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Abstract. Two-dimensional inviscid channel flow of an incompressible fluid is considered. It
is shown that if the flow is steady and features no horizontal stagnation, then the flow must
necessarily be a parallel shear flow.
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1. Introduction

We consider the problem of steady two-dimensional channel flow. This flow is an important test case for
stability theories, and there is a vast body of work concerning the stability of parallel shear flows both
in the viscous and inviscid case [5]. For instance, in the inviscid case, one may find conditions on the
stability of the flow with respect to inflection points of the horizontal velocity profile. Theses studies
also include the investigation of critical layer flows [5] which feature the famous cat’s eye [20], and also
appear in the study of surface waves [24]. One may also consider channel flows under the influence of the
Coriolis force [16]. There have also been studies of the stability of non-parallel steady flows, such as in
[11] for the case of bounded domains and periodic flows.

In the viscous case, the study of instability of steady flows is also an active field of research [13,23,26].
The channel flow is one of the most important examples in the study of transition to turbulence [22], and
the recent discovery of unstable traveling waves in viscous channel and pipe flow has given new impetus
to the study of transition from laminar flow to turbulence [25].

It follows from the result of this note that there cannot be any steady translational structures in two-
dimensional inviscid channel flow, unless the flow contains points where the horizontal component of the
particle velocity is equal to the phase speed of the steady profile.

Imagine a fluid contained in a horizontal channel of uniform width and depth, and with an idealized
infinite expanse in the principal horizontal direction. Suppose the fluid is incompressible and inviscid,
and the flow is two-dimensional in the sense that the variation of the flow in the direction transverse to
the direction of propagation is negligible. One possible configuration is that the flow is a parallel shear
flow, in other words, the velocity is directed exclusively in the horizontal direction. On the other hand
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Figure 1. A smooth periodic streamline pattern. In this case, the height of the channel is
H = 1. It follows from Theorem 1.1 that this kind of steady flow cannot exist in an inviscid
fluid.

one might imagine other types of coherent structures, such as the case where the flow is steady, and the
streamlines are periodic in the direction of propagation (cf. Figure 1). The main result of this note is
the proof that such structures do not exist unless the horizontal particle velocity becomes equal to the
propagation velocity of the profile. At such points, the internal structure starts to break, and this can
be a starting point for the creation of turbulence.

The result may be rephrased by saying that, in the absence of viscosity and internal breaking, the only
possible two-dimensional steady flow is the parallel shear flow. To prove this result, we bring techniques
to bear which have been previously used mainly for free-surface problems [2–4, 9, 18, 19]. In particular,
we use a hodograph transform to put the equations in a convenient form where a maximum principle can
be applied.

Before the theorem is formalized, let us recall the equations for two-dimensional channel flow. As
the fluid is assumed to be inviscid, the governing equations are the Euler equations, supplemented with
appropriate boundary conditions. Let x denote the horizontal, and y the vertical variable. We assume
that there is no variation of the flow in the transverse direction, so that the flow is two-dimensional. The
coordinates are chosen such that the top of the channel is at height y = H, and the bottom is at y = 0.
Let u(x, y, t) and v(x, y, t) be the horizontal and vertical velocity of the fluid, respectively. The Euler
momentum equations are

ut + uux + vuy = −px,
vt + uvx + vvy = −py,

}

(1.1)

where p(x, y, t) is the dynamic pressure. For convenience, the density of the fluid is assumed to be unity.
Note that since no free surface is involved, gravity plays no role in this problem. The incompressibility
is expressed by the condition that

ux + vy = 0. (1.2)

At the top and bottom, the fact that the fluid cannot flow through the boundary is expressed by the
condition

v = 0 on y = H, (1.3)

and

v = 0 on y = 0. (1.4)
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Now assume that the solution is given by a steady profile. By a steady profile, we mean a profile which
propagates to the right or to the left at a fixed phase speed c without changing its shape over time. For such
steady solutions, the velocity (u, v), and the pressure P depend only on the quantity x− ct, rather than
on x and t separately. Thus we may write the dependent variables in the form u(x, y, t) = U(x−ct, y)+c,
v(x, y, t) = V (x− ct, y), and p(x, y, t) = P (x− ct, y). The momentum equations are then

UUx + V Uy = −Px,
UVx + V Vy = −Py,

}

(1.5)

and the incompressibility and boundary conditions have not changed. Now it is evident that a parallel
shear flow U(x, y) = U0(y), V (x, y) = 0 with constant pressure is a solution of (1.5). The question
then arises whether there are steady flows other than parallel shear flows. In this paper, it is shown
that if there are no points, where the internal structure start to break, i.e. where U = 0, then the only
possible steady flow is a parallel shear flow. In the original reference frame (i.e. equations (1.1)), this
condition requires that the horizontal component of the particle velocity be less than the phase velocity
of the steady profile, i.e. |u| < |c|. In light of these considerations, the main result of this paper may be
formulated as follows.

Theorem 1.1. Let U , V and P describe a steady solution of (1.5), (1.2), (1.3) and (1.4) with U > 0.
Then V ≡ 0.

In the next section, the problem will be formulated in terms of the stream function. Some preliminary
observations will be made, and the crucial maximum principle to be used in the proof of Theorem 1.1
will be recalled. Then in Section 3, the proof of Theorem 1.1 will be given.

2. Preliminaries

Assume that a solution such as described in Theorem 1.1 exists. The incompressibility guarantees the
existence of the stream function ψ which is defined by requiring that

ψx = −V and ψy = U = u− c.

We may normalize the stream function to be 0 on the boundary y = 0. Defining the mass flux (in the
traveling frame) across a vertical line (x, y) = (x0, y) in the channel by

Qm =

∫ H

0

U(x0, y) dy, (2.1)

it appears that then ψ takes the value Qm on the upper boundary y = H. To normalize the problem
we assume that the profile is traveling in the direction of decreasing x-values (to the left) in the inertial
frame, so that c < 0. In that case, Qm which is defined in the moving reference frame is positive since
the absence of internal breaking implies |u| < |c|, so that U = u − c > 0. The definition of the stream
function shows that

−△ψ = ω,

where ω(x, y) = Vx − Uy is the vorticity of the flow at a point (x, y) in the fluid. Now it can be shown
that if U > 0, then the vorticity is constant on any streamline, so that it is given by

ω = γ(ψ), (2.2)

for some function γ : [0, Qm] → R. For the proof of this fact, note that it can be shown from the
momentum equations that locally, the gradients of ω and ψ are collinear. For the proof that this relation
extends to a global one, see [3].
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The problem (1.2), (1.3) and (1.4) may now be formulated in terms of the stream function ψ as follows.
The equation for the stream function is

△ψ = −γ(ψ) on 0 < y < η(x), (2.3)

and the boundary conditions are

ψ = Qm on y = H,
ψ = 0 on y = 0.

}

(2.4)

The momentum equations (1.5) have been used to show the existence of the vorticity function γ. Now
in order to prove that V ≡ 0, it is tempting to differentiate equation (2.3) to find an elliptic problem for
V = −ψx. Such an approach has been used successfully in [8], but it does not appear to work in the
present case, because there are no natural conditions to be imposed on the derivative γ′(ψ). However,
as we will see in the next section, the problem can be transformed into a different form in which it is
amenable to maximum principle methods.

The version of the strong maximum principle for elliptic partial differential operators to be used here
can be found on page 35 in [12]. Suppose we have an elliptic operator of the form

L = A11(x, y)∂xx +
{

A12(x, y) +A21(x, y)
}

∂xy + A22(x, y)∂yy + B1(x, y)∂x + B2(x, y)∂y + C(x, y),

where A12 = A21.

Theorem 2.1. Let L be locally uniformly elliptic in the domain Ω, and let λ(x, y) be the minimum

eigenvalue of the symmetric 2 × 2-matrix with the components Aij(x, y). Let C(x, y) ≤ 0, and suppose

that C/λ is locally bounded. Suppose the function w is twice continuously differentiable and satisfies

Lw = 0. If w achieves a non-negative maximum or a non-positive minimum in the interior of the

domain Ω, then w is constant on Ω.

This theorem is standard in the theory of elliptic equations. However, one important feature of this
maximum principle is that it holds on unbounded domains.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on further equivalent formulation of the problem based on a type of
hodograph transformation. We introduce the new independent variables χ = x and ξ = ψ, and the new
dependent variable Y (χ, ξ) = y. This transformation was introduced by Dubreil-Jacotin [6], but we use
it in a way which is similar to the work presented in [3]. However, since the variables are normalized
somewhat differently, different notation than in [3] is used. Note that the transformation is a one-to-one
change of variables so long as ψy > 0, which is guaranteed by the assumption that U > 0. Furthermore,
in [3] it was proved that the relations

Yχ =
V

U
, Yξ =

1

U
,

and

U =
1

Yξ
, V =

Yχ
Yξ

hold. Moreover, it is immediate that the derivatives transform in the following way:

∂x = ∂χ −
Yχ
Yξ
∂ξ, ∂y =

1

Yξ
∂ξ.

Now, as in [3, 9], it can be verified that the equation (2.3) transforms into the following equation for Y :
(

1 + Y 2

χ

)

Yξξ − 2YχYξYχξ + Y 2

ξ Yχχ − γ(ξ)Y 3

ξ = 0. (3.1)
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The domain of Y is the infinite strip Ω =
{

(χ, ξ) ∈ R
2
∣

∣0 < ξ < Qm

}

, and the boundary conditions are
given by Y (χ, 0) = 0 and Y (χ,Qm) = H.

Recall that our aim is to show that V ≡ 0. Contemplating the relation Yχ = V
U

= v
u−c

and the
assumption that u− c > 0, it is plain that this goal will be accomplished if it can be shown that Yχ ≡ 0.
To find an equation for Yχ, we differentiate (3.1) with respect to χ to obtain

2YχYχχYξξ + Yξξχ + Y 2

χYξξχ − 2YχχYξYχξ − 2YχYξχYχξ − 2YχYξYξχχ

+ 2YξYξχYχχ + Y 2

ξ Yχχχ − 3γ(ξ)Y 2

ξ Yξχ = 0.

This reduces to the expression

2YχYχχYξξ + Yξξχ + Y 2

χYξξχ − 2YχY
2

χξ − 2YξYχYξχχ + Y 2

ξ Yχχχ − 3γ(ξ)Y 2

ξ Yξχ = 0.

Collecting the second, third, fifth and sixth terms in one bracket, and defining w = Yχ, we gain the
equation

{

wξξ + Y 2

χwξξ − 2YξYχwξχ + Y 2

ξ wχχ

}

+
{

2YχYξξwχ − 3γ(ξ)Y 2

ξ wξ

}

− 2Y 2

ξχw = 0.

Thus w satisfies the equation Lw = 0, where the operator L is defined by

L =
{

(1 + Y 2

χ )∂ξξ − 2YξYχ∂ξχ + Y 2

ξ ∂χχ
}

+
{

2YξYξχ∂χ − 3γ(ξ)Y 2

ξ ∂ξ
}

− 2Y 2

ξχ.

This operator is elliptic, as can be seen by observing that the matrix

A =

(

1 + Y 2

χ −YχYξ
−YχYξ Y 2

ξ

)

is positive-definite. Indeed we have 1 + Y 2

χ > 0 and det(A) = Y 2

ξ > 0 since Yξ = 1

U
= 1

u−c
> 0. Thus it

follows that L is locally uniformly elliptic. The first-order terms have the coefficients B1 = 2YχYχξ and
B2 = −3γ(ξ)Y 2

χ whose signs do not play a role. Finally, note that

C(χ, ξ) = −2Y 2

ξχ ≤ 0,

and if λ(χ, ξ) denotes the lowest eigenvalue of the matrix A at a point (χ, ξ), then the function C/λ
is locally bounded (on any compact set). From the boundary condition Y (χ,Qm) = H, we obtain
w = Yχ = 0 on ξ = Qm. From Y (χ, 0) = 0, it follows that w = Yχ = 0 on ξ = 0.

Now the strong maximum principle for locally uniformly elliptic operators with C ≤ 0 as stated in
Theorem 2.1 implies that if Lw = 0, then the function w cannot assume a non-negative maximum or
non-positive minimum in the interior unless it is constant. Since w is identically 0 on the top and bottom
of the strip Ω it cannot take any other value in the interior. Thus w ≡ 0. Since V =

Yξ

Yχ
= w

U
, and U > 0,

we conclude that V ≡ 0, and the flow is a parallel shear flow.

4. Conclusion

Theorem 1.1 shows that there are no steady translatory streamline patterns in two-dimensional inviscid
channel flow unless the flow also features points where U = 0, which corresponds to an internal fluid
structure which is starting to break.

On the other hand, smooth coherent structures in the channel flow might exist in the presence of
molecular viscosity. However, the balance is then most likely between nonlinearity and viscous dissipation
at the boundaries.

It is interesting to note that the breaking criterion U = 0 can also be applied to model equations for
waves at a free surface, such as the Boussinesq system. In this case, a limiting amplitude for the existence
of traveling waves can be found [1]. Note also that a time-dependent analysis of a singular profile in the
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viscous case has been provided in [10]. Moreover, one may also study the effects of bottom topography
and three-dimensional effects [17].

Still another possibility allowing the existence of smooth coherent structures is if the density of the
fluid is not homogeneous. In this case, gravity cannot be eliminated from the problem, and the restoring
force is due to buoyancy. Indeed, such a configuration has been investigated in [7], and in many other
works since.
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