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Abstract

The extended KdV equation u, + uu, + oy + Uy = 0 s widely used
as a model describing internal waves in ideal fluids. The equation admits a
family of negative and positive solitary waves ®.. These solitary waves exhibit
the typical broadening effect seen in internal waves. It is shown here that
all solitary-wave solutions of the extended KdV equation are orbitally stable.
The proof of stability is based on the general theory of Grillakis et al (1987
J. Funct. Anal. 74 160) for equations of the form u, = J E’(u) which have two
conserved integrals E(u#) and V (u). A spectral analysis of the linear operator
L. = E"(®.)+cV"(d,) reduces the question of orbital stability to the question
of whether the scalar function d(c¢) = E(®,.) + ¢V (D,) is convex. To prove
the stability, an explicit calculation showing the convexity is performed.

PACS numbers: 02.30.1k, 02.30.Jr, 02.30.Sa, 47.35.Bb, 47.35.Fg
Mathematics Subject Classification: 35Q53, 37C75, 76B15, 76E30

1. Introduction

Internal waves, sometimes with large amplitude, arise in various parts of the world such as
oceans, large lakes and river estuaries. The existence of such waves has been established
through numerous field studies, and due to their importance for the geophysical sciences,
internal waves have been the subject of a great number of scientific works. Breaking internal
waves and the ensuing large-scale mixing have been implicated as a possible significant factor
in maintaining the stable background ocean stratification [18, 40]. Internal waves are also an
important factor in the dynamics of benthic boundary layers [14], and are thus important for
sediment resuspension and for the transport and distribution of nutrition to marine organisms.

Internal waves have been studied thoroughly in wave tank experiments and through
numerical computations. For a small sample of results, the reader may refer to [10, 14, 18,
23, 32, 39]. The numerical study of internal waves using the full Euler or Navier—Stokes
equations is very complex even in the two-dimensional case, and for some purposes, it can
be advantageous to use simpler model equations which retain the basic competing effects of
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nonlinearity, dispersion and dissipation. In particular, in the inviscid case a modal analysis
of horizontally propagating internal waves, when restricted to small amplitude and long
wavelength leads to a number of model equations, such as the Korteweg—de Vries (KdV),
Benjamin—Ono (BO) and intermediate long-wave equations [3, 6, 4, 12, 26, 31, 35, 36].
As the importance of these models has been recognized, there have been a number of studies
focusing on the comparison of experimental data with these weakly nonlinear model equations
[13, 23, 30].

One equation which has seen particular attention is the so-called extended Korteweg—de
Vries (eKdV) equation, which is also known as the Gardner equation. In the non-dimensional
form, the equation is given by

u,+uux+au2ux+ux” =0. (1.1)

Early derivations of this equation were given in [7, 33], and more recent work can be found
in [22, 24] and the references contained therein. Equation (1.1) features a combination of
the quadratic nonlinearity such as found in the KdV equation, and a cubic nonlinearity as
associated with the modified KdV equation. Both these equations are known to be expressible
as completely integrable Hamiltonian systems. Interestingly, (1.1) can also be expressed as a
completely integrable Hamiltonian system. While this property of the equation does not figure
into the analysis presented in this paper, it should be mentioned that it was in connection with
the integrability that the equation was first found [34].

From a modeling point of view, one of the main advantages of equation (1.1) is that
it appears to describe well the typical broadening of internal solitary waves with increasing
amplitude which is observed in field measurements [16, 38]. Solitary-wave solutions for the
eKdV equation (2.1) are known in the closed form. Using the ansatz u(x, t) = ®.(x — ct), it
appears that a solution is given by the expression

A
) = b+ (1 —b)cosh> K&’
Here, £ = x — ct, and the wave amplitude A, the wavelength K and the parameter b depend
on ¢ and «. The exact dependence of the solitary wave on these parameters is well known (see
[22]), and will be reviewed in section 3, where it will also be shown that the equation does not
admit solitary waves with ¢ < 0.

In this work, the dynamic stability of internal and interfacial solitary waves is under
review. It will be shown that internal solitary waves which can be described by equation (1.1)
are nonlinearly stable with respect to finite-amplitude perturbations. The notion of stability
used here is generally known as orbital stability. A precise definition of this concept is given
in section 4. As explained above, the ingredients necessary for the validity of equation (1.1)
limit its applicability to waves of great length and small excursion. Such waves are expected
to be stable because of the physical effects of molecular viscosity and diffusion. However, the
stability of internal waves described by the eKdV equation is of a more basic nature, requiring
only the balance of nonlinearity and dispersion.

A first step in establishing the stability of the solitary waves is the development of a robust
well-posedness theory. With regard to this task, note that recent advances in the study of local
well-posedness of nonlinear dispersive evolution equations in low-regularity function spaces
can easily be extended to equation (1.1). In particular, the results obtained in [28, 29] will
suffice to ensure the existence of a solution which for a small enough time ¢ is in the space

(1.2)

H' = H'(R) of square-integrable functions on the real line which have square-integrable
weak derivatives. Note that equation (1.1) has the following two invariant integrals:
oo
1
V() = / —u?dx (1.3)
o0 2
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and

o0 1 o 1
E() = / {——u3 — —ut+ —uz} dx. (1.4)
| 6 12 27

In fact, the equation has an infinite number of conserved integrals, but only V (1) and E (u) are
needed for our analysis. The conservation of these two integrals in connection with local well-
posedness yields global well-posedness in the space C(0, T, H') of continuous functions of
time  with values in H' (R), for any fixed 7. The global existence of solutions in C(0, oo, H')
also follows from standard arguments. The main contribution of this paper is the following
theorem.

Theorem 1. All solitary-wave solutions ®. of (1.1) with wave speed ¢ > 0 are stable.

The plan of the paper is as follows. In section 2, some modeling issues regarding (1.1)
will be recalled. Then in section 3, it will be shown that all solitary-wave solutions of (1.1)
are in fact given by the explicit formula (1.2). The notion of orbital stability will be reviewed
in section 4, and a short account of the general theory of Grillakis et al in [19] for proving
orbital stability will be given. Finally, the application of this theory to the situation at hand
will be presented in section 5. Section 6 contains a brief conclusion.

2. Modeling considerations

Equation (1.1) can be derived as a model for interfacial waves in a two-fluid system, as well
as in the case of horizontally propagating internal waves in a continuous density stratification.
The derivation of the equation depends crucially on the assumptions of small amplitude, long
wavelength and one-way propagation. In dimensional variables, the equation takes the form

Ne + conx +ainnx +aan*nx + Pinxxx = 0. 2.1

In the two-layer case, the unknown function n(X, 7) is the deflection of the interface from its
rest position, while in the case of continuous stratification, (X, t) is the isopycnal vertical
displacement, i.e. the displacement of a line of constant density. The independent spatial
variable X increases in the direction of wave propagation and t denotes time. For a given
stratification, it is important to use the correct values for the parameters cg, oy, & and ;. In
the two-layer case, these parameters are well known [2, 11, 15, 24, 30] and are given by

L1 — P2

—_— (2.2)
p2h1 + p1rha

g = ghihs

3 1 h% — poh?
o = ~co P11y — P2 17 (2.3)
2 “hihy hipa + hapr

3co [7(pih3—phi\®  pihd + o}
ay = 513 - , 2.4
(h1h2)* [ 8\ prha + pahy p1hy + pahy
hi+ pah
B = C—Ohlh P11 + P2hy (2.5)

6 " hipy+hapr
Here, g is the gravitational acceleration, p; and p, are the densities of the lower and upper
layers, respectively, and the depths of the lower and upper layers in the rest position are
given by h; and h;, respectively. Computation of the coefficients in the case of a continuous

stratification is somewhat more complicated. An account of such a calculation may be found
in [2, 20, 21, 33, 37].
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When «; is set to zero, equation (2.1) reduces to the KAV equation. Both equations are
valid model equations for internal waves propagating to the right (in the direction of increasing
the values of X) in the case when the depths /; and h, are comparable. Suppose both 4 and &,
are similar to a mean height H, a is a measure of a typical wave amplitude and A is a measure
of a typical wavelength. Then the KdV equation arises from the assumption that the quantities
a/H and (H/))? are small and of comparable magnitude, i.e. (H/1)? = O(a/H) < 1. Given
this assumption, it can be seen immediately that the terms «;nnyx and Bynxxx are the small
corrections to the first-order relation

ne +conx =0, (2.6)

if the coefficients «; and B; are of order 1 or smaller. On the other hand, in the
eKdV equation (2.1), the quantities a/H and H/A have comparable small magnitude, i.e.
H/,» = O(a/H) < 1. Indeed, writing the cubic term in (2.1) as

1

20 3
nnx ~ (a/H) H

and the dispersive term as

nxxx ~ (G/H)W,
itbecomes plain that these terms are balancedifa/H ~ H /A. Thus, if the scalinga/H ~ H/A
is assumed, then the terms aznzn x and Binxxx are the small corrections to the first-order
relation (2.6). However, now a further assumption is necessary to ensure that the quadratic
term o1 nnx in (2.1) is a correction of the same order. Indeed, it becomes plain immediately
that we need «; < 1. Examining the coefficient «; given in (2.3), it appears that «; will be
small if p1h3 — pph3 is small. This means that the eKdV equation is a valid approximation
for internal waves so long as ,olh% ~ ,ozhg. As variations in density are typically very small
in stratified fluids, only a few percent at most, we see that the eKdV equation can be used as a
model for small-amplitude long internal waves in a two-layer stratified fluid in which the two
layers have approximately the same depth.

Converting the equation into the non-dimensional form, the cubic coefficient & = oy /or?
appears. This coefficient can be either positive or negative depending on the sign of .
However, since we need p; h% ~ pzhg for the validity of the equation, in most situations where
the equation is an appropriate model, a quick look at (2.4) shows that a, will typically be
negative. In the KdV approximation, the non-dimensionalization shows that the polarity of the
solitary waves is determined by the coefficient ;. Moreover, the wavelength decreases with
increasing amplitude, and does not capture the broadening of waves that is often observed in
the field [24]. In contrast, eKdV solitary waves capture this shape when «; < 0. Initially, the
wavelength also narrows with increasing amplitude. However, as the upper limit is approached,
the waves begin to broaden again until the wave of maximum amplitude Ay = —1/a is
reached. To illustrate this discussion, a number of solitary waves with different amplitudes
are displayed in figure 1 for the cases of KdV («; = 0) and eKdV («, = —1). Finally, note
that in the eKdV equation, the polarity of the solitary wave is dependent on the signs of both
o1 and oy, thus affording a finer analysis.

3. Solitary-wave solutions

In order to prove the stability of solitary waves, it is convenient to study the eKdV equation
in the non-dimensional form (1.1) given in the introduction. The purpose of this section is

4
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Figure 1. A comparison of KdV and eKdV solitary waves with non-dimensional amplitudes
ranging from 0.1 to 0.999 99. Left panel: KdV solitary waves. Right panel: eKdV solitary waves.

to analyze the functions given by (1.2), and to show that all solitary waves are given by this
formula.

By a solitary wave, we mean a progressive wave which propagates to the right without
changing its profile over time. In mathematical terms, a solitary wave is a solution
u(x,t) = d.(x — ct), where & = x — ct, and ®.(£¢) is a bounded continuous function
with a single maximum or a single minimum, and which decays to zero as § — Foco. The
transformation to non-dimensional variables used in section 2 shows that wave speeds ¢ > 0
correspond to supercritical wave velocities, i.e. to solitary waves that propagate faster than any
linear wave. As shown in proposition 3.1, equation (1.1) does not admit subcritical solitary
waves.

When the ansatz u(x, t) = ®.(x — ct) is substituted into (1.1), there appears the ordinary
differential equation

—c® + DD +ad’D, + D =0, (3.1)
where @/ = dd%“, for £ = x — ct. Integrating once yields
I , a 4 ”
—O+ P+ =P+ D, =0. (3.2)

2 3
Note that the constant of integration has been set to zero because decay to zero at infinity is
assumed. A solution of (3.2) can be written in the form (1.2)

A
b+ (1 —b)cosh> K&’
with the amplitude given by A = A* or A = A~, where

. —1++/1+6cax

Q.(5) =

A" " (3.3)
—1—-+1+6
A= TNV Fhe (3.4)
o
The parameters K and b are given by
A2
K=Y and p=-2A (3.5)
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As can be gleaned from the expressions above, this formula is valid only if ¢ > 0 and
1 + 6ca > 0. In this case, it can be checked by differentiation that the functions defined by
(1.2) and (3.3)—(3.5) are the solutions of (3.2). What is more, the following results show that
all solitary-wave solutions of (1.1) are given by this formula. First, however, let us show that
there are no solitary waves with wave speeds ¢ < 0.

Lemma 1. For any o € R, there is no solitary wave with wave speed ¢ < 0.

Proof. Suppose that there is such a solitary-wave solution. By assumption, this function has
a single maximum or minimum, and decays to zero as x — oo. Multiply (3.2) by @/ and
integrate to obtain the equation

(€)' = c 02— 30: - Lot

3 6
By the supposed decay at infinity, choosing x large enough will make the cubic and quartic
terms much smaller than the quadratic term. Let us say that x is chosen so large that
13P2(0)] + [£@%(x)] < 3lc®?(x)|. Then the left-hand side of (3.6) is positive while the
right-hand side is negative. Since this is impossible, we conclude that no solitary wave exists
ifc <O. g

(3.6)

Since negative wave speeds are now ruled out, attention is focused on the case ¢ > 0.
Lemma 2. [fa < O, then all solitary-wave solutions of (1.1) must be non-negative.

Proof. Suppose @, is a solution of (3.2) which decays to zero as x — F00. Note that
equation (3.2) shows that @, is smooth. If &, is negative somewhere, then it must have a
minimum ¢,, = ®.(x,) < 0. Since ®. is smooth, the first derivative of ®. is zero at the
minimum, so that we obtain the equation

U B U e
0—¢m{c 3¢m 6¢’"}

from (3.6). Now it appears that either ¢,, = 0, in which case &, > 0, or ¢ = %qﬁm + %qﬁfn
But we assumed that ¢ > 0, while the right-hand side of the equation is negative since ¢,, is
negative, and « is negative as well. Since this is impossible, ®,. must be positive or zero. [J

The proof of the lemma 2 shows in particular that if &« < 0, then there exist no solitary-
wave solutions of (1.1) which are strictly negative. The next lemma further restricts the range
of possible solitary waves in the case when o < 0.

Lemma 3. Let o < 0. There are no solitary-wave solutions of (1.1) if c > —1/6a.

Proof. Suppose @, is a solution of (3.2), which decays to zero as x — £oo. We know
from the previous lemma that &, must be non-negative. Multiply (3.2) by @/ and integrate to
obtain equation (3.6) as above. Now if @, is not identically zero, then it must have a maximum
¢m = P.(xp). Since P, is smooth, the first derivative of @, is zero at the maximum, so that
we obtain the equation

1
0=¢%4{c—§¢M—%¢%4}-

If ¢pr = 0, then D, is the trivial solution. Hence we must have ¢ — %q) — %¢12|4 = 0. Now it
appears that this quadratic equation for ¢, has solutions

](1—v1+6ca) and —l(1+\/1+6ca).
o

o
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Figure 2. Phase plane diagram for solutions of (3.2). In the left panel, « < 0, and ¢ = % There is
only one homoclinic orbit. In the right panel, « > 0, and ¢ = % There are two homoclinic orbits.

These solutions are real-valued only if 1 + 6cae > 0. Thus, @, can be bounded only if

¢ < —1/6a. Thus, we conclude that we must have 1 + 6ca > 0 for a non-trivial solitary
wave. O

The properties of solitary waves in the cases ¢« < 0 and @ > 0 are summarized in the
following two propositions.

Proposition 1. Ler o < 0. Non-trivial solitary-wave solutions of (1.1) exist for c in the range

0 < ¢ < —1/6a. The solitary waves are given by formula (1.2) with amplitude A* > 0 given
by (3.3), and K and b given by (3.5).

Proof. Solitary waves with ¢ < 0 are ruled out by lemma 1. On the other hand, lemma 3
states that there are solitary waves only for those positive velocities ¢ satisfying ¢ < —1/6¢.
By lemma 2 these solitary waves must be non-negative functions. Now for given « and c, a
phase plane analysis of the pair (&, ) (the phase plane for a particular case is shown on the
left in figure 2) shows that there is a saddle point at the origin. The existence and uniqueness
theorem for ordinary differential equations [25] guarantees the existence of a unique maximal
solution connecting the unstable and stable directions of the saddle point. Since the function
defined by (1.2) with A = A™* satisfies equation (3.2), it is this unique solution. In the case

¢ = 0, the solitary waves is identically zero, while in the case c = —1/6«, the solution is given
by a non-zero constant, which does not constitute a solitary wave according to our definition,
since it does not decay to zero as x — =o0o0. (]

Remark 1. With regard to the parameter b, note that from the restriction on ¢ just expounded,
an analysis of formula (3.5) shows that b lies between 0 < b < 1 if o < 0.

Proposition 2. Let « > 0. Non-trivial solitary-wave solutions of (1.1) exist for c in the
range 0 < ¢ < oo. For a given ¢ > 0, there is a positive and a negative solitary wave. These
solitary-wave solutions are given by formulas (1.2) and (3.5) with amplitude A* > 0 given by
(3.3) and amplitude A~ < 0 given by (3.4).

Proof.  Again, solitary waves with ¢ < 0 are ruled out by lemma 1. As in the proof
of proposition 1, a phase plane analysis of the pair (®., /) shows that there is a saddle
point at the origin. Since solutions &, may now be either positive or negative, the existence
and uniqueness theorem for ordinary differential equations [25] guarantees the existence of a

7
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Positive solitary waves, o>0 Negative solitary waves, 0>0
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Figure 3. Comparison of positive and negative solitary waves in the case of positive . The left
panel shows a family of solitary waves with A = A*, while the right panel shows a family of
solitary waves with A = A™.

_ At _ At
@C(g) " b+(1-b) cosh? K¢ >0 @6(5) " b+(1-b) cosh? K¢ >0 o

) 1 s
6cno solitary waves with a < 0 anc(iD A%:(§) = bt (1—b) cosh® K¢ <0

Figure 4. eKdV solitary waves. Here, £ = x — ¢t and K = %\/E for a wave speed ¢ > 0. The
wave amplitude A is equal to either A* or A~

unique positive and a negative maximal solution connecting the unstable and stable directions
of the saddle point. Since it can be checked that (1.2) provides a solution of (3.2) for both
A = A* and A = A~, we see that the solitary waves are given by (1.2). For ¢ = 0, there is
the trivial wave ¢ = 0, and the algebraic solitary wave ¢ = —48/(24a + o> A%x?) obtained
by letting ¢ — 0 in the family of functions with A = A~ ]

Remark 2. As seen from (3.5), the parameter b is strictly negative in the case o > 0.

Figure 3 shows a family of positive and negative waves in the case & > 0. We note that
the negative solitary waves are limited below in amplitude, and the dashed line in the right
panel of figure 3 indicates the limiting algebraic soliton.

The dependence of negative and positive solitary waves on the parameters « and c are
summarized in figures 4 and 5.

4. Review of stability theory

In this section, a short review of the concept of orbital stability is given, and the main points
of the general theory of stability for solitary-wave solutions of partial differential equations
are sketched. As already observed by Benjamin and others [1, 4, 5, 8], a solitary wave cannot
be stable in the strictest sense of the word. To understand this, consider two solitary waves
of different heights, centered initially at the same point. Since the two waves have different
amplitudes, they also have different velocities according to the formulas (3.3) and (3.4). As

8
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Figure 5. Relation between the positive speed ¢ and the cubic nonlinear coefficient . The shaded
region indicates the parameter space for which solitary-wave solutions exist.

time passes the two waves will drift apart, no matter how small the initial difference was.
However, in the situation just described, it is evident that two solitary waves with slightly
differing heights will keep their original shape. Thus, if the variance in the translation in
space is disregarded, the two waves will stay close. Factoring out the space translation will
therefore give an acceptable notion of stability. This sense of orbital stability was introduced
by Benjamin [4]. We say that the solitary wave is orbitally stable, if a solution u of equation
(1.1) that is initially sufficiently close to a solitary wave will always stay close to a translation
of the solitary wave during the time evolution. A mathematically precise definition is as
follows. For a given solitary wave ®, and & > 0, consider the set

U,={ueH :influ— 1,9 < &),
s

where 7,®P.(x) = ®.(x — ) is a translation of ®.. Evidently, the set U, is an e-neighborhood
of the collection of all translates of ®..

Definition 1. The solitary wave ®. is ‘stable’ if for any ¢ > 0, there exists § > 0 such that if
ug =u(-,0) € Us, thenu(-,t) € U, forallt € R.

The stability theory of [19] applies to the situation of an evolutionary partial differential
equation of the form

u, = JE (u), .1

where J is a skew-symmetric operator. Note that the case at hand, the operator J = 9, and E
is given by (1.4). The assumptions on J in [19] include that J be surjective, which is not the
case for J = d,. However, this property is only needed for the proof of instability [9], as is
the assumption that the solitary waves are strictly positive [27]. Since the equation is given in
the form (4.1), it can easily be shown that the functional E () is time invariant. To see this,
consider the following computation:

dE (u)
dr

d
- <E’(u), d—”t‘> = (E'(u), 8. E'(w)) = 0.
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Now suppose there is another time-invariant functional V (u), and that the solitary-wave
solutions of (4.1) satisfy the equation

E'(®.) +cV'(®,) =0.
Then the orbital stability of @, can be determined if the operator
Le= E”(CDC) + CV”(CDC)

has only one simple negative eigenvalue, one simple zero eigenvalue and continuous positive
spectrum bounded away from zero. As shown in [19], zero is always an eigenvalue with the
eigenfunction ®/. Now if the scalar function d(c) = E(®,) + ¢V (®,.) is convex at a certain
value of c, then it follows that the corresponding solitary wave is orbitally stable. The proof
entails finding a positive constant « such that the conditional coercivity of the bilinear form
(Ecy, y) =K ||y||i,1 holds for all nonzero y € H'(R) which are orthogonal in L?(R) to both
V/(®,.) and ®/. Then it can be shown that the functional E (1) attains a local minimum at
@, subject to the constraint that V («) be constant. The latter condition can be removed by an
additional scaling argument.

In view of the above, to prove the unconditional orbital stability of the solitary waves of
(1.1), it is only necessary to obtain some spectral information about £, = E”(®.) + cV"(D,)
and to establish that the function d(c¢) = E(®,) + ¢V (P,) is convex. This will be done in the
next section.

5. Proof of stability

We will show that the problem falls within the framework of the general theory of Grillakis et al
[19], which was reviewed in the previous section. First, observe that, in term of the functionals
E and V introduced in the introduction, equation (3.2) can be written in the variational form as

E'(®.)+cV'(®:) =0, (5.1

where E'(®,) = —%be — 40} — @ and V/(®,) = P, are the Fréchet derivatives at . of E
and V, respectively. The functional derivative of E'(®.) +cV'(®,) is given by the self-adjoint
unbounded linear operator
Lo=E"(®)+cV'(P) =8> +c— D, —ad?.

It is elementary to check that £, : H?> — L? is self-adjoint with respect to the L’*-inner
product. Furthermore, since the potential ¢ — ®, — a®? approaches the asymptotic value ¢
exponentially as x — =00, it is well known that £, has essential spectrum [c, 0o) and there
are at most finitely many eigenvalues located to the left of c. Moreover, the nth eigenvalue
(counted from the left) has a unique eigenfunction (up to a constant multiple) with precisely
(n — 1) zeros [17]. However, since £,®! = 0 as can be seen by equation (3.1) and &/, has
exactly one zero it is immediate that zero is an eigenvalue of L., and there is exactly one
negative simple eigenvalue. Under these circumstances, the general theory provided by [19]
can be applied, and the stability of @, is determined by the convexity of the scalar function

d(c) = E(®,) +cV (D).

Differentiating d(c) and taking equation (5.1) into account, we find

d’()—lfoocpzds—l/w[ 4 }st
T2 T T2 e —bycosiZke]

Since the integrand is an even function, it can be seen that

AZ o] 1 2
d(c) = — d
© K/o {b+(1—b)cosh2z} ¢
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Since b < 1 by the discussion in section 3, the change of variables y = b + (1 — b) cosh? z
yields the simpler integral

d'(c) A2 fOO ! d
) =— .
k), Wo-ho-D "

Since b < 0 for@ > 0 and b > 0 for @ < O (cf. (3.5)), rewrite this integral as

A2 00 1 )
—/ 3 dy, ifaa <0
2K i yANO=-D(y -1

d'(c) = 2 oo |
—/ 3 dy, ifa>0.
2K iy O +1bDy =1
Once these integrals are evaluated, it is revealed that
A? 1++b 2
I3 +b V) Vb ——t, ifa <0,
de) = 4K 1—+b b
’ -32 ~12 —1+1p] 4 -
— (= B3 + 167 7 + 2 arctan +—1, ifa>0.
8K 2./1b] 14

Taking the definition of A, K and b in equations (3.3) or (3.4) and (3.5), respectively, into
account, and then differentiating this expression with respect to ¢ yields

72/c|2 + 12ca + 9c?a® F (2 + 6ca)v/1 + 6car}
V1 +6ca(l +6ca F+/1+6ca)(F1++/1+6ca)’

Verification of the positivity of this second derivative falls into three cases. First of all, it is
obvious that d”(c) is positive for A = A~ in the case when « > 0. On the other hand, for
A = A", and o > 0, the positivity of both the numerator and the denominator can also be
verified by elementary algebra. Finally, if « < 0, it can again be shown that the expression is
positive as long as « > —1/6¢ and ¢ > 0.

d"(c) = for A = AT,

6. Conclusion

As shown by the theorem proved in this paper, solitary-wave solutions of the eKdV equation
are nonlinearly stable with respect to small but finite-amplitude perturbations. Thus, these
waves are observable on the same level of description on which the equation is valid. Since
model (1.1) does not feature viscous or diffusive effects, stability of its solitary-wave solution
means that the model is inherently consistent, as neither viscosity nor diffusion are needed to
guarantee the stability of its solitary-wave solutions.

In the absence of changes in bathymetry or variations in the background stratification,
internal solitary waves appear to be remarkably stable in nature. Indeed, internal solitary
waves travel a great distance at sea, and also appear to be exceedingly stable in wave tank
experiments. As mentioned in the introduction, this stability does not depend on viscous or
diffusive effects, but is a consequence of the balance of nonlinearity and dispersion, which is
indeed captured by the model (1.1).

Acknowledgment

This work was supported in part by the Research Council of Norway.

11



J. Phys. A: Math. Theor. 43 (2010) 495205 H Kalisch and N T Nguyen

References

[1] AlbertJ P, BonaJ L and Henry D B 1987 Physica D 24 343
[2] Apel J R, Ostrovsky L A, Stepanyants Y A and Lync J F 2007 J. Acoust. Soc. Am. 121 695
[3] Benjamin T B 1967 J. Fluid Mech. 29 559
[4] Benjamin T B 1972 Proc. R. Soc. A 328 153
[5] Benjamin T B, Bona J B and Mahony J J 1972 Phil. Trans. R. Soc. London A 272 47
[6] Bennett D P, Brown R W, Stansfield S E, Stroughair J D and Bona J L 1983 Math. Proc. Camb. Phil. Soc. 94 351
[7]1 Benney D J 1966 J. Math. Phys. 45 52
[8] BonaJ L 1975 Proc. R. Soc. A 344 363
[9]1 BonalJ L, Souganidis P E and Strauss W A 1987 Proc. R. Soc. A 411 395
[10] Carr M and Davies P A 2006 Phys. Fluids 18 016601
[11] Choi W and Camassa R 1996 J. Fluid Mech. 313 83
[12] Craig W, Guyenne P and Kalisch H 2005 Commun. Pure Appl. Math. 58 1587
[13] Davis R E and Acrivos A 1967 J. Fluid Mech. 29 593
[14] Diamessis P J and Redekopp L G 2006 J. Phys. Oceanogr. 36 784
[15] Djordjevic V D and Redekopp L G 1978 J. Phys. Oceanogr. 8 1016
[16] Duda T F, Lynch J F, Irish J D, Beardsley R C, Ramp S R, Chiu C-S, Tang T Y and Yang Y-J 2004 IEEE J.
Ocean. Eng. 29 1105
[17] Dunford N and Schwartz J T 1988 Linear Operators vol 2 (New York: Wiley)
[18] Fringer O B and Street R L 2003 J. Fluid Mech. 494 319
[19] Grillakis M, Shatah J and Strauss W A 1987 J. Funct. Anal. 74 160
[20] Grimshaw R 2002 Stratified Flows (Boston: Kluwer) p 1
[21] Grimshaw R, Pelinovsky E and Poloukhina O 2002 Nonlinear Process. Geophys. 9 221
[22] Grimshaw R, Pelinovsky E, Talipova T and Kurkin A 2004 J. Phys. Oceanogr. 34 2774
[23] Grue J, Jensen A, Rusés P-O and Sveen J K 2000 J. Fluid Mech. 413 181
[24] Helfrich K R and Melville K 2006 Annu. Rev. Fluid Mech. 38 395
[25] Hurewicz W 1990 Lectures on Differential Equations (New York: Dover)
[26] Joseph R11977 J. Phys. A: Math. Gen. 10 225
[27] Kalisch H and Nguyen N T 2009 Electron. J. Differ. Equ. 2009 1-20
[28] Kenig C E, Ponce G and Vega L 1991 J. Am. Math. Soc. 4 323
[29] Kenig C E, Ponce G and Vega L 1993 Commun. Pure Appl. Math. 46 527
[30] Koop C G and Butler G 1981 J. Fluid Mech. 112 225
[31] Kubota T, Ko R D S and Dobbs L 1978 AIAA J. Hydronaut. 12 157
[32] Lamb K G 2002 J. Fluid Mech. 451 109
[33] Lee C-Y and Beardsley R C 1974 J. Geophys. Res. 79 453
[34] Miura R M, Gardner C S and Kruskal M D 1968 J. Math. Phys. 9 1204
[35] Ono H 1975 J. Phys. Soc. Japan 39 1082
[36] Ostrovsky L A and Grue J 2003 Phys. Fluids 15 2934
[37] Pelinovsky E, Poloukhina O and Lamb K 2000 Oceanology 40 757-65
[38] Stanton T P and Ostrovsky L A 1998 Geophys. Res. Lett. 25 2695
[39] Troy C D and Koseff J R 2005 J. Fluid Mech. 543 107
[40] Wunsch C and Ferrari R 2004 Annu. Rev. Fluid Mech. 36 281

12


http://dx.doi.org/10.1016/0167-2789(87)90084-4
http://dx.doi.org/10.1121/1.2395914
http://dx.doi.org/10.1017/S002211206700103X
http://dx.doi.org/10.1098/rspa.1972.0074
http://dx.doi.org/10.1098/rsta.1972.0032
http://dx.doi.org/10.1017/S0305004100061193
http://dx.doi.org/10.1098/rspa.1975.0106
http://dx.doi.org/10.1098/rspa.1987.0073
http://dx.doi.org/10.1063/1.2162033
http://dx.doi.org/10.1017/S0022112096002133
http://dx.doi.org/10.1002/cpa.20098
http://dx.doi.org/10.1017/S0022112067001041
http://dx.doi.org/10.1175/JPO2900.1
http://dx.doi.org/10.1175/1520-0485(1978)008<1016:TFADOI>2.0.CO;2
http://dx.doi.org/10.1109/JOE.2004.836998
http://dx.doi.org/10.1017/S0022112003006189
http://dx.doi.org/10.1016/0022-1236(87)90044-9
http://dx.doi.org/10.5194/npg-9-221-2002
http://dx.doi.org/10.1175/JPO2652.1
http://dx.doi.org/10.1017/S0022112000008648
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092129
http://dx.doi.org/10.1088/0305-4470/10/12/002
http://dx.doi.org/10.1002/cpa.3160460405
http://dx.doi.org/10.1017/S0022112081000372
http://dx.doi.org/10.2514/3.63127
http://dx.doi.org/10.1017/S002211200100636X
http://dx.doi.org/10.1029/JC079i003p00453
http://dx.doi.org/10.1063/1.1664701
http://dx.doi.org/10.1143/JPSJ.39.1082
http://dx.doi.org/10.1063/1.1604133
http://dx.doi.org/10.1029/98GL01772
http://dx.doi.org/10.1017/S0022112005006798
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122121

	1. Introduction
	2. Modeling considerations
	3. Solitary-wave solutions
	4. Review of stability theory
	5. Proof of stability
	6. Conclusion
	Acknowledgment
	References

