
(

c1[u] − [gh + u2/2 + gb]
)

t,

α2 =
(

c2[u] − [gh + u2/2]
)

(t − t0)

+
(

c2[u] − [gh + u2/2 + gb]
)

t0,

α3 =
(

c3[u] − [gh + u2/2 + 1]
)

(t − t0).

That is

α1 =
(

c1(ul − ur) − (ghl + u2
l /2) + (ghr + u2

r /2 + 1)
)

t,

α2 =
(

c2(ul − u2) − (ghl + u2
l /2) + (gh2 + u2

2/2)
)

(t − t0)

+
(

c2(ul − ur) − (ghl + u2
l /2) + (ghr + u2

r /2 + 1)
)

t0,

α3 =
(

c3(u3 − ur) − (gh3 + u2
3/2 + 1) + (ghr + u2

r /2 + 1)]
)

× (t − t0).

It is now straightforward to show that these functions define a 
solution in the sense of Definition 2.3. Moreover, evaluating the 
eigenvalues of the derivative matrix for the states (hl, ul), (h2, u2), 
(h3, u3) and (hr, ur) reveals that all three delta shocks δS1, δS2
and δS3, are admissible, and so is the bottom step transition.

Acknowledgements

This work was supported in part by the Research Council of 
Norway through grant no. 213474/F20 and grant no. 239033/F20, 
and by the Croatian Science Foundation under the project WeCon-
MApp/HRZZ-9780.

References

[1] F. Alcrudo, F. Benkhaldoun, Exact solutions to the Riemann problem of the shal-
low water equations with a bottom step, Comput. Fluids 30 (2001) 643–671.

[2] A. Ali, H. Kalisch, Energy balance for undular bores, C. R., Méc. 338 (2010) 
67–70.

[3] A. Ali, H. Kalisch, Mechanical balance laws for Boussinesq models of surface 
water waves, J. Nonlinear Sci. 22 (2012) 371–398.

[4] G-Q. Chen, H. Liu, Formation of δ-shocks and vacuum states in the vanishing 
pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. 
Math. Anal. 34 (2003) 925–978.
[5] G.-Q. Chen, H. Liu, Concentration and cavitation in the vanishing pressure limit 
of solutions to the Euler equations for nonisentropic fluids, Phys. D 189 (2004) 
141–165.

[6] A.P. Choudhury, Singular solutions for 2 × 2 systems in nonconservative form 
with incomplete set of eigenvectors, Electron. J. Differ. Equ. 2013 (2013) 58.

[7] W. Craig, P. Guyenne, H. Kalisch, Hamiltonian long-wave expansions for free 
surfaces and interfaces, Commun. Pure Appl. Math. 58 (2005) 1587–1641.

[8] G. Dal Maso, P. LeFloch, F. Murat, Definition and weak stability of non-
conservative products, J. Math. Pures Appl. 74 (1995) 483–548.

[9] V.G. Danilov, G.A. Omel’yanov, V.M. Shelkovich, Weak asymptotics method and 
interaction of nonlinear waves, in: M.V. Karasev (Ed.), Asymptotic Methods for 
Wave and Quantum Problems, in: AMS Translation Series 2, vol. 208, 2003, 
pp. 33–164.

[10] V.G. Danilov, D. Mitrovic, Weak asymptotic of shock wave formation process, 
Nonlinear Anal. 61 (2005) 613–635.

[11] V.G. Danilov, D. Mitrovic, Delta shock wave formation in the case of triangular 
system of conservation laws, J. Differ. Equ. 245 (2008) 3704–3734.

[12] R.F. Espinosa, G.A. Omel’yanov, Weak asymptotics for the problem of interac-
tion of two shock waves, Nonlinear Phenom. Complex Syst. 8 (2005) 331–341.

[13] V.G. Danilov, V.M. Shelkovich, Dynamics of propagation and interaction of 
δ-shock waves in conservation law system, J. Differ. Equ. 211 (2005) 333–381.

[14] C.M. Edwards, S.D. Howison, H. Ockendon, J.R. Ockendon, Non-classical shallow 
water flows, IMA J. Appl. Math. 73 (2008) 137–157.

[15] M.G. Garcia, G.A. Omel’yanov, Kink–antikink interaction for semilinear wave 
equation with a small parameter, Electron. J. Differ. Equ. 2009 (45) (2009) 1–26.

[16] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, 
Commun. Pure Appl. Math. 18 (1965) 697–715.

[17] F.M. Henderson, Open Channel Flow, Prentice Hall, 1996.
[18] H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 

Springer, New York, 2002.
[19] F. Huang, Z. Wang, Well posedness for pressureless flow, Commun. Math. Phys. 

222 (2001) 117–146.
[20] T. Jacobson, P.A. Milewski, E.G. Tabak, Mixing closures for conservation laws in 

stratified flows, Stud. Appl. Math. 121 (2008) 89–116.
[21] H. Kalisch, Derivation and comparison of model equations for interfacial 

capillary-gravity waves in deep water, Math. Comput. Simul. 74 (2007) 
168–178.

[22] H. Kalisch, D. Mitrovic, Singular solutions of a fully nonlinear 2 × 2 system of 
conservation laws, Proc. Edinb. Math. Soc. 55 (2012) 711–729.

[23] H. Kalisch, D. Mitrovic, Singular solutions for the shallow-water equations, IMA 
J. Appl. Math. 77 (2012) 340–350.

[24] H. Kalisch, D. Mitrovic, J.M. Nordbotten, Non-standard shocks in the Buckley–
Leverett equation, J. Math. Anal. Appl. 428 (2015) 882–895.

[25] B. Keyfitz, H.C. Kranzer, A viscosity approximation to a system of conserva-
tion laws with no classical Riemann solution, in: Proc. Int. Conf. on Hyperbolic 
Problems, Bordeaux, 1988, in: Lecture Notes in Mathematics, vol. 1402, 1989, 
pp. 185–197.

[26] C. Korchinski, Solution of a Riemann Problem for a 2 × 2 System of Conserva-
tion Laws Possessing No Classical Weak Solution, PhD Thesis, Adelphi Univer-
sity, 1977.

[27] D. Mitrovic, M. Nedeljkov, Delta shock waves as a limit of shock waves, J. Hy-
perbolic Differ. Equ. 4 (2007) 629–653.

[28] M. Nedeljkov, Delta and singular delta locus for one-dimensional systems of 
conservation laws, Math. Methods Appl. Sci. 27 (2004) 931–955.

[29] M. Nedeljkov, Shadow waves: entropies and interactions for delta and singular 
shocks, Arch. Ration. Mech. Anal. 197 (2010) 489–537.

[30] G.A. Omelyanov, About the stability problem for strictly hyperbolic systems of 
conservation laws, Rend. Semin. Mat. (Torino) 69 (2011) 377–392.

[31] J. Rauch, Partial Differential Equations, Springer, New York, 1991.
[32] E.Y. Panov, V.M. Shelkovich, δ′-Shock waves as a new type of solutions to sys-

tems of conservation laws, J. Differ. Equ. 228 (2006) 49–86.
[33] Z.Q. Shao, Lifespan of classical discontinuous solutions to general quasilinear 

hyperbolic systems of conservation laws with small BV initial data: shocks and 
contact discontinuities, J. Math. Anal. Appl. 387 (2012) 698–720.

[34] Z.Q. Shao, Lifespan of classical discontinuous solutions to general quasilinear 
hyperbolic systems of conservation laws with small BV initial data: rarefaction 
waves, J. Math. Anal. Appl. 409 (2014) 1066–1083.

[35] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

http://refhub.elsevier.com/S0375-9601(16)32095-3/bib416C637275646Fs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib416C637275646Fs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib414Bs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib414Bs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib414B32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib414B32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib434C31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib434C31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib434C31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib434C32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib434C32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib434C32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib43686F75s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib43686F75s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib43474Bs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib43474Bs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444D4C4Ds1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444D4C4Ds1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444F53s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444F53s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444F53s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444F53s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444D31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444D31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444D32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444D32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib454F31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib454F31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib445368s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib445368s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4F636Bs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4F636Bs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib474Fs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib474Fs1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib476C696D6Ds1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib476C696D6Ds1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib48656E646572736F6Es1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4852s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4852s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib6875616E67s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib6875616E67s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4A4D5432303038s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4A4D5432303038s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B616C69736368s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B616C69736368s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B616C69736368s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4D31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4D31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4D32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4D32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4D4Es1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4D4Es1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4B32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4B32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4B32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B4B32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B6F726368696E736B69s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B6F726368696E736B69s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4B6F726368696E736B69s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444D4D4Es1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib444D4D4Es1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4D4E5F6D6D6173s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4D4E5F6D6D6173s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4D4E5F61726D61s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4D4E5F61726D61s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4F6D656C79616E6F76s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib4F6D656C79616E6F76s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib5261756368s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib7368656C6B70616Es1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib7368656C6B70616Es1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib5368616F31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib5368616F31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib5368616F31s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib5368616F32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib5368616F32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib5368616F32s1
http://refhub.elsevier.com/S0375-9601(16)32095-3/bib5768697468616Ds1

	Delta shock waves in shallow water ﬂow
	1 Introduction
	2 Surface discontinuities
	2.1 Traveling hydraulic jump
	2.2 Weak asymptotics
	2.3 Generalized weak solutions

	3 Bottom step transitions
	4 Flow of a bore over a bottom step
	Acknowledgements
	References


