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a b s t r a c t

In this work, the influence of constant background vorticity on the properties of shockwaves in a shallow
water system are considered. It is shown that the flow-depth ratio of stationary shocks can bewritten as a
function of two non-dimensional parameters: the Froude number, suitably defined in the presence of the
shear flow, and a non-dimensional vorticity. Some properties of these hydraulic jumps are explored, and
it is shown that stronger background vorticity has the effect of moderating the strength of the hydraulic
jump.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Modeling of surface wave motion in a fluid is normally based
on classical systems which are obtained in the framework of ir-
rotational flow. In such a context, the influence of vorticity is
completely disregarded in the formulation of the governing equa-
tions. Although this consideration is justified in many circum-
stances, there are also a fair number of observed cases in near-
shore hydrodynamics and open channel flow where this approach
is unsuitable.

Indeed, there is ample evidence that vorticity may have a large
impact on wave motion in a variety of situations. For example, it
was recently shown that vorticity has significant influence on the
modulational stability of quasi-periodic wavetrains [1,2] as well as
the streamline pattern and pressure profiles in long waves [3–8].
The importance of vorticity in the modeling of free surface waves
has also been exhibited in recent studies of wave–current interac-
tion [9], the interaction of point vortices and vortex patches with
the free surface [10,11], the influence of non-constant vorticity on
small amplitude waves [12] and the creation of vorticity in long-
wave models [13].

In the current work, we are concerned with the interaction
of surface waves with an existing shear current. Such currents
are created by the action of wind stress at the free surface and
viscous stress at the bed, as well as tidal forcing. Once established,
these shear currents may be taken as background conditions when
studying individual surface waves. For example, the time scales
needed to create such currents through wind forcing are typically
much larger then the typical interaction time of a single wave with
such a current. Moreover, on small time scales, surface waves are

* Corresponding author.
E-mail addresses: henrik.kalisch@math.uib.no (H. Kalisch),

vincent.teyekpiti@math.uib.no (V. Teyekpiti).

relatively unaffected by viscosity, so that an inviscid theorymay be
used.

In order to avoid unduemathematical complexity, it is assumed
that the longwaves to be described are perturbations of an existing
background flow with a linear shear profile. This approach has
been used by a number of authors (see for example [6,14–19]),
and it has been indicated to approximate naturally occurring shear
flows fairly well [20]. In particular, it was shown in [21] that the
dispersion relation associatedwith a linear background shear gives
rather good agreement with experimentally measured dispersion
relation. It was also argued in [5] that linear shear flows can be
used as a first approximation to more general shear profiles in the
long-wave regime since the wavelength of the waves is then on a
different scale than the variation of the shear profile.

Very recently, a new shallow-water system incorporating con-
stant background shear has been found independently in [22–24].
Supposing a background shear flow of the form U(z) = Γ z, the
system is written in terms of the total flow depth H and horizontal
velocity perturbation u as

Ht +

(
Γ
2 H

2
+ uH

)
x
= 0, (1.1)(

Γ
2 H

2
+ uH

)
t
+

(
Γ 2

3 H3
+ Γ uH2

+ u2H +
1
2gH

2
)
x
= 0. (1.2)

The first of these equations describes mass conservation, and the
second arises from momentum conservation.

In the present contribution, this new system is used to un-
derstand the influence of vorticity on the properties of hydraulic
jumps. An analysis of shock-wave solutions of the system (1.1),
(1.2) detailed in the body of this paper shows that stationary
jumps can be described in terms of two non-dimensional numbers,
one being the Froude number, and the other incorporating the
background vorticity Γ . To be more precise, if HL is the upstream
flow depth and uL is the fluid velocity upstream of a stationary
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Fig. 1. Schematic representation of a linear shear flow over an even bottom.

jump, we define the Froude number by

Fr =
uL + Γ /2

√
gHL

,

and the non-dimensional vorticity by

Ω =
Γ 2H
6g

,

where g is the gravitational constant, and the factor 6 is chosen for
the sake of reaching a tidy expression in the final relation. These
two parameters completely determine the strength of the jump,
which is describedmathematically as the ratio α = HR/HL through
the cubic equation

Ωα3
+ (1 + Ω) α2

+ (1 + Ω) α − 2Fr2L = 0.

The derivation of this equation will be given in Section 4.
Our work is motivated in part by [25], where hydraulic jumps

were studied in the presence of variable vorticity. This paper made
an important contribution in the understanding of hydraulic jumps
as transient phenomena, and the authors of [25] were the first to
be able to simulate oscillation of the jump toe in a physically rea-
sonable way, obtaining a very closematch with experimental data.
While hydraulic jumps are classically compartmentalized using
the Froude number, one of the findings of [25] was that a hydraulic
jump does not simply depend on a single parameter, the upstream
Froude number, but also on the vorticity in the flow. In the current
work, we study hydraulic jumps using the simplifying assumption
of constant background shear. While our model is not able to
explain the creation of vorticity in a hydraulic jumpwhich featured
prominently in [25], we are able to quantify the dependence of
the strength of the hydraulic jump on the vorticity, and give fairly
simple closed-form solutions which we hope will prove useful in
practical studies investigating the influence of background shear
on the properties of hydraulic jumps.

A schematic representation of the problem setup is shown in
Fig. 1 where a channel of unit width and even bottom containing
a fluid with undisturbed depth h is considered. The elevation of
the free surface from its rest state is given by η(x, t) so that the
total depth at a point x and time t is given by H(x, t) = h + η(x, t).
The average horizontal velocity is denoted by u(x, t) and the total
velocity component is

v(x, t, z) ≡ U(z) + u(x, t) = Γ z + u, (1.3)

where U(z) is the linear shear current and Γ is constant. As shown
in [22–24], if the waves at the free surface are long enough com-
pared to the fluid depth h, the appropriate equations describing
the shear flow are given by (1.1) and (1.2). If the flow variables are
smooth so that the solutions are also smooth, then an equivalent
system has the form

∂tH + ∂x

(
Γ
2 H

2
+ uH

)
= 0, (1.4)

∂tu + ∂x

(
1
2u

2
+ gH

)
= 0. (1.5)

It is well known that in the case of discontinuous solutions, mass
andmomentumconservation could introduce a Rankine–Hugoniot
deficit in (1.5) which may raise an argument against the use of
(1.4)–(1.5) in favor of the system (1.1)–(1.2). However, (1.4)–(1.5)
is mathematically interesting and the theory contributing to the
progress of this system is fully elaborated and the Riemann prob-
lem and the initial value problem for this system can be resolved
adequately [26–28]. An analysis of these systems in the case of
zero vorticity is neatly presented in [29] where it is shown that
the combination of discontinuous free-surface solutions and bot-
tom step transitions naturally lead to singular solutions featuring
a Rankine–Hugoniot deficit. While the Eqs. (1.1) and (1.2) were
found in theworks [22–24], these authors did not consider the total
mechanical energy equation which must be considered in order to
provide a physical selection criterion on the admissibility of shock
waves. In the currentwork,we derive the energy equations and use
it to discard non-admissible shocks. As will be shown in Section 2,
energy conservation for the shear flow is formulated as(

Γ
2 uH

2
+

Γ 2

6 H3
+

1
2u

2H +
1
2gH

2
)
t
+(

3Γ
4 u2H2

+
Γ
2 gH

3
+

Γ 2

2 uH3
+

Γ 3

8 H4
+

1
2u

3H + guH2
)
x
= 0.

(1.6)

The plan of the paper is as follows: In Section 2, we formulate
the free surface problem for a shear flow over a flat bottom. The
derivation is based on the Euler equations for an incompressible
and inviscid fluid. In Section 3, the equations are analyzed and
mathematical properties of the flow variables are presented. Ex-
plicit expressions representingmass conservation andmomentum
conservation are obtained and it is shown that a shallowwater flow
over a flat bed in the presence of a linear shear current features
energy loss. In Section 4,we explain how to construct a steady state
solution for the linear shear flow by defining the Froude number in
terms of a depth-averaged integral.

2. Linear shear flow over flat bottom topography

The governing shallow water equations that describe the mo-
tion of incompressible and inviscid fluid are derived in this section.
We consider a flat-bottom channel with uniform width and set
the x-coordinate in the flow direction whilst the z-coordinate is
vertically upwards.

Consider a control volume of unit width enclosed by the flat
bottom, the free surface and the interval [x1, x2] such that x1 < x2
on the lateral sides. The mass of the incompressible, inviscid fluid
of uniform depth contained in the control volume is

M =

∫ x2

x1

∫ H(x,t)

0
ρ dz dx.

If the free surface and the flat bottom are impermeable so that no
transfer of mass occur there, then the physical hypothesis of mass
conservation requires that the rate of change of mass per unit time
is proportional to the mass flux through the lateral boundaries.
The mathematical idealization of this concept is expressed by the
integral equation

d
dt

∫ x2

x1

∫ H(x,t)

0
ρ dz dx

=

∫ H(x,t)

0
ρv(x1, t) dz −

∫ H(x,t)

0
ρv(x2, t) dz.

If the flow variables as well as the domain are smooth, then the
above equation can be written as

d
dt

∫ x2

x1

ρH(x, t) dx +

[∫ H(x,t)

0
ρ(Γ z + u(x, t)) dz

]x2

x1

= 0.
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If we have constant density ρ, we can divide through by (x2 −x1)ρ.
Then by letting x2−x1 → 0,we see that the integrandmust be zero,
so that we obtain the equation representing mass conservation in
the form

∂tH + ∂x

(
Γ

2
H2

+ uH
)

= 0.

In a similar manner, an expression representing momentum con-
servation in the control volume can be derived. If we suppose
that pressure force is the only force acting on the control volume,
then conservation of momentum is based on the physical principle
that the fluid is in a hydrostatic balance so that the pressure p =

p(x, z, t) is introduced. Applying this assumption in a fluid column
[x1, x2] × [z, z + ∆z] gives(
p(x̄, z + ∆z, t) − p(x̄, z, t)

)
(x2 − x1) = −(x2 − x1)ρg∆z,

for x̄ ∈ [x1, x2]. If the flow variables are smooth, then dividing
through by (x2 − x1)∆z and taking the limit as ∆z → 0 gives

dp
dz

= −ρg.

Integrating and normalizing the pressure to be zero at the surface
yields the relation

p(x, z, t) = ρg
(
H(x, t) − z

)
(2.1)

for the hydrostatic pressure. Considering the control volume de-
scribed above, the total horizontal momentum in the control vol-
ume is

I =

∫ x2

x1

∫ H(x,t)

0
ρv(x, t) dz dx.

Momentum conservation is obtained from Newton’s second law
which requires that the rate of change of total momentum is equal
to the net momentum flux through the lateral boundaries plus
the pressure forces acting on the boundaries. This is expressed
mathematically as

d
dt

∫ x2

x1

∫ H(x,t)

0
ρv(x, t) dz dx

=

∫ H

0
ρv2(x1, t) dz −

∫ H

0
ρv2(x2, t) dz

+

∫ H

0
p(x1, z, t) dz −

∫ H

0
p(x2, z, t) dz.

Substituting the total velocity in (1.3) and the pressure term in (2.1)
and simplifying yield

d
dt

∫ x2

x1

ρ

[(
Γ

2
H2

+ uH
)

t

+

(
Γ 2

3
H3

+ Γ uH2
+ u2H +

g
2
H2

)
x

]
dx = 0

Dividing through by (x2 − x1)ρ and taking the limit as (x2 −

x1) → 0 shows that the momentum conservation equation can
be expressed as(

Γ

2
H2

+ uH
)

t
+

(
Γ 2

3
H3

+ Γ uH2
+ u2H +

1
2
gH2

)
x
= 0.

As can be readily seen, for smooth solutions an equivalent for-
mulation is obtained by further algebraicmanipulation to yield the
variant form (1.4) and (1.5). Finally, we turn to the conservation of
energy. Totalmechanical energy in the control volume is expressed

as

d
dt

∫ x2

x1

∫ h+η

0
ρ

( 1
2 ṽ

2
+ gz

)
dzdx

=

[∫ h+η

0
ρ

( 1
2 ṽ

2
+ gz

)
ṽdz +

∫ h+η

0
ρ
(
h + η − z

)
ṽdz

]x1

x2

Substituting (1.3) and integrating in the z-direction gives∫ x2

x1

(
Γ
2 uH

2
+

Γ 2

6 H3
+

1
2u

2H +
1
2gH

2
)
t
+(

3Γ
4 u2H2

+
Γ
2 gH

3
+

Γ 2

2 uH3
+

Γ 3

8 H4
+

1
2u

3H + guH2
)
x
dx = 0.

Dividing through by (x1−x2) and taking the limit as (x1−x2) −→ 0
yield the energy conservation equation(

Γ
2 uH

2
+

Γ 2

6 H3
+

1
2u

2H +
1
2gH

2
)
t
+(

3Γ
4 u2H2

+
Γ
2 gH

3
+

Γ 2

2 uH3
+

Γ 3

8 H4
+

1
2u

3H + guH2
)
x
= 0,

which is the same as (1.6).

3. Mathematical description of the flow properties

We provide a discussion on the flow properties associated with
waves propagation in shallowwater in the presence of linear shear.
The characteristics in this case are found by first putting the equa-
tion in characteristic form. In conservative variables U = (H, u)T ,
(1.4) and (1.5) are expressed in matrix notation as

Ut + F(U)x = 0, (3.1)

where F(U)x = F′(U)Ux. The flux Jacobian F′(U) is

F′(U) =

(
Γ H + u H

1 u

)
. (3.2)

The eigenvalues of the Jacobian matrix are

λ− = u +
1
2
Γ H −

√
H +

( 1
2Γ H

)2
and

λ+ = u +
1
2
Γ H +

√
H +

( 1
2Γ H

)2
,

(3.3)

with λ− < λ+ for H ̸= 0 so that the system is strictly hyperbolic.
The corresponding right eigenvectors

r− =

⎛⎜⎝ 1

−
1
2
Γ −

1
H

√
H +

(
1
2
Γ H

)2

⎞⎟⎠ and

r+ =

⎛⎜⎝ 1

−
1
2
Γ +

1
H

√
H +

(
1
2
Γ H

)2

⎞⎟⎠ ,

(3.4)

are linearly independent and therefore, span the eigenspace in
the (H, u)-plane. Both characteristic fields are genuinely nonlinear
with

∇λ−(H, u) · r−(H, u) = −
6gH + 2Γ 2H2√
4gH + Γ 2H2

< 0

∇λ+(H, u) · r+(H, u) = +
6gH + 2Γ 2H2√
4gH + Γ 2H2

> 0.

(3.5)

It is well-known that a traveling hydraulic jump over a flat
bottom obeysmass conservation andmomentum conservation. To
describe the relation between the state variables on each side of
the jump, we assume that the discontinuity is located at the bore
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front. If we consider two constant states (H, u) = (HL, uL) and
(H, u) = (HR, uR), thenwe obtain from (1.1) and (1.2) the Rankine–
Hugoniot conditions

− s[H] +

[
Γ
2 H

2
+ uH

]
= 0, (3.6)

− s
[

Γ
2 H

2
+ uH

]
+

[
Γ 2

3 H3
+ Γ uH2

+ u2H +
1
2gH

2
]

= 0. (3.7)

Define [H] = HR−HL and [u] = uR−uL, where the subscripts L and
Rdenote the left and right states of thehydraulic jump respectively.
Then we can explicitly write

s(HR − HL) =
(

Γ
2 H

2
R + uRHR −

Γ
2 H

2
L + uLHL

)
,

s
(

Γ
2 H

2
R + uRHR −

Γ
2 H

2
L + uLHL

)
=

(
Γ 2

3 H3
R + Γ uRH2

R + u2
RHR

+
1
2gH

2
R −

Γ 2

3 H3
L + Γ uLH2

L + u2
LHL +

1
2gH

2
L

)
.

The shock speed, s, satisfies the Lax entropy condition [26,30]

λ−(HR, vR) < s < λ−(HL, vL), s < λ+(HR, vR), (3.8)

for a 1-shock and

λ+(HR, vR) < s < λ+(HL, vL), s > λ−(HL, vL), (3.9)

for a 2-shock and is expressed as

s =

Γ
2 H

2
R + uRHR −

Γ
2 H

2
L + uLHL

HR − HL

=

Γ 2

3 H3
R + Γ uRH2

R + u2
RHR +

1
2 gH

2
R −

Γ 2

3 H3
L + Γ uLH2

L + u2
LHL +

1
2 gH

2
L

Γ
2 H

2
R + uRHR −

Γ
2 H

2
L + uLHL

.

(3.10)

Considering the expressions on both sides of the last equality, we
obtain

(uR − uL)2 =
Γ 2

12HLHR
(HR − HL)4 + Γ (HR − HL)(uL − uR)

+
g
2
(HR + HL)(HR − HL)2

Simplifying this expression further gives the relation

uR − uL =
Γ

2

(
HR − HL

)
×

(
−1 ±

√
1
3 +

1
HL

(
HR
3 +

2g
Γ 2

)
+

1
HR

(
HL
3 +

2g
Γ 2

))
.

(3.11)

It is obvious to see that the relation between the states uR and uL
is either positive or negative and is dependent on the fluid depths
HR and HL on each side of the shock. It shall be shown how the
state variables H, u and s are related on each side of the hydraulic
jump but firstly, we write the shock speed in terms of the above
expression. Substituting this relation into Eq. (3.10) gives

s = uR +
Γ

2
HR ±

Γ

2
HL

√
1
3 +

1
HL

( HR
3 +

2g
Γ 2

)
+

1
HR

( HL
3 +

2g
Γ 2

)
= uL +

Γ

2
HL ±

Γ

2
HR

√
1
3 +

1
HL

( HR
3 +

2g
Γ 2

)
+

1
HR

( HL
3 +

2g
Γ 2

)
.

(3.12)

Schematics of shocks of the first and the second families and the
characteristic curves are shown in Figs. 2 and 3. As mentioned
earlier, a discontinuity propagating over a flat-bottom at a speed
s, given in (3.12), must respect mass conservation. In what fol-
lows, a mathematical expression representing mass conservation
through the discontinuity is obtained in terms of the shock speed.
From Eq. (3.6) we get

µ ≡
Γ

2
H2

R + (uL − s)HL =
Γ

2
H2

L + (uR − s)HR. (3.13)

Inserting the shock speed in (3.12) gives

µ = ∓
Γ

2
HLHR

√
1
3 +

1
HL

(
HR
3 +

2g
Γ 2

)
+

1
HR

(
HL
3 +

2g
Γ 2

)
. (3.14)

In a similar manner, conservation of momentum through the
hydraulic jump is derived from (3.7) as(

Γ
2 H

2
R + uRHR

) (
uR − c

)
+

Γ

2
uRH2

R +
Γ

3
H3

R +
1
2
gH2

R

=
(

Γ
2 H

2
L + uLHL

) (
uL − c

)
+

Γ

2
uLH2

L +
Γ

3
H3

L +
1
2
gH2

L .

Inserting (3.13) into the above expression leads to

µ
(

Γ
2 HR + uR

)
+

Γ

12
H3

R +
1
2
gH2

R

= µ
(

Γ
2 HL + uL

)
+

Γ

12
H3

L +
1
2
gH2

L . (3.15)

The Rankine–Hugoniot condition for Eq. (1.6) is

−s
[

Γ 2

6 H3
+

Γ
2 uH

2
+

1
2u

2H +
1
2gH

2
]

+

[
Γ 3

8 H4
+

Γ 2

2 uH3
+

3Γ
4 u2H2

+
Γ
2 gH

3
+

1
2u

3H + guH2
]

= 0.
(3.16)

The mechanical energy associated with the above Rankine–
Hugoniot condition dissipates in the discontinuity. Out of the dis-
continuity where the solution is smooth, the mechanical energy
is conserved. The hydraulic jump can therefore, be interpreted as
heat dumpwhich absorbs the excess energy of the fluid.We derive
in what follows a mathematical expression that represents the
energy loss. In order words, we show that an admissible shock
wave solution that satisfies the Rankine–Hugoniot condition in
(3.16) dissipates mechanical energy. From (3.16) we have

∆E = ER − EL, (3.17)

where

ER =

(
Γ 3

6 H4
R +

Γ 2

2 uRH3
R − s Γ 2

6 H3
R +

3Γ
4 u2

RH
2
R +

Γ
2 gH

3
R − s Γ

2 uRH2
R +

1
2u

3
RHR + guRH2

R − s 12u
2
RHR − s 12gH

2
R

)
,

(3.18)

and

EL =

(
Γ 3

6 H4
L +

Γ 2

2 uLH3
L − sΓ 2

6 H3
L +

3Γ
4 u2

LH
2
L +

Γ
2 gH

3
L − sΓ

2 uLH2
L +

1
2u

3
LHL + guLH2

L − s 12u
2
LHL − s 12gH

2
L

)
.

(3.19)

ER and EL represent the energy on the right and the left of the
hydraulic jump. It is obvious from (3.12) that the discontinuity can
propagate either to the right or to the left. For a right going shock
for instance, ER represents the mechanical energy after the discon-
tinuity while EL symbolizes the energy before the discontinuity.
Through the jump, we have

∆E =
( 1
2u

2
R +

1
2gHR

) (
(uR − s)HR +

Γ
2 H

2
R

)
−

( 1
2u

2
L +

1
2gHL

) (
(uL − s)HL +

Γ
2 H

2
L

)
+

Γ 3

8

(
H4

R − H4
L

)
+

Γ 2

2

(
uRH3

R − uLH3
L

)
−

sΓ 2

6

(
H3

R − H3
L

)
+

Γ
2

(
u2
RH

2
R − u2

LH
2
L

)
−

sΓ
2

(
uRH2

R − uLH2
L

)
+

gΓ

4

(
H3

R − H3
L

)
+

g
2

(
uRH2

R − uLH2
L

)
.

Applying the expressions for mass conservation and momentum
conservation through the discontinuity (see Eqs. (3.13) and (3.15))
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Fig. 2. Schematic representation of a linear shear flow over an even bottom. S2 is a shock of the second family.

Fig. 3. Schematic representation of a linear shear flow over an even bottom. S1 is a shock of the first family.

give

∆E =
µ

2

((
(uR − s) +

Γ
2 HR

)2
−

(
(uL − s) +

Γ
2 HL

)2
+

Γ 2

4 (H2
R − H2

L ) + 2g(HR − HL)
)

.

By focusing on the first two terms on the right hand side, it is noted
from (3.13) that(
(uR − s) +

Γ
2 HR

)2
=

(
Γ
2 HL

)2 (
1
3 +

1
HL

(
HR
3 +

2g
Γ 2

)
+

1
HR

(
HL
3 +

2g
Γ 2

))
,(

(uL − s) +
Γ
2 HL

)2
=

(
Γ
2 HR

)2 (
1
3 +

1
HL

(
HR
3 +

2g
Γ 2

)
+

1
HR

(
HL
3 +

2g
Γ 2

))
.

Substituting these relations into the preceding expression for the
energy loss, we get

∆E = −µ(HR − HL)3
(

Γ 2(HL + HR) + 6g
24HLHR

)
. (3.20)

Notice firstly, that the fractional term on the right hand side is
strictly positive. It is noted also that HL ̸= HR if and only if
vL ̸= vR. Consequently, the mechanical energy loss through the
discontinuity requires that

µ(HR − HL)3 > 0. (3.21)

This inequality together with mass conservation through the dis-
continuity (see Eq. (3.13)) and the total velocity component (1.3)
give the following conditions

HR > HL ⇐⇒ vR > s and vL > s,

HR < HL ⇐⇒ vR < s and vL < s.
(3.22)

The first condition in (3.22) simply describes a hydraulic jump
in which the fluid depth on the right is larger than that on the left.
In this case, the propagating shock speed s is greater than the fluid
velocities on both sides of the jump. In other words, we say that

the shear flow traveling at speed vL hit the shock from the left and
become mitigated as they emerge from the shock with traveling
speed vR. The same explanation holds for the second condition.
From the mass conservation through the hydraulic jump given in
(3.13) and Eqs. (3.11) and (3.12), it is found that the relation

vR − vL = −
µ(HR − HL)

HRHL
, (3.23)

holds. Applying the strictly positive inequality in (3.21) gives the
relation

vR < vL. (3.24)

In Fig. 3, a propagating 1-shock moving to the left is shown
where the shock speed is larger than the characteristic speeds
on left side of the shock but lower than those on the right. The
characteristics emanating from x > 0 and x < 0 propagate into
the shock. The conditions (3.22) and (3.24) play an important role
in analyzing the Rankine–Hugoniot jump condition for the shear
flow. In fact it can be shown that the shock given in (3.12) satisfies
these conditions. For HR > HL, we have a 1-shock, s = S1, such
that

vR > uR +
Γ

2
HR > uR +

Γ

2
HR

−

√
1
3

+
1
HL

(
HR

3
+

2g
Γ 2

)
+

1
HR

(
HL

3
+

2g
Γ 2

)
= S1.

The inequality vL > s is proved in like manner and justifies the
first condition in (3.22) Similarly, HR < HL gives a 2-shock, s = S2,
satisfying

vR < uR +
Γ

2
HR +

Γ

2
HL

< uR +
Γ

2
HR

+
Γ

2
HL

√
1
3

+
1
HL

(
HR

3
+

2g
Γ 2

)
+

1
HR

(
HL

3
+

2g
Γ 2

)
= S2.
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Fig. 4. The momentum function M/g is plotted against the flow depth for various
strengths of vorticity. The dashed line shows the irrotational case Γ = 0. The other
curves show the respective cases of the strengths of the vorticity Γ .

4. Steady state solution

We analyze the hydraulic jump by using the Froude number
which is defined in such a way that it takes into account the
average flow velocity over the entire fluid depth. In dimensionless
variables, the depth averaging integral gives

Fr =

1
H

∫ H
0 U + u dz
√
gH

.

By using (1.3), the Froude number simplifies to

Fr =
u +

Γ
2 H

√
gH

.

The analysis is based on the hypothesis that the hydraulic jump
is stationary and that the velocity and water depth increase across
the jump. Ifwe letΛ represent the volume flow rate per unitwidth,
then the conservation of mass necessitates that

Λ = uLHL +
Γ

2
H2

L = uRHR +
Γ

2
H2

R , (4.1)

be satisfied. Using the concept of momentum conservation ex-
plained above, an expression for the momentum conservation
across the discontinuity is obtained in the form

Γ 2

3
H3

L + Γ uLH2
L + u2

LHL +
1
2
gH2

L

=
Γ 2

3
H3

R + Γ uRH2
R + u2

RHR +
1
2
gH2

R . (4.2)

In particular, if we define M =
Γ 2

3 H3
+ Γ uH2

+ u2H +
1
2gH

2

the quantityM/g is the analogue of the momentum function used
in hydraulic engineering. Since M needs to be preserved through
a stationary jump, for a given volume flow rate per unit width Λ,
one can find the conjugate flow depths by plotting the curve

M =
1
12

Γ 2H3
+

Λ2

H
+

1
2
gH2.

Such a plot is shown in Fig. 4 for Λ = 10 and a variety of
background vorticities ranging from Γ = 0 to Γ = 3. On the other
hand, Fig. 5 shows the graphs for a fixed Γ = 1.5 but for a variety
of values of Λ.

Fig. 5. The momentum function M/g is plotted against the flow depth H for
constant vorticity Γ = 1.5 and different values of the flow rate per unit width
Λ.

Fig. 6. The ratio of right to left Froude numbers α plotted against the left Froude
number FrL for various strengths of vorticity Ω . The dashed curve depicts the
irrotational case.

If we substitute the expression forΛ into relation (4.2), thenwe
get

Λ2
(

1
HR

−
1
HL

)
=

Γ 2

12

(
H3

L − H3
R

)
+

1
2
g
(
H2

L − H2
R

)
. (4.3)

Substituting the expression for the Froude number stated above
and carrying out further algebraic simplification gives the cubic
function

Γ 2

6g
HLα

3
+

(
1 +

Γ 2

6g
HL

)
α2

+

(
1 +

Γ 2

6g
HL

)
α − 2Fr2L = 0, (4.4)

where α = HR/HL is the ratio of depths. Note that the strength
of vorticity depends on the non-dimensional parameter Ω =

HLΓ
2/6g , so that we can write the equation in the final form

Ωα3
+ (1 + Ω) α2

+ (1 + Ω) α − 2Fr2L = 0. (4.5)

The cubic equation can be solved for any value of Ω . Fig. 6 shows
a plot of α as a function of FrL for a number of values of the
vorticity Γ . It is apparent that larger values of Ω have the effect
of moderating the strength of the hydraulic jump.
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