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Abstract. In this note, we prove local-in-time well-posedness for a fully dis-

persive Boussinesq system arising in the context of free surface water waves

in two and three spatial dimensions. Those systems can be seen as a weak
nonlocal dispersive perturbation of the shallow-water system. Our method of

proof relies on energy estimates and a compactness argument. However, due

to the lack of symmetry of the nonlinear part, those traditional methods have
to be supplemented with the use of a modified energy in order to close the a

priori estimates.

1. Introduction

Consideration is given to the one-dimensional fully dispersive Boussinesq system

(1.1)

{
∂tη +K(D)∂xu+ ∂x(ηu) = 0 ,
∂tu+ ∂xη + u∂xu = 0 ,

where x ∈ R, t ∈ R, η(x, t) ∈ R and u(x, t) ∈ R, and its two-dimensional counter-
part

(1.2)

{
∂tη +K(D)∇ · u +∇ · (ηu) = 0 ,
∂tu +∇η + 1

2∇|u|
2 = 0 ,

for x ∈ R2, t ∈ R, η(x, t) ∈ R and u(x, t) ∈ R2, where K(D) is a nonlocal oper-
ator related to the dispersion of the linearized water-wave system in finite depth.
Namely, K(D) is defined as a Fourier multiplier associated with the symbol

(1.3) K(ξ) =
tanh(|ξ|)
|ξ|

(
1 + β|ξ|2

)
,

where β is a nonnegative dimensionless number related to the surface tension (see
[25]).

Those systems were proposed in [21, 1, 19] as approximate models for the study
of surface water waves, and provide a two-directional alternative to the well known
Whitham equation. We also refer to [14, 8, 7, 6] for other versions of full-dispersion
Boussinesq type systems. The unknowns η and u in (1.1) represent respectively the
deflection of the free surface from its equilibrium position (η = 0) and the velocity
at the free surface, while the bottom is assumed to be at constant depth h = −1.
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The one-dimensional Whitham equation

(1.4) ∂tu+W(D)∂xu+ u∂xu = 0 ,

where x ∈ R, t ∈ R, u = u(x, t) ∈ R and W(D) is the Fourier multiplier associated

with the symbol W (ξ) :=
√
K(ξ), was introduced by Whitham in [30] as an alter-

native to the Korteweg-de Vries (KdV) equation by keeping the exact dispersion of
the linearized water waves system in finite depth. This equation has drawn quite a
bit of attention lately. In particular, it displays, in the case of pure gravity waves
(β = 0), several interesting phenomena already predicted by Whitham: a solitary
wave regime close to KdV [9], the existence of a wave of greatest height (Stokes
wave) [11], the existence of shocks [13], and modulational instability of steady pe-
riodic waves [15, 26]. Note that when surface tension is taken into account (β > 0),
the dynamics of (1.4) appears to be completely different (see [19] and the references
therein). Moreover, it was proved to be a relevant water wave model in the long
wave regime on the same time scale as the KdV equation [21, 19].1 We also refer
to [4, 29, 19] for other interesting numerical simulations.

Returning to the full-dispersion systems (1.1) and (1.2), it has been shown in
[10] that (1.1) is locally well-posed in the case of pure gravity waves (β = 0) if one
makes the assumption that the initial elevation η is bounded by below by a positive
constant. No results seem to be known when surface tension is taken into account,
i.e. in the case β > 0.

Our main result in this note is a proof of well posedness for systems (1.1) and
(1.2) in the case of β > 0 under a non-cavitation assumption on the initial surface
elevation η(·, 0).

Definition 1.1. Let d = 1 or 2 and s > d
2 . We say that the initial elevation

η0 ∈ Hs(R2) satisfies the non-cavitation condition if

(1.5) ∃h0 ∈ (0, 1) such that 1 + η0(x) ≥ h0, ∀x ∈ Rd .

Remark 1.2. The non-cavitation condition (1.5) is a physical condition meaning
that the elevation of the initial wave cannot touch the bottom of the fluid.

Theorem 1.3. Assume that β > 0.
(i) Let s > 5

2 . Let (η0, u0) ∈ Hs(R) × Hs+ 1
2 (R) satisfying the non-cavitation

condition (1.5). Then, there exists a positive time T = T (‖(η0, u0)‖
Hs×Hs+

1
2

),

(which can be chosen as a non-decreasing function of its argument), and a unique
solution (η, u) to (1.1) satisfying

(1.6) (η, u) ∈ C
(
[0, T ] : Hs(R)×Hs+ 1

2 (R)
)

and (η(·, 0), u(·, 0)) = (η0, u0) .

In addition, the flow function mapping initial data to solutions is continuous.

(ii) Let s > 3. Let (η0,u0) ∈ Hs(R2) × Hs+ 1
2 (R2)2 satisfying the non-cavitation

condition (1.5) and such that curlu0 = 0. Then, there exists a positive time T =
T (‖(η0,u0)‖

Hs×Hs+
1
2×Hs+

1
2

), (which can be chosen as a non-decreasing function of

its argument), and a unique solution (η, u) to (1.2) satisfying

(1.7) (η,u) ∈ C
(
[0, T ] : Hs(R)×Hs+ 1

2 (R)2
)

and (η(·, 0),u(·, 0)) = (η0,u0) .

In addition, the flow function mapping initial data to solutions is continuous.

1More precisely it was proved to be consistent with the KdV equation on those time scales.
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Remark 1.4. The same results also hold in the periodic case. The proof is similar
up to small changes in the commutator estimates (see for example [17]).

Remark 1.5. The time of existence T in Theorem 1.1 with respect to the parameter
β satisfies T (β) . β. In particular T (β)→ 0, when β → 0. Note that in the case of
pure gravity waves (β = 0), system (1.1) is probably ill-posed2 unless one makes the
nonphysical assumption that η ≥ c0 > 0 as in [10]. One interesting observation is
that the present situation appears to be similar to the case of the nonlinear Kevin-
Helmholtz problem for two-fluid interfaces, where the criterion established in [22]
explains why capillarity is necessary for the well-posedness of the system, but does
not affect the long-time dynamics.

For the sake of simplicity, we will renormalize the system and assume that β = 1
in the following.

Remark 1.6. We do not consider here the system in the long-wave regime as it was
done in [19], since our method of proof does not seem to provide, at least directly,
good lower bounds for the existence time with respect to the small parameter ε
measuring the size of the dispersive and nonlinear effects, which are of the same
order in this regime. It remains nevertheless an interesting issue to prove that
systems (1.1) and (1.2) are locally well posed over large time as it was done for
some of the (a, b, c, d)-Boussinesq systems [27, 3, 28].

The proof of Theorem 1.3 is based on energy estimates and a standard compact-
ness argument. The main difficulty lies in the lack of symmetry of the nonlinearity
in (1.1). Indeed, a direct energy estimate at the Hs × Hs+ 1

2 level3 in the one
dimensional case gives only (for s large enough)

d

dt

(
‖η(t)‖2Hs + ‖u(t)‖2

Hs+
1
2

)
.
(
1 + ‖η(t)‖Hs + ‖u(t)‖

Hs+
1
2

)(
‖η(t)‖2Hs + ‖u(t)‖2

Hs+
1
2

)
+

∣∣∣∣∫ ηJsx∂xuJ
s
xη

∣∣∣∣(1.8)

where Jsx denotes the Bessel potential of order −s. Note that the last term on
the right-hand side of (1.8) cannot be handled directly by integration by parts or
commutator estimates.

In the absence of dispersion, it is well-known that one can symmetrize the system
by using hyperbolic symmetrizers. We refer for example to [21] for the shallow water
system. This technique can be adapted in a nontrivial way when one adds a local
dispersive perturbation to the system [27, 28]. However, it is not clear whether it
still applies for the systems (1.1) and (1.2)4.

Here, we use instead a modified-energy method. The idea is to add the lower-
order cubic term

∫
η(Jsxu)2 to the energy. The linear contribution of the derivative

of this term will cancel out the last term on the right-hand side of (1.8), while
the contribution coming from the nonlinear terms can easily be controlled. This
approach enables us to close the energy estimate. A similar argument can be used to
derive an energy estimate for the difference of two solutions. Once these estimates
are established, the proof proceeds using bootstrapping and classical compactness

2We refer to [19] for an heuristic argument of this fact.
3The scaling Hs ×Hs+ 1

2 is needed to cancel out the linear terms
4Note that the technique may work for some other systems with a nonlocal dispersion. We

refer for example to [31] for a nonlocal dispersive system in the context of internal wave.
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arguments. Finally, it is worth noticing that the non-cavitation condition on the
initial data, which propagates through the flow of (1.1), is needed to ensure the
coercivity of the modified energy.

The proof in the 2 dimensional case is very similar. This time the energy needs
to be modified by the term

∫
η|Jsxu|2. Moreover, we also need to assume a curl-free

condition on the initial velocity u0. Note that this condition is preserved by the
flow of (1.2). When u is curl-free, the term 1

2∇|u|
2 can be written as two transport

terms, namely (u·∇u1,u·∇u2)T , where u = (u1, u2)T . This fact enables us to close
the energy estimates for this term by using the Kato-Ponce commutator estimates
(see for example Lemma 4.2. in [23]). Note that our proof would also work, without
the curl-free assumption on u, when considering a nonlinearity of the form

(
u ·∇

)
u

instead of ∇|u|2 in the second line of (1.2). For the sake of simplicity, we will focus
below on the proof in the one-dimensional case and will indicate in the last section
what are the main changes in the two-dimensional case.

The use of a modified energy is well-known to be a powerful tool in the study
of nonlinear partial differential equations. We refer among others to [20, 17] (well-
posedness results for higher-order KdV type equations), [12] (long time existence
results for small initial data for the Burgers-Hilbert equation) and [24] (growth of
Sobolev norm for NLS) for some applications of the modified energy methods in
related contexts. The method of proof introduced here seems to be quite general
and we hope that it will have further applications to other weakly dispersive and
nonlocal perturbations of nonlinear hyperbolic systems.

The paper is organized as follows: in Section 2, we give the notations and recall
some commutator estimates. Section 3 and 4 are devoted to the proof of the energy
estimates respectively for a solution and for the difference of two solutions. Finally,
we give the proof of Theorem 1.3 (i) in Section 5 and explain the main changes for
the two-dimensional case in Section 6.

2. Notations and preliminary estimates

2.1. Notations.

• Throughout the text, c will denote a positive constant which may change
from line to line. Also, for any positive numbers a and b, the notation a . b
means that a ≤ cb.
• The operator F denotes the Fourier transform. We often write F(f)(ξ) =

f̂(ξ).

• In one dimension, H will denote the Hilbert transform, i.e
(
Hf
)∧

(ξ) =

−isgn(ξ)f̂(ξ).
• In two dimensions, Rj , j = 1, 2, will denote the Riesz transforms, i.e.(
Rjf

)∧
(ξ) = −i ξj|ξ| f̂(ξ).

• For any α ∈ R, Dα
x will denote the Riesz potential of order −α, defined via

Fourier transform by
(
Dα
xf
)∧

(ξ) = |ξ|αf̂(ξ). In particular, it follows that

D1
x = H∂x.

• For any α ∈ R, Jαx will denote the Bessel potential of order −α, defined

via Fourier transform by
(
Jαx f

)∧
(ξ) = (1 + ξ2)

α
2 f̂(ξ). In particular, it is

well-known that the L2-based Sobolev space Hs can be defined by the norm
‖f‖Hs = ‖Jsxf‖L2 .
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• If A and B are two operators, then [A,B]denotes the commutator between
A and B, i.e. [A,B]f = ABf −BAf .

2.2. Fourier multiplier. We reformulate system (1.1) as

(2.1)

{
∂tη +M(D)(1− ∂2x)u−Hu+H∂2xu+ ∂x(ηu) = 0 ,
∂tu+ ∂xη + u∂xu = 0 ,

where H is the Hilbert transform andM(D) is the Fourier multiplier associated to
the symbol

(2.2) M(ξ) = i
(

tanh(ξ)− sgn (ξ)
)
.

By recalling the pointwise estimate (see for example [14])∣∣ tanh(ξ)− sgn (ξ)
∣∣ ≤ e−|ξ|, ∀ ξ ∈ R ,

it follows easily from Plancherel identity that

(2.3) ‖JsxM(D)f‖L2 . ‖f‖L2 , ∀ s ∈ R .
Note that the implicit constant in the former inequality depends of course on s.
Moreover, we also have from Young’s theorem on convolution

‖M(D)(1− ∂2x)f‖L∞ = ‖
(
M(ξ)(1 + ξ2)

)∨ ∗ f‖L∞ ≤ ‖
(
M(ξ)(1 + ξ2)

)∨‖L1‖f‖L∞ ,

so that

(2.4) ‖M(D)(1− ∂2x)f‖L∞ . ‖f‖L∞ ,

since : ξ 7→M(ξ)(1 + ξ2) is a Schwartz function.

Finally, we will also need an estimate comparing the Bessel and Riesz potentials.
We claim that

(2.5) ‖(J1
x −D1

x)∂xf‖L2 . ‖f‖L2 .

Indeed, it follows from Plancherel’s identity that

‖(J1
x−D1

x)∂xf‖2L2 =

∫
|ξ|2
∣∣(1+ξ2)

1
2−|ξ|

∣∣2|f̂(ξ)|2dξ =

∫
|ξ|4
∣∣(1+

1

ξ2
) 1

2−1
∣∣2|f̂(ξ)|2dξ ,

which implies (2.5), since the function : ξ 7→ |ξ|4
∣∣(1 + 1

ξ2

) 1
2 − 1

∣∣2 is bounded on R.

2.3. Commutator estimates. First, we state the Kato-Ponce commutator esti-
mate [16].

Lemma 2.1 (Kato-Ponce commutator estimates). Let s ≥ 1, p, p2, p3 ∈ (1,∞)
and p1, p4 ∈ (1,∞] be such that 1

p = 1
p1

+ 1
p2

= 1
p3

+ 1
p4

. Then,

(2.6) ‖[Jsx, f ]g‖Lp . ‖∂xf‖Lp1‖Js−1x g‖Lp2 + ‖Jsxf‖Lp3‖g‖Lp4 ,
for any f, g defined on R.

We also state the fractional Leibniz rule proved in the appendix of [18].

Lemma 2.2. Let σ = σ1 + σ2 ∈ (0, 1) with σi ∈ (0, σ) and p, p1, p2 ∈ (1,∞)
satisfy 1

p = 1
p1

+ 1
p2

. Then,

(2.7) ‖Dσ
x(fg)− fDσ

xg − gDσ
xf‖Lp . ‖Dσ1

x f‖Lp1 ‖Dσ2
x g‖Lp2 .

Moreover, the case σ2 = 0, p2 =∞ is also allowed.

The following commutator estimate was derived in Proposition 3.2 of [5].
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Lemma 2.3. Let α ∈ [0, 1), β ∈ (0, 1) with α + β ∈ [0, 1]. Then, for any p, q ∈
(1,∞) and for any δ > 1/q, there exists c = c(α;β; p; q; δ) > 0 such that∥∥Dα

x [Dβ
x , a]D1−(α+β)

x f‖Lp ≤ c‖Jδx∂xa‖Lq‖f‖Lp .

Corollary 2.4. Let s > 3
2 . Then,

(2.8)
∥∥[D

1
2
x , a]D

1
2
x f
∥∥
L2 . ‖a‖Hs‖f‖L2 .

Proof. The proof of estimate (2.8) follows directly combining Lemma 2.3 with p =
2, α = 0, β = 1

2 with the Sobolev embedding by choosing q and δ such that

0 < δ − 1
q < s− 3

2 . �

3. Energy estimates

The main goal of this section is to prove the following energy estimate for the
solutions of (1.1).

Proposition 3.1. Let s > 2 and (η, u) ∈ C
(
[0, T ] : Hs(R)×Hs+ 1

2 (R)
)

be a solution
to (1.1) on a time interval [0, T ] for some T > 0. Let us define the modified energy
Es(η, u) by

(3.1) Es(η, u)(t) =
1

2
‖η(t)‖2Hs +

1

2
‖u(t)‖2

Hs+
1
2

+
1

2

∫
η(Jsxu)2(t) ,

for all t ∈ [0, T ]. Assume moreover that η satisfies the condition

(3.2) ∃ h̃0 ∈ (0, 1), h1 > 0 such that h̃0 − 1 ≤ η(x, t) ≤ h1, ∀ (x, t) ∈ R2 .

Then, the following estimates hold true for all t ∈ [0, T ].

(1) Coercivity.

(3.3)
1

2

(
‖η‖2Hs + c0‖u‖2

Hs+
1
2

)
≤ Es(η, u) ≤ 1

2

(
‖η‖2Hs + (1 + h1)‖u‖2

Hs+
1
2

)
,

where c0 = c0(h̃0) is a positive constant.

(2) Energy estimate.

(3.4)
d

dt
Es(η, u) . Es(η, u) + Es(η, u)2 .

Proof. We observe by using condition (3.2) and Plancherel’s identity that∫
(J
s+ 1

2
x u)2 +

∫
η(Jsxu)2 ≥ h̃0

∫
(Jsxu)2 +

∫
(1 + ξ2)s

(
(1 + ξ2)

1
2 − 1

)
|û(ξ)|2

≥ h̃0
∫

(Jsxu)2 + c̃0

∫
|ξ|≥1

(1 + ξ2)s+
1
2 |û(ξ)|2 ,

where c̃0 is a universal constant depending only s. This implies the first inequality

in (3.3) in view of the definition of (3.1) by choosing c0 := min{h̃0, c̃0}. The proof
of the second inequality in (3.3) is a direct consequence of (3.1) and (3.2).

To prove estimate (3.4), we will work on the reformulated version (2.1) of (1.1).
We compute the time derivative of each term on the left-hand side of (3.4) sepa-
rately.
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First, we get by using the Cauchy-Schwarz inequality, (2.3) and the identity
D1
x = H∂x that

1

2

d

dt

∫
(Jsxη)2

= −
∫
JsxM(D)(1− ∂2x)uJsxη +

∫
JsxHuJsxη −

∫
JsxH∂2xuJsxη −

∫
Jsx∂x(ηu)Jsxη

≤ c‖u‖Hs‖η‖Hs −
∫
JsxD

1
x∂xuJ

s
xη −

∫
Jsx∂x(ηu)Jsxη .

Moreover, it follows after integration by parts that

1

2

d

dt

∫
(J
s+ 1

2
x u)2 = −

∫
J
s+ 1

2
x ∂xηJ

s+ 1
2

x u−
∫
J
s+ 1

2
x (u∂xu)J

s+ 1
2

x u

=

∫
JsxηJ

s
x(J1

x −D1
x)∂xu+

∫
JsxηJ

s
xD

1
x∂xu−

∫
J
s+ 1

2
x (u∂xu)J

s+ 1
2

x u .

Hence, we deduce by using (2.5) that

1

2

d

dt

(
‖η(t)‖2Hs + ‖u(t)‖2

Hs+
1
2

)
≤ c‖u‖Hs‖η‖Hs −

∫
Jsx∂x(ηu)Jsxη −

∫
J
s+ 1

2
x (u∂xu)J

s+ 1
2

x u .
(3.5)

Now, we deal with the nonlinear terms appearing on the right-hand side of (3.5).
First, we observe that∫
Jsx∂x(ηu)Jsxη =

∫
Jsx(η∂xu)Jsxη +

∫
Jsx(∂xηu)Jsxη

=

∫
[Jsx, η]∂xuJ

s
xη +

∫
ηJsx∂xuJ

s
xη +

∫
[Jsx, u]∂xηJ

s
xη +

∫
uJsx∂xηJ

s
xη .

On the one hand, we get by using the commutator estimate (2.6)∣∣∣∣∫ [Jsx, η]∂xuJ
s
xη

∣∣∣∣+

∣∣∣∣∫ [Jsx, u]∂xηJ
s
xη

∣∣∣∣ . (‖∂xη‖L∞‖u‖Hs + ‖∂xu‖L∞‖η‖Hs
)
‖η‖Hs .

On the other hand, integration by parts and Hölder’s inequality yield∣∣∣∣∫ uJsx∂xηJ
s
xη

∣∣∣∣ . ‖∂xu‖L∞‖η‖2Hs .

Then, we deduce gathering the above estimates that∫
Jsx∂x(ηu)Jsxη

=

∫
ηJsx∂xuJ

s
xη +O

((
‖∂xη‖L∞‖u‖Hs + ‖∂xu‖L∞‖η‖Hs

)
‖η‖Hs

)
.

(3.6)

To deal with the second one, we get integrating by parts that∫
J
s+ 1

2
x (u∂xu)J

s+ 1
2

x u =

∫
[J
s+ 1

2
x , u]∂xuJ

s+ 1
2

x u+

∫
uJ

s+ 1
2

x ∂xuJ
s+ 1

2
x u

=

∫
[J
s+ 1

2
x , u]∂xuJ

s+ 1
2

x u− 1

2

∫
∂xu(J

s+ 1
2

x u)2 .

Then, it follows from the commutator estimate (2.6) and Hölder’s inequality that

(3.7)

∣∣∣∣∫ J
s+ 1

2
x (u∂xu)J

s+ 1
2

x u

∣∣∣∣ . ‖∂xu‖L∞‖u‖2
Hs+

1
2
.
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Therefore, we conclude gathering (3.5), (3.6) and (3.7) and using the Sobolev
embedding that

1

2

d

dt

(
‖η‖2Hs + ‖u‖2

Hs+
1
2

)
≤ −

∫
ηJsx∂xuJ

s
xη + c(1 + ‖η‖Hs)‖u‖Hs‖η‖Hs + c‖u‖Hs‖u‖2

Hs+
1
2
.

(3.8)

Finally, we derive the cubic contribution of the energy with respect to time. By
using (2.1), we get

(3.9)
1

2

d

dt

∫
η(Jsxu)2 =

1

2

∫
∂tη(Jsxu)2 +

∫
ηJsx∂tuJ

s
xu = I1 + I2 + I3 ,

where

I1 := −1

2

∫
M(D)(1−∂2x)u(Jsxu)2+

∫
Hu(Jsxu)2−

∫
H∂2xu(Jsxu)2−

∫
∂x(ηu)(Jsxu)2 ,

I2 := −
∫
ηJsx∂xηJ

s
xu =

∫
ηJsxηJ

s
x∂xu+

∫
∂xηJ

s
xηJ

s
xu ,

after integrating by parts, and

I3 := −
∫
ηJsx(u∂xu)Jsxu .

We have by using Hölder’s inequality, (2.4) and the Sobolev embedding that

|I1| .
(
‖u‖L∞ + ‖Hu‖L∞ + ‖H∂2xu‖L∞ + ‖∂x(ηu)‖L∞

)
‖u‖2Hs

.
(
1 + ‖η‖Hs

)
‖u‖3Hs + c‖u‖

Hs+
1
2
‖u‖2Hs ,

(3.10)

where we used the restriction s+ 1
2 > 2 + 1

2 , i.e. s > 2. Moreover, we observe that
I2 will cancel out with the first term on the right-hand side of (3.8). This is why
we modify the energy by the cubic term 1

2

∫
η(Jsxu)2. We rewrite I3 by using the

commutator notation and integration by parts as

I3 = −
∫
η[Jsx, u]∂xuJ

s
xu−

∫
ηuJsx∂xuJ

s
xu = −

∫
η[Jsx, u]∂xuJ

s
xu+

1

2

∫
∂x(ηu)(Jsxu)2 .

Then, it follows from the Kato-Ponce commutator estimate (2.6) and the Sobolev
embedding that

(3.11) |I3| ≤ ‖η‖L∞‖[Jsx, u]∂xu‖L2‖Jsxu‖L2 +‖∂x(ηu)‖L∞‖Jsxu‖2L2 . ‖η‖Hs‖u‖3Hs .

Hence, we deduce gathering (3.9)-(3.11) that

(3.12)
1

2

d

dt

∫
η(Jsxu)2 ≤

∫
ηJsxηJ

s
x∂xu+ c

(
1 + ‖η‖Hs

)
‖u‖3Hs + c‖u‖

Hs+
1
2
‖u‖2Hs .

There, we conclude the proof of estimate (3.4) combining (3.8) and (3.12) with
(3.3). �
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4. Estimates for the differences of two solutions

In this subsection, we derive energy estimates for the difference of two solutions
(η1, u1) and (η2, u2) of (2.1) in H1(R)×H 3

2 (R).
Let us define (η̃, ũ) = (η1 − η2, u1 − u2). Then (η̃, ũ) is a solution to

(4.1)

{
∂tη̃ +M(D)(1− ∂2x)ũ−Hũ+H∂2xũ+ ∂x(η1ũ+ η̃u2) = 0 ,
∂tũ+ ∂xη̃ + 1

2∂x((u1 + u2)ũ) = 0 ,

where the symbol M(ξ) of the Fourier multiplier M(D) is defined in (2.2).

Proposition 4.1. Let s > 5
2 and (η1, u1), (η2, u2) ∈ C([0, T ] : Hs(R)×Hs+ 1

2 (R))
be two solutions to (2.1) on a time intervall [0, T ] for some T > 0.

Let (η̃, ũ) = (η1 − η2, u1 − u2) denote the difference between the two solutions.

We define the modified energy Ẽ(η̃, ṽ) by

(4.2) 2Ẽ(η̃, ṽ)(t) = ‖η̃(t)‖2L2+‖∂xη̃(t)‖2L2+‖ũ(t)‖2L2+‖D
1
2
x ∂xũ(t)‖2L2+

∫
η1(∂xũ)2 ,

for all t ∈ [0, T ]. Assume moreover that η1 satisfies the condition (3.2). Then, the
following estimates hold true on [0, T ].

(1) Coercivity. There exists α0 > 0 such that

(4.3)
1

2

(
‖η̃‖2H1 + c0‖ũ‖2

H
3
2

)
≤ Ẽ(η̃, ṽ) ≤ 1

2

(
‖η̃‖2H1 + (1 + h1)‖ũ‖2

H
3
2

)
,

where c0 = c0(h̃0) is a positive constant.

(2) Energy estimate.

(4.4)
d

dt
Ẽ(η̃, ṽ) .

(
1 + ‖η1‖Hs + ‖η2‖Hs + ‖u1‖Hs + ‖u2‖Hs

)2(
‖η̃‖2H1 + ‖ũ‖2

H
3
2

)
.

Proof. The proof of estimate (4.3) is similar as the one of (3.3).
To prove (4.4), we compute separately the time derivative of each term on the

right-hand side of (4.2). First, it follows directly by using (4.1) and integrating by
parts that

1

2

d

dt

∫
ũ2 = −

∫
ũ∂xη̃ −

1

2

∫
ũ∂x((u1 + u2)ũ)

. ‖ũ‖L2‖∂xη̃‖L2 +
(
‖∂xu1‖L∞ + ‖∂xu2‖L∞

)
‖ũ‖2L2 .

(4.5)

By using (2.3), integration by parts and Hölder’s inequality, we get that

1

2

d

dt

∫
η̃2 = −

∫
η̃M(D)(1− ∂2x)ũ+

∫
η̃Hũ−

∫
η̃H∂2xũ−

∫
η̃∂x(η1ũ+ η̃u2)

. ‖ũ‖H1‖η̃‖H1 +
(
‖η1‖L∞ + ‖∂xη1‖L∞

)
‖ũ‖H1‖η̃‖L2 + ‖∂xu2‖L∞‖η̃‖2L2 .

(4.6)

Now, we turn to the higher-order part of the H1 ×H 3
2 norm of (η̃, ũ). On the one

hand, we have that

1

2

d

dt

∫
(∂xη̃)2 = −

∫
∂xη̃∂xM(D)(1− ∂2x)ũ+

∫
∂xη̃∂xHũ−

∫
∂xη̃H∂3xũ

−
∫
∂xη̃∂

2
x(η1ũ+ η̃u2) .
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To deal with the nonlinear term, we integrate by parts and use Hölder’s inequality.
It follows that∫

∂xη̃∂
2
x(η1ũ+ η̃u2) ≤

∫
η1∂xη̃∂

2
xũ+ c

(
‖∂xη1‖L∞ + ‖∂2xη1‖L∞

)
‖ũ‖H1‖η̃‖H1

+ c
(
‖∂xu2‖L∞ + ‖∂2xu2‖L∞

)
‖η̃‖2H1 ,

which implies together with (2.3) that

1

2

d

dt

∫
(∂xη̃)2 ≤ c‖ũ‖H1‖η̃‖H1 −

∫
∂xη̃H∂3xũ−

∫
η1∂xη̃∂

2
xũ

+ c
(
‖∂xη1‖L∞ + ‖∂2xη1‖L∞

)
‖ũ‖H1‖η̃‖H1

+ c
(
‖∂xu2‖L∞ + ‖∂2xu2‖L∞

)
‖η̃‖2H1 .

(4.7)

On the other hand, we compute

1

2

d

dt

∫
(D

1
2
x ∂xũ)2 = −

∫
D

1
2
x ∂xũD

1
2
x ∂

2
xη̃ −

∫
D

1
2
x ∂xũD

1
2
x ∂

2
x((u1 + u2)ũ) .

By using the identity D1
x = H∂x and integration by parts, we have

−
∫
D

1
2
x ∂xũD

1
2
x ∂

2
xη̃ =

∫
H∂3xũ∂xη̃ ,

so that this term will cancel out with the second one on the right-hand side of (4.7).
Now, we deal with the nonlinear term. It follows by using the standard Leibniz
rule that∫

D
1
2
x ∂xũD

1
2
x ∂

2
x((u1 + u2)ũ)

=

∫
D

1
2
x ∂xũD

1
2
x

(
∂2x(u1 + u2)ũ+ 2∂2x(u1 + u2)∂xũ+ (u1 + u2)∂2xũ

)
=: I1 + I2 + I3 .

We deduce from the fractional Leibniz rule (2.7) that

|I1| . ‖D
1
2
x ∂xũ‖L2

(
‖∂2xu1‖L∞ + ‖∂2xu2‖L∞

)
‖D

1
2
x ũ‖L2

+ ‖D
1
2
x ∂xũ‖L2(‖∂2xD

1
2
x u1‖L2 + ‖∂2xD

1
2
x u2‖L2)‖ũ‖L∞

and

|I2| . ‖D
1
2
x ∂xũ‖L2

(
‖∂xu1‖L∞ + ‖∂xu2‖L∞

)
‖D

1
2
x ∂xũ‖L2

+ ‖D
1
2
x ∂xũ‖L2(‖∂xD

1
2
x u1‖L4 + ‖∂xD

1
2
x u2‖L4)‖∂xũ‖L4 .

Moreover, by using ∂x = −HD1
x, the commutator notation and integration by parts,

we get

I3 =

∫
D

1
2
x ∂xũ[D

1
2
x , u1 + u2]∂2xũ+

∫
D

1
2
x ∂xũ(u1 + u2)D

1
2
x ∂

2
xũ

= −
∫
D

1
2
x ∂xũ[D

1
2
x , u1 + u2]D

1
2
xHD

1
2
x ∂xũ−

1

2

∫
∂x(u1 + u2)(D

1
2
x ∂xũ)2 .

Hence, the commutator estimate (2.8) and the Sobolev embedding yield

|I3| . (‖u1‖Hs + ‖u2‖Hs)‖D
1
2
x ∂xũ‖2L2 .
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Therefore, we deduce gathering those estimates that

(4.8)
1

2

d

dt

∫
(D

1
2
x ∂xũ)2 ≤

∫
H∂3xũ∂xη̃ + c(‖u1‖Hs + ‖u2‖Hs)‖ũ‖2

H
3
2
.

Finally, to deal with the third term on the right-hand side of (4.8), we need to use
the cubic part in the modified energy. Observe by using (2.1) and (4.1) that

1

2

d

dt

∫
η1(∂xũ)2 =

1

2

∫
∂tη1(∂xũ)2 +

∫
η1∂x∂tũ∂xũ = J1 + J2 + J3 ,

where

J1 = −1

2

∫
M(D)(1−∂2x)u1(∂xũ)2+

∫
Hu1(∂xũ)2−

∫
H∂2xu1(∂xũ)2−

∫
∂x(η1u1)(∂xũ)2 ,

J2 = −
∫
η1∂

2
xη̃∂xũ =

∫
η1∂xη̃∂

2
xũ+

∫
∂xη1∂xη̃∂xũ ,

after integrating by parts, and

J3 = −
∫
η1∂

2
x((u1 + u2)ũ)∂xũ .

We have by using Hölder’s inequality, (2.4) and the Sobolev embedding that

|J1| .
(
‖u1‖L∞ + ‖Hu1‖L∞ + ‖H∂2xu1‖L∞ + ‖∂x(η1u1)‖L∞

)
‖∂xũ‖2L2

.
(
‖u1‖Hs + ‖η1‖Hs‖u1‖Hs

)
‖∂xũ‖2L2 ,

where we used the restriction s > 5
2 . Moreover, we observe that the first term on

the right-hand side of J2 will cancel out with the third term on the right-hand side
of (4.7). To handle J3, we use the standard Leibniz rule and integration by parts
to get

J3 = −
∫
η1∂

2
x(u1 + u2)ũ∂xũ+

∫ (
− 3

2
η1∂x(u1 + u2) +

1

2
∂xη1(u1 + u2)

)
(∂xũ)2 .

It follows from Hölder and Sobolev inequalities that

|J3| . ‖η1‖Hs
(
‖u1‖Hs + ‖u2‖Hs

)
‖ũ‖2H1 .

Hence, we deduce gathering those estimates that

(4.9)
1

2

d

dt

∫
η1(∂xũ)2 ≤

∫
η1∂xη̃∂

2
xũ+ c

(
1 + ‖η1‖Hs

)(
‖u1‖Hs + ‖u2‖Hs

)
‖ũ‖2H1 .

Therefore, we conclude the proof of (4.4) gathering (4.5)–(4.9).
�

Remark 4.2. Observe that the restriction s > 5
2 in Theorem 1.3 (i) appears in

Proposition 3.1.

5. proof of Theorem 1.3

We begin this section by proving an a priori estimate on the solutions (η, u) to
(1.1).
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Lemma 5.1. Let s > 5
2 . Let (η, u) ∈ C

(
[0, T ?) : Hs(R)×Hs+ 1

2 (R)
)

be a solution to

(1.1) corresponding to initial data (η0, u0) ∈ Hs(R)×Hs+ 1
2 (R) satisfying the non-

cavitation condition (1.5), defined on its maximal time of existence and satisfying
the blow-up alternative:

(5.1) If T ? <∞ then lim
t↗T?

‖(η(t), u(t))‖
Hs×Hs+

1
2

= +∞ .

Then, there exists T0 = T0(‖(η0, u0)‖
Hs×Hs+

1
2

) such that T ? > T0 and

(5.2) sup
t∈[0,T0]

‖(η, u)(t)‖
Hs×Hs+

1
2
≤ c‖(η0, u0)‖

Hs×Hs+
1
2
,

for some positive constant c.

Proof. Let us define

T̃ := sup
{
T ∈ (0, T ?) : sup

t∈[0,T ]

‖(η, u)(t)‖2Hs×Hs+1/2 ≤ 8‖(η0, u0)‖2Hs×Hs+1/2

}
.

Note that T̃ < T ?, otherwise it would contradict the blow-up alternative (5.1).
We define T0 := min{T1, T2} where

T1 =
1

C1
log

(
1 +

1

1 + C1‖(η0, u0)‖2
Hs×Hs+1/2

)
, T2 =

h0

C2

(
1 + ‖η0‖Hs

)
‖u0‖Hs+1/2

and C1, C2 are two large positive constants to be fixed in the proof.

Assume by contradiction that T̃ < T0, otherwise we are done. By continuity, we
have that

(5.3) sup
t∈[0,T̃ ]

‖(η, u)(t)‖2Hs×Hs+1/2 ≤ 8‖(η0, u0)‖2Hs×Hs+1/2 .

We first verify that the non-cavitation condition (3.2) holds on [0, T̃ ]. On the one
hand, since η0 satisfies (1.5), it follows from the fundamental theorem of calculus
that

η(x, t) + 1 = η0(x) + 1 +

∫ t

0

∂tη(x, s)ds ≥ h0 − T̃ sup
s∈[0,T̃ ]

‖∂tη(s)‖L∞
x
,

for all t ∈ [0, T̃ ]. On the other hand, we estimate trivially by using the first equation
in (2.1), the Sobolev embedding and, then (5.3), that

‖∂tη‖L∞
x
≤ c
(
1 + ‖η‖Hs

)
‖u‖Hs ≤ c

(
1 + ‖η0‖Hs

)
‖u0‖Hs+1/2 ,

∀t ∈ [0, T1]. Thus, by recalling that T̃ < T2 and by choosing C2 large enough, we

deduce from the above analysis that η(x, t) + 1 ≥ h0/2 on [0, T̃ ]. This estimate and
a similar argument combined with the Sobolev embedding η0 ∈ Hs(R) ↪→ L∞(R)

show that the condition (3.2) holds on the time interval [0, T̃ ].
Let y(t) := E(η, u)(t) denote the modified energy defined in (3.1). Then (3.4)

leads to the inequality y′(t) ≤ c
(
y(t) + y2(t)

)
, which can be integrated to obtain

y(t)
(
1− y0

1 + y0
ect
)
≤ y0

1 + y0
ect, if

y0
1 + y0

ect < 1 ,
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on [0, T̃ ]. Since T̃ < T1, we get by choosing C1 = C1(h0) large enough and by using
(3.3) that

y0
1 + y0

ect ≤ 1 + 2y0
2(1 + y0)

< 1 and ‖(η, u)(t)‖2Hs×Hs+1/2 ≤ 4‖(η0, u0)‖2Hs×Hs+1/2 ,

for all t ∈ [0, T̃ ]. Thus, we deduce by continuity, that there exists some T̃ < T <
T ? such that ‖(η, u)(T )‖2

Hs×Hs+1/2 ≤ 6‖(η0, u0)‖2
Hs×Hs+1/2 . This contradicts the

definition of T̃ . Therefore, T̃ < T0, which concludes the proof of Lemma 5.1. �

With the a priori estimate in hand, the complete proof of the existence would
then result from a standard compactness argument implemented on a regularized
version of the system. The uniqueness is a consequence of the estimates for the
difference of two solutions (4.4). The strong continuity in time and the continuity
of the flow would result from an application of the Bona-Smith argument [2] (we
refer to [17] for a detailed demonstration of the use of the Bona-Smith argument in
the context of the modified energy).

6. The two-dimensional case

In this section, we comment briefly on the changes to adapt the proof in the
two-dimensional setting. By denoting u = (u1, u2)T , we reformulate the system
(1.2) as

(6.1)

 ∂tη − (M̃(D) + 1)(1−∆)(R1u1 +R2u2) + ∂x1
(ηu1) + ∂x2

(ηu2) = 0 ,
∂tu1 + 1

2∂x1(u21 + u22) = 0 ,
∂tu2 + 1

2∂x2
(u21 + u22) = 0 ,

whereRj denote the Riesz transform and M̃(D) is the Fourier multiplier associated

to the symbol M̃(ξ) = tanh |ξ| − 1, ξ = (ξ1, ξ2) and |ξ| =
√
ξ21 + ξ22 . Note that the

pointwise estimate
∣∣ tanh |ξ| − 1

∣∣ ≤ e−|ξ|, ∀ ξ ∈ R2, holds true.
We derive an energy estimate (analogous to Proposition 3.1) at the level (η, u1, u2) ∈

Hs(R2)×Hs+ 1
2 (R2)×Hs+ 1

2 (R2), s > 5
2 by using the modified energy

Es(η, u1, u2)(t) =
1

2
‖η(t)‖2Hs +

1

2
‖u1(t)‖2

Hs+
1
2

+
1

2
‖u2(t)‖2

Hs+
1
2

+
1

2

∫
η
(
(Jsxu1)2 + (Jsxu2)2

)
(t) .

Note that instead of using the identity D1
x = H∂x, we use in a crucial way the

identities Rj∆ = D1
x∂xj , j = 1, 2, to cancel out the linear terms. The modified

energy is then used to handle the nonlinear term in the first equation of (6.1). To
deal with the nonlinear terms in the second and third equations of (6.1), we use
Lemma 4.2. in [23]5.

The proof of the uniqueness is very similar to Proposition 4.1.
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5As already observed in the introduction, it is for this reason that we need to make the curl-free
assumption on the velocity u.
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