
  

Abstract—The MegaRoller project, funded under the 
European Union’s Horizon 2020 research and innovation 
programme, aims to develop and demonstrate a novel Power 
Take-Off (PTO) solution for Wave Energy Converters 
(WECs). As part of the project, a wave-by-wave prediction 
software was developed, with a neural network prediction 
algorithm at its core. In this paper, the impact of the control 
strategy on key metrics is considered, focusing on assessing 
the potential of such wave-by-wave prediction software in 
improving the power performance and survivability of the 
system. In particular, two applications are considered: in a 
first step, a wave-by-wave damping adjustment control 
strategy, aiming at maximising the power capture, is 
compared to a baseline control strategy. When considering 
the additional complexity of the control system, the limited 
gains in power production suggest that, for the MegaRoller 
device, wave-by-wave damping control may not be 
beneficial enough. In a second step, methods for utilising 
the twin drive-trains of the MegaRoller device to counteract 
undesirable torque loads on the bearings in cases of oblique 
waves are investigated, comparing a baseline case to the 
application of an asymmetrical force in the PTO cylinders, 
adjusted either on a sea state by sea state, or a wave-by-wave 
basis. Such approach is shown to significantly improve the 
system’s survivability, reducing torque loads on the 
bearings. The impact of error on the wave-by-wave 
prediction is also shown to have a minimal impact on the 
metrics considered, providing confidence in the suitability 
of the prediction tool developed for the proposed purpose. 
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I. INTRODUCTION 

FFICIENCY and reliability are two key challenges 
in the design for Power Take-Offs (PTOs) for wave 
energy converters (WECs), because waves generate 

slow and irregular oscillations, which require a PTO to 
generate large alternating reacting forces in order to 
extract power. The MegaRoller project aims to tackle these 
challenges with the design, construction and validation of 
a generic high performance, reliable and cost-efficient 
1MW PTO that can be integrated into Oscillating Wave 
Surge Converter (OWSC) designs. 

The development of the PTO for a 1MW OWSC device 
is based on multiple software and hardware innovations. 
One of the key software innovations of the MegaRoller 
project focuses on the development of a wave-by-wave 
control strategy for the WEC system, aiming to optimise 
the power capture of the system. 

For these purposes, the MegaRoller consortium is 
developing a wave-by-wave prediction software with a 
neural-network prediction algorithm at its core. For design 
and network training purposes, this data is provided 
either from hindcasts, buoy records or dedicated runs 
using a phase-resolving nearshore model. In an 
operational setting, the measurements will most likely be 
provided by a dedicated survey buoy moored in proximity 
to the WEC. The measured time series is then fed into an 
echo state network (ESN) in order to compute a prediction 
of the surface elevation associated to the next few 
incoming waves. Based on the output from the prediction 
software, the MegaRoller PTO settings will be optimised 
in terms of damping characteristics at each of the two 
drive-trains on a wave-by-wave basis. It should be noted 
that this innovation could have numerous other marine 
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applications, such as predicting when dynamically 
positioned ships may encounter a larger wave, or when 
best to launch a freefall lifeboat. 

In this work, the development of the wave-by-wave 
prediction model and control strategy will be described. 
The paper will then focus on the assessment of the impact 
of the control strategy on key power performance and 
survivability metrics, using a distributed, fully coupled, 
nonlinear WEC loads model of the 1MW OWSC system. In 
particular, methods for utilising the twin drive-trains of 
the MegaRoller device to counter-act undesirable torque 
loads on the bearings will be investigated and compared 
for different wave cases and control strategies, from a 
baseline case to the application of a wave-by-wave varying 
counterforce in one of the PTO cylinders, in cases of waves 
approaching from an oblique heading. While contributing 
to the efficient capture of energy from the wave field, such 
an approach also aims to increase the survivability of the 
system by maintaining a fair distribution of the loads, and 
reducing torque loads on the bearings and the WEC prime 
mover. The impact of error on the wave-by-wave 
prediction will also be assessed. 

The loads model will be developed in the WEC-Sim 
software, customised for use in performance, load and 
structural assessments, aiming to assess the influence of 
the distributed loading contributions over the WEC prime 
mover, accounting for the coupled nature of interaction(s) 
between the flap and the PTO load sources.  

This paper is organised in five main sections. Following 
this introduction (Section I), the MegaRoller system is 
described in Section II, focusing on the wave prediction 
system developed and the control strategies envisaged for 
the WEC. The methodology for the study is then presented 
in Section III, describing the load analysis model of the 
MegaRoller WEC developed in the WEC-Sim tool, as well 
as the scenarios and key metrics considered. The results of 
the investigations conducted, looking at the performance 
and survivability metrics of interest, are then presented in 
Section IV. Finally, the recommended next steps, in 
particular regarding the future development of a control 
strategy, are detailed in Section V. 

II. MEGAROLLER SYSTEM 

A. Technical description of the MegaRoller WEC 
The MegaRoller WEC was described, at a high level, in 

[1]. Essentially, the MegaRoller WEC can be described as 
an OWSC with an innovative, modular PTO solution, 
where hydraulic piston pumps have an interface with the 
panel via a twin drive-train located at each end of the 
WEC’s prime mover (flap). The pistons pump hydraulic 
fluid inside a closed circuit, which is enclosed inside a 
hermetic structure and thus not exposed to the marine 
environment. The high-pressure fluids are fed into 
hydraulic motors that drive a generator. Finally, the 
electrical output from the generator is fed to the electric 
grid via a subsea cable (see Fig. 1). 

The device operates in nearshore regions at depths of 
between 8 and 20 metres. It is anchored to the seabed and, 
depending on mean depth and tidal range, it is mostly or 
fully submerged during operation. A series of devices can 
be deployed in an array to create a WEC farm. Since the 
WEC is constructed as a modular individual unit, there is 
no technical upper limit to the number of devices that can 
be used in an array. 

 

 
The target geometric and mass properties of the 

MegaRoller WEC prime mover (the flap) are summarised 
in TABLE I. The main dimensions of the WEC are illustrated 
in Fig. 2. Given the early stage of the design, the overall 
properties are generic and subject to further refinement. 

 

 
 

 
Fig. 1.  1MW OWSC device (top) and OWSC conversion 
process (bottom) 

TABLE I 
KEY GEOMETRIC AND MASS PROPERTIES OF THE MEGAROLLER WEC 

PRIME MOVER (FLAP) 

Property Unit Value 

Volume m3 750 

Mass kg 250,000 

Moment of inertia Iyy kgm2 5,000,000 

Location of the centre of gravitya m 5.3 

Location of the centre of buoyancya m 7.5 

Location of the bearingsa m 3 

Location of the PTOa m 5 
aLocations (in metres) refer to vertical positions in the water 

column measured from the seabed. 
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B. Wave prediction system 
For the efficient operation of the control algorithm, 

accurate prediction of the incoming wave field is key. 
Wave forecasting methods can be classified into two broad 
categories, according to whether the model is based on 
underlying physical principles, or on data analysis. The 
physics-based approach relies on numerical simulation of 
partial differential equations, which yield spectral 
information about the expected sea states. One example is 
the SWAN wave-forecasting package for use in coastal 
seas [2].  

The second approach relies either on statistical 
techniques such as regression analysis or on neural 
networks ([3] to [5]). Since the underlying physics is not 
taken into account, accurate prediction using the data-
based approach is naturally restricted to a more limited 
time horizon of about six hours [6]. However, for 
applications in wave energy, short-term forecasts of about 
15 to 30 minutes are sufficient if the control algorithm is 
adjusted only once for each sea state. For a wave-by-wave 
forecast, a time horizon of about two-three wave periods 
should be sufficient. For example, it was shown in [7] that 
at most a 30-second forecast horizon would be required for 
heave-type devices of cylindrical or spherical shape. Given 
the recent surge in deep learning techniques, the neural-
network method has been a popular device for short-term 
wave forecasting (see for example [8]). 

In the framework of ESNs, the time series is fed as input 
to a neural network with fixed structure and weights, and 
the units of the network are connected to an output unit. 
During training, only the output weights are changed 
through linear regression, which makes echo state 
networks computationally efficient. For prediction, the 
input is replaced by feedback from the output unit. In most 
applications, the reservoir is a random neural network, 

and there has been little evidence that the structure of the 
reservoir has any significant effect on predictive 
performance. However, preliminary experimentation 
showed that the effect of structure may be specific to the 
data and task at hand. 

In the present work, both physics-based and data-based 
approaches were tested. For the representation of sea 
states, predictions from a SWAN hindcast were used. In 
addition, wave-by-wave control strategies which require 
phase-resolving wave data were also tested. For this 
purpose, simulations of a Boussinesq-type model [9] and 
predictions using ESN-types of artificial neural networks 
were employed. The Boussinesq model generally 
performed better than the ESN, and it was used in 
connection with the load characterisation of the wave 
energy device. However, as mentioned above, an in-depth 
study of the exact structure of the network may lead to 
improved performance. 

C. Control strategies for power production 
The baseline control strategy for the MegaRoller device 

assumes that the force 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 applied to the prime mover by 
the PTO is proportional to the linear velocity of the PTO 
stroke (i.e. a damping force): 

 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐(𝐻𝐻𝑠𝑠,𝑇𝑇𝑝𝑝,𝜃𝜃) ∙ 𝑣𝑣 (1) 

where 𝑐𝑐 is the damping constant and  𝑣𝑣 is the PTO stroke 
velocity, converted from the angular motion of the flap. 

In the baseline control strategy, 𝑐𝑐 is optimised for each 
sea state, characterised by a significant wave height (𝐻𝐻𝑠𝑠), 
peak period (𝑇𝑇𝑝𝑝 ) and mean direction (𝜃𝜃 ), in order to 
maximise the mean power extracted. The optimisation was 
conducted using a numerical study, whereby several 
damping coefficients (c) were trialled in order to identify 
the value which resulted in the maximum absorbed power. 
An equal force is applied to both drive-trains: 

 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,1 = 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,2 =
𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2
 (2) 

The force in each PTO is additionally limited by a force 
cap (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚), whereby: 

𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖

 (3) 

The baseline strategy does not require any advance 
knowledge of the approaching waves but rather an 
estimation of the current sea state parameters (e.g. 𝐻𝐻𝑠𝑠 ). 
These parameters vary relatively slowly (e.g. every 30 
minutes).  

In an alternative approach, the wave prediction system 
introduced in Section II.B can be used to vary the applied 
PTO damping on a wave-by-wave basis. Instead of 
optimising the damping constant (𝑐𝑐) for each sea state, it 
can be optimised for each individual wave height and 
period using regular wave simulations. 

  
 

  
Fig. 2.  MegaRoller WEC dimensions (in m) – side and top 
views. The red and green axis correspond to the x and z axis of 
the coordinate system, respectively (origin at water level) 
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𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐(𝐻𝐻,𝑇𝑇,𝜃𝜃) ∙ 𝑣𝑣 (4) 

It is hypothesised that this approach would allow for 
more optimised control of the MegaRoller device, 
increasing power performance.   

D. Control strategies for load reduction 
A second potential application of wave-by-wave control 

is to reduce loads on key components, increasing the 
survivability of the device and/or enabling a reduction in 
CAPEX. In particular, the MegaRoller WEC does not have 
a degree of freedom in yaw. In cases of waves approaching 
from an oblique heading, a hydrodynamic torque load 
(𝑀𝑀𝑧𝑧,ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) is therefore generated about the bearings which 
connect the prime mover to the foundation. 

To counter-act the hydrodynamic torque load generated 
and to reduce the total torque on the bearings, a more 
advanced control algorithm can be defined, in which the 
total PTO force is split unequally between the two drive-
trains using a constant factor 𝑎𝑎1: 

 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,1 = 𝑎𝑎1 ∙ 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,2 = (1 − 𝑎𝑎1) ∙ 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

(5) 

The total applied force remains the same and so, in the 
WEC-Sim model, the power extraction is unaffected. It is 
noted that the WEC-Sim model could, in future work, be 
further developed so that the potential consequences on 
the resulting operating states can be evaluated. 

Two different approaches to this strategy were 
investigated. 

In the first approach (referred to as ‘constant offset’), the 
factor 𝑎𝑎1 is varied on per-sea-state , similar to the damping 
coefficient in (1), i.e. 𝑎𝑎1 is a function of 𝐻𝐻𝑠𝑠, 𝑇𝑇𝑝𝑝 and 𝜃𝜃. Similar 
to the baseline strategy (see Section II.C), this approach 
does therefore not require any advance knowledge of the 
incident wave, but rather an estimation of the current sea 
state parameters. 

In a second approach (referred to as ‘wave-by-wave’), 
the wave prediction system introduced in Section II.B is 
used to predict the hydrodynamic torque load on the 
bearing. As an initial approximation, and in the case of 
irregular waves, the hydrodynamic torque was assumed 
to be linearly proportional to the predicted surface 
elevation, with different scaling factors derived for each 
wave height, period and direction using regular wave 
simulations: 

 𝑀𝑀𝑧𝑧,ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑏𝑏(𝐻𝐻,𝑇𝑇,𝜃𝜃) ∙ 𝑧𝑧 (6) 

where  𝑏𝑏 is a linear scaling factor and  𝑧𝑧 is the predicted 
surface elevation. Future work could seek to refine this 
estimation, using more advanced hydrodynamic models. 

The PTO forces are then varied on a wave-by-wave basis 
in attempt to ‘cancel out’ the bearing torque in real-time: 

 𝑙𝑙.𝐹𝐹𝑃𝑃𝑃𝑃𝑂𝑂,1 − 𝑙𝑙.𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,2 + 𝑀𝑀𝑧𝑧,ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0 (7) 

where 𝑙𝑙  is the lever arm of each PTO relative to the 
bearings. In this case, the bearings are assumed to be in the 
centre of the prime mover. 

Essentially, the 𝑎𝑎1  factor used to minimise the total 
bearing torque on a wave-by-wave basis can therefore be 
estimated by combining equations (5) and (7): 

 𝑎𝑎1 = �𝑙𝑙.𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑀𝑀𝑧𝑧,ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦�/2𝑙𝑙𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (8) 

For both approaches, the force cap is also applied, 
unchanged from the baseline strategy (see (3)).  

III. METHODOLOGY 

A. MegaRoller WEC-Sim model 
WEC-Sim (Wave Energy Converter SIMulator) [10] is an 

open-source WEC simulation tool, developed in 
MATLAB/Simulink using the multi-body dynamics solver 
SimMechanics. The WEC-Sim project is funded by the U.S. 
Department of Energy’s Wind and Water Power 
Technologies Office, and the code development effort is a 
collaboration between the National Renewable Energy 
Laboratory (NREL) and Sandia National Laboratories 
(SNL). 

The WEC-Sim model of the MegaRoller WEC developed 
in [1] was used as a starting point for this study. The 
model, shown in Fig. 3, consists of the prime mover, which 
is connected to the fixed base and reference frame, using a 
rotational degree-of-freedom to represent the bearing. 
Each of the two PTO drive-trains are modelled using a 
linear actuator, connected on one end to the prime mover 
using a level arm, effectively transforming linear to a 
rotational load, and a fixed base connection using a 
rotational joint located at the opposite side of the actuator. 

The PTO control logic was adapted to implement the 
new control strategies, specifically to allow the two PTO 
forces to be set from a central control module. This control 
module implements the following high-level process: 
 

1. Use the instantaneous rotational speed and 
knowledge of the sea state to calculate the 
target damping coefficient and target total PTO 
force according to (1). 
 

2. Use the predicted wave elevation to estimate 
the hydrodynamic torque on the bearing 
according to (6). 

 
3. Calculate the two PTO force to minimise the 

total bearing torque according to (7). 
 

4. Command each PTO to implement its own 
target force, after applying the force cap (2) if 
applicable. 
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As an initial approximation, it was assumed that the 
wave prediction system introduced in Section II.B 
allows exact prediction of the surface elevation, with 
sufficient lead-time in order to adjust the controller as 
required. The effect of possible inaccuracies in the wave 
prediction is then investigated further in Section IV.D. 

 

B. Scenarios and load cases 
This study aimed at investigating the potential benefits 

of the wave-by-wave prediction tool in the performance 
and survivability of the system, defined as its ability to 
withstand extreme loading events and high fatigue cyclic 
loading. In particular, for a PTO and/or WEC to 
demonstrate survivability it must withstand very high-
duty = cyclic loading. This study therefore focused on 
fatigue loading and considered normal operating 
conditions.  Extreme loads are likely to be driven by more 
extreme sea states and/or fault scenarios, which were 
outside the scope of this study. 

In a first step, the study investigated the impact of the 
wave-by-wave control strategy in regular waves. An 
illustrative regular wave with height (𝐻𝐻) of 1m and period 
( 𝑇𝑇 ) of 12s was considered, assumed to approach the 
MegaRoller device with a mean heading (𝜃𝜃) of 15°. 

The study then looked at irregular waves, using as 
reference the climate conditions at the Peniche site 
(Portugal). A series of sea states, characterised by 𝐻𝐻𝑠𝑠 , 𝑇𝑇𝑝𝑝 
and  𝜃𝜃, were down selected for analysis, and are outlined 
in TABLE II.  

Percentage occurrences of each sea state were derived 
from a 10-year SWAN wave dataset (covering the period 
between January 1997 and December 2006). The 
occurrences for each direction are summarised in the 
Appendix, and Fig. 4 presents the omni-directional 
occurrence matrix, which was used for power production 
assessments. The selected sea states cover 89% of all 
occurrences recorded at Peniche. 

All irregular sea states were simulated assuming a 
Pierson-Moskowitz spectra with peak amplification factor 
(𝛾𝛾) equal to 1. TABLE III lists some other key simulation 
parameters. 

 

 

 

 

C. Key metrics 
The power performance of the MegaRoller device was 

assessed using the mean power for a given sea state, 
output by WEC-Sim. It should be noted that this is 
essentially the mechanical power at the PTO interface and 
does not include any hydraulic or electrical losses. In 
addition, wave direction was not considered for these 
studies and all waves were assumed to approach the 
MegaRoller device head-on. 

Values for each sea state were combined into a single 
Mean Estimated Annual Power (MAEP) estimate as 
outlined below: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡 ∙�𝑝𝑝𝑖𝑖 ∙ 𝑃𝑃𝚤𝚤�
𝑖𝑖=𝑛𝑛

𝑖𝑖=1

 (9) 

where 𝑝𝑝𝑖𝑖 is the probability of occurrence of each sea state,  
𝑃𝑃𝚤𝚤� is the mean power, summed for both PTOs, and 𝑡𝑡 is the 
annual operating time (100% availability was assumed in 
this study). 

Regarding survivability, two key load metrics were 
used to assess the impact of the different control strategies 
on the bearing torque loads. As the investigations 
conducted focused on normal sea states and normal 
operating conditions, these metrics focused on fatigue 
loading.  

 
Fig. 3.  WEC-Sim model. The added ‘central control module’ 
is shown in yellow.   

TABLE II 
DESIGN LOAD CASE AND SELECTED SEA STATES 

Property Unit Value 

Operating Condition - Normal,  Power Production 

Water depth m 12.0 

Significant wave height m 0.75 : 0.5 : 4.25 

Peak period s 7 : 2 : 15 

Mean direction ° 0 : 5 : 30 
 

 
Fig. 4.  Omni-directional percentage occurrence for selected 
sea states, scaled to 100% total.  

TABLE III 
WEC-SIM SIMULATION PARAMETERS 

Property Unit Value 

Simulation length s 3800 

Ramp-up time s 200 

Time step s 0.01 

Hydrostatic force calculation - Linear 

Wave spreading - None 
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The first load metric used was the Root-Mean-Square 
(RMS) of the bearing torque. This simple metric gives an 
initial approximation of the magnitude of the torque 
loading, deemed acceptable in operational conditions. It is 
noted that, in case of extreme events (not considered here), 
such approach would unlikely be conservative. 

The second load metric was the Damage Equivalent 
Load (DEL), which gives a more accurate measure of the 
fatigue loading by taking account of the material Wohler 
exponent (m). The DEL is given by: 

 𝐷𝐷𝐷𝐷𝐷𝐷 = ��
𝑛𝑛𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖𝑚𝑚

𝑁𝑁𝑒𝑒𝑒𝑒

𝑖𝑖=𝑘𝑘

𝑖𝑖=1

�

1 𝑚𝑚�

 (10) 

where 𝑛𝑛  is the number of load cycles at a specific load 
range (L) 𝑁𝑁𝑒𝑒𝑒𝑒 is a reference number of cycles (1E+07 was 
used in this study) and 𝑚𝑚 is the Wohler exponent (𝑚𝑚 =3 
was used in this study, assuming a welded steel material). 

IV. RESULTS 

A. Power production 
To investigate the effects of wave-by-wave damping 

control on power production, following the approach 
described in Section II.C, the same sea states were analysed 
using the baseline (1) and wave-by-wave (4) damping 
control approaches. Fig. 5 shows the percentage increase 
in mean power for each sea state when switching to a 
wave-by-wave control strategy compared to the baseline 
approach (1). Percentage increases are largest in smaller 
significant wave heights. This is likely due to the force cap, 
which ‘saturates’ the controller in larger sea states and 
removes any potential benefit of the more optimised 
damping.  

As defined in (9), MAEP was used to compare the 
overall power performance. TABLE IV shows that the 
overall increase in power is small, with an increase of 1.5% 
due to wave-by-wave control. When considering the 
additional complexity of the control system, this suggests 
that, for the MegaRoller device, wave-by-wave control 
may not be beneficial in terms of power production.  

It is hypothesised that the limited benefit of the wave-
by-wave damping control strategy for the MegaRoller 
WEC may be due to the device’s characteristics, 
specifically the fact that the device is not designed to 
resonate with the waves like other devices (e.g. point 
absorbers). In addition, the WEC geometry may not be 
optimised for the control strategy considered (see also 
[11]). It is also hypothesised that the force cap may also be 
a limiting factor in the performance gains obtained by this 
control approach. 

Nonetheless, more complex control strategies (e.g. 
introducing a potentially adjustable ‘stiffness’ or ‘mass’ 
term into (4), see e.g. [12]) may increase the power capture. 
Future work could seek to investigate this further, 
especially to compare any potential performance gains 

against the required increase in complexity of the PTO 
drive-trains (e.g. to enable the PTO to input power).  

 

 

B. Initial bearing load tests – regular waves 
When investigating the potential benefits of wave-by-

wave control in terms of load reduction on the bearings, 
following the approach described in Section II.D, the 
control strategy was first tested using a regular wave case. 
In such wave conditions, the hydrodynamic torque can be 
determined exactly (i.e. by running the simulation in 
advance with the baseline controller). As shown in Fig. 6, 
the wave-by-wave controller is therefore able to 
significantly reduce the total torque on the bearing. In the 
case considered (𝐻𝐻 = 1.00𝑚𝑚,𝑇𝑇 = 12𝑠𝑠,𝜃𝜃 = 15° ), the RMS 
value was reduced by over 80%.  

 

C. Bearing loads - Irregular sea states 
After demonstrating the benefits of the wave-by-wave 

control strategy on the bearing torque in regular waves, 
the study was extended in a next step to more realistic, 
irregular sea states.  

TABLE IV 
MAEP USING THE BASELINE AND WAVE-BY-WAVE CONTROL 

APPROACHES 

Property 
MAEP 
[MWh] 

Capacity 
factor [%] 

Baseline 3392 38.7% 

Wave-by-wave 3442 39.2% 

 

 

Fig. 5.  Percentage increase in mean power when using a 
wave-by-wave controller compared to the baseline 

controller. 

 

Fig. 6.  Total bearing torque when using the baseline (in 
blue) and wave-by-wave (in red) controllers.  H=

1.00𝑚𝑚,𝑇𝑇 = 12𝑠𝑠,𝜃𝜃 = 15° 
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The main difference when compared with regular 
waves is the complexity introduced by irregular waves in 
the prediction of the hydrodynamic torque on the bearing. 
Fig. 7 compares the estimated torque when using the 
simplified approach outlined in (6), where the torque is 
assumed to be proportional to the surface elevation, with 
the actual time series (run as a separate simulation using a 
baseline controller setting), for an illustrative irregular 
wave case ( 𝐻𝐻𝑠𝑠 = 1.75𝑚𝑚,𝑇𝑇𝑝𝑝 = 11𝑠𝑠,𝜃𝜃 = 15° ). Whilst the 
predicted time-series can generally be considered to be 
adequate for this initial, proof-of-concept study, it can 
probably be improved in future development works, 
notably in smaller, shorter period waves, e.g. by using 
more advanced hydrodynamic models and tools such as 
machine learning. 

 
Fig. 8 shows the resulting total torque on the bearing, 

comparing the baseline controller with the ‘wave-by-
wave’ and ‘constant offset’ approaches. As expected, both 
methods are shown to reduce the total torque on the 
bearings. However, this reduction is relatively small for 
the ‘constant offset’ approach (in blue) – with an 
approximately  4% decrease in RMS of bearing torque. The 
wave-by-wave approach (in red) shows better results, 
with, quantitively, peak values visibly reduced, and a 
c.24% decrease in RMS of bearing torque compared to the 
baseline approach. 

As a final step, all the sea states outlined in Table II were 
considered, using the three control strategies. Fig. 9 and 
TABLE V summarise the resulting reductions in RMS and 
DEL of bearing torque compared with the baseline case 
(where both PTO forces are equal). 

Overall percentage reductions in the order of 20-30% 
were observed in both RMS and DEL metrics for 
individual sea states when using the ‘wave-by-wave’ 
approach. The improvement is most significant in the 
region of 0.75-2.25m Hs. When weighted and combined 
into a single value, the DEL was reduced by 17.2% 
compared with the baseline case, where the ‘constant 
offset’ approach was only achieving a 3.8% reduction. 

 

 
The wave-by-wave control strategy appears therefore 

clearly more effective in reducing the torque than the 
‘constant offset’ approach. This shows the potential 
benefits of this control strategy, especially when 
considering the opportunities to further refine e.g. the 
hydrodynamic torque predictions. 

 

 
It can be seen, e.g. in Fig. 9, that the percentage reduction 

tends to decrease as significant wave height increases. This 
is likely to be due to the PTO force cap (see (2)): As the total 
PTO force increases, the force cap limits the ability of the 
controller to react to the hydrodynamic torque. The only 
way of further reducing the total torque would therefore 
be to move away from the optimum PTO damping, such 
that both the total PTO force and the distribution between 
PTOs are varied. Such trade-off between power and loads 
could be studied further as part of any future work. 

D. Influence of error in the wave prediction 
The results presented in Section IV.C assume that the 

surface elevation can be predicted exactly. As outlined in 

 

Fig. 7.  Actual vs predicted hydrodynamic bearing torque  
𝐻𝐻𝑠𝑠 = 1.75𝑚𝑚,𝑇𝑇𝑝𝑝 = 11𝑠𝑠,𝜃𝜃 = 15° 

 

Fig. 8.  Comparison of total bearing torque using three 
control strategies: baseline (in black), ‘constant offset’ (in 

blue) and wave-by-wave (in red). 𝐻𝐻𝑠𝑠 = 1.75𝑚𝑚,𝑇𝑇𝑝𝑝 =
11𝑠𝑠,𝜃𝜃 = 15° 

 
Fig. 9.  Percentage reduction in bearing torque DEL for 
irregular sea states approaching from a 15° heading when 
using a wave-by-wave control strategy. 

TABLE V 
PERCENTAGE REDUCTION IN WEIGHTED BEARING TORQUE USING 

DIFFERENT CONTROL STRATEGIES 

Property RMS DEL 

Baseline - - 

Constant Offset 4.9% 3.8% 

Wave-by-wave 23.5% 17.2% 
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Section II.B, in practice some errors in the wave parameters 
predicted should be expected.  

To investigate the potential effects of this error, the 
simulations were re-run with a random error in the 
prediction of each individual wave height and period, 
before calculation of the hydrodynamic bearing torque. 
The magnitude of each error was selected according to 
error histograms provided by the Leibniz Institute for a 
selection of different sea states (see Section II.B). 

Three random errors were simulated for each sea state, 
each using the same surface elevation but introducing 
different random errors. Fig. 10 shows the resulting total 
bearing torque for an example sea state, in the baseline case 
(dashed), in the ‘wave-by-wave’ case with no error (black), 
and in the ‘wave-by-wave’ case with different errors (red, 
yellow and green). Fig. 11 shows the results for a mean 
wave direction of 15°, whilst Fig. 12 shows the weighted 
results for all wave directions.  

 

 
Fig. 10.  Comparison of total bearing torque with and without error 
in the assumed wave elevation. 𝐻𝐻𝑠𝑠 = 1.75𝑚𝑚,𝑇𝑇𝑝𝑝 = 11𝑠𝑠,𝜃𝜃 = 15° 

Generally, differences introduced due to errors in the 
surface elevation prediction are small (<5%). This suggests 
that the wave prediction system’s accuracy is adequate for 
this application. However, this should be re-visited if the 
hydrodynamic models were further improved, as this in 
turn may require a more accurate surface elevation 
prediction. 

 

 
Fig. 11.  Percentage difference (maximum – minimum) in RMS 
bearing torque between 3x random seeds for irregular sea states 
approaching from a 15° heading. 

 

 
Fig. 12.  Percentage difference (maximum – minimum) in RMS 
bearing torque between 3x random seeds for irregular sea states, all 
directions (weighted). 

V. CONCLUSION 

In this paper, the impact of the control strategy on key 
power performance and survivability metrics was 
considered, aiming in particular at assessing the potential 
benefits of a wave-by-wave prediction software for the 
power performance and survivability optimisation of the 
system. 

In terms of power production, in the baseline control 
strategy PTO damping is only varied on a ‘per sea state’ 
basis. A wave-by-wave control strategy was defined in 
which the damping was updated for each individual 
wave, with the aim of increasing the total power absorbed. 

The wave-by-wave approach was found to result in only 
a small increase (<2%) in MAEP. Overall, the results 
suggest that adjusting the PTO damping settings on a 
wave-by-wave basis is not likely to be beneficial when 
considering only power production. This is possibly due 
to the characteristics of the MegaRoller WEC, which is not 
designed to resonate with the approaching waves.    

In terms of survivability, the study investigated the 
application of the wave-by-wave prediction tool to adjust, 
on a wave-by-wave basis, the PTO force split between the 
two cylinders of the MegaRoller twin drive-train. The 
study focused in particular on torque loads on the 
bearings. In the absence of a degree of freedom in yaw, 
waves approaching from an oblique heading typically 
generate a hydrodynamic torque load about the bearings 
that connect the prime mover to the foundation. 

A control strategy was therefore defined where the 
hydrodynamic torque load generated is counteracted by 
an unequal split of the PTO force between the two drive-
trains, to reduce the total torque on the bearings. 

Overall, it was found that, while not affecting the 
capture of energy from the wave field, such asymmetrical 
PTO force split adjusted on wave-by-wave basis can 
significantly contribute to the survivability of the system 
when applied on a wave-by-wave basis (reducing the DEL 
bearing torque by more than 17% compared to the baseline 
strategy), and may represent therefore a potentially more 
suitable application of the wave-by-wave prediction tool. 
Error in the wave-by-wave prediction was found to have a 
minimal impact, with differences of less than 5% in RMS 
bearing torque. 
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A number of key next steps and future works were 
identified throughout the study to improve the potential 
benefits of the proposed control strategy. These include: 

 
• The performance of the artificial neural 

network may benefit from further refinement 
of the structure of the network, and this 
requires further in-depth study. 
 

• The refinement of the hydrodynamic torque 
estimation used in this study, in particular by 
considering the use of more advanced 
hydrodynamic models or machine learning 
tools. 

 
• The optimisation of the PTO damping 

considering survivability criteria, by e.g. 
moving away from the damping coefficient 
leading to the maximum absorbed power in 
cases where the resulting PTO force reaches its 
capped value, to instead reduce the total 
bearing torque. In such cases, both the total 
PTO force and the distribution between PTOs 
could be varied. 

 
• The extension of the study to consider extreme 

loads that are likely to be driven by extreme sea 
states and/or fault scenarios. 

 
• Regarding the wave-by-wave damping control, 

more complex strategies (e.g. introducing a 
‘mass’ and/or ‘stiffness’ term into (4)) could 
potentially lead to more significant increase in 
power capture, and could be investigated 
further. 

APPENDIX 
Percentage occurrences of each sea state were derived 

from a 10-year SWAN wave dataset (covering the period 
between January 1997 and December 2006). Fig. 13 to Fig. 
19 summarise the occurrences for each direction. 

 

 

 

 

 

 

 
Fig. 13.  Wave occurrence matrix, 0° heading. Total = 14.4%, 
after scaling such that the total of all sea states considered = 
100% 

 
Fig. 14.  Wave occurrence matrix, +/- 5° heading. Total = 
24.3%, after scaling such that the total of all sea states 
considered = 100% 

 
Fig. 15.  Wave occurrence matrix, +/-10° heading. Total = 
19.5%, after scaling such that the total of all sea states 
considered = 100%. 

 
Fig. 16.  Wave occurrence matrix, +/-15° heading. Total = 
16.5%, after scaling such that the total of all sea states 
considered = 100%. 

 
Fig. 17.  Wave occurrence matrix, +/-20° heading. Total = 
12.4%, after scaling such that the total of all sea states 
considered = 100%. 

 
Fig. 18.  Wave occurrence matrix, +/-25° heading. Total = 
7.0%, after scaling such that the total of all sea states 
considered = 100%. 
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