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The Stability of Solitary Waves of Depression
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Abstract. We provide a sufficient condition for the orbital stability of negative
solitary-wave solutions of the regularized long-wave equation. In particular,
it is found that solitary waves with speed c < − 1

6
are orbitally stable.
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1. Introduction

In this article, the dynamic stability of negative solitary-wave solutions of the
regularized long-wave equation

ut + ux +
(
u2

)
x
− uxxt = 0, (1.1)

is investigated. This equation which is also called the BBM equation, is used
to model the propagation of small-amplitude surface waves on a fluid running
in a long narrow channel. For an account of modeling properties of (1.1), the
reader may consult the work of Benjamin et al. [6], Peregrine [14] and Whitham
[17]. As is well known, equation (1.1) admits solitary-wave solutions of the form
u(x, t) = Φ(x−ct). Indeed, when this ansatz is substituted into (1.1), there appears
the ordinary differential equation

−cΦ + Φ + cΦ′′ + Φ2 = 0, (1.2)

where Φ′ = dΦ
dξ , for ξ = x− ct. It is elementary to check that a solution of (1.2) is

given by

Φ(ξ) = 3
2 (c− 1) sech2

(
1
2

√
c−1

c ξ
)
. (1.3)

These solutions are strictly positive progressive waves which propagate to the right
without changing their profile over time. As can be seen from the expression (1.3),
solitary waves with positive propagation velocity are defined only when c > 1. It is
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well known that these positive solitary waves are dynamically stable with respect
to small perturbations. As observed by one of the authors in [12], the formula (1.3)
is still valid when c < 0, resulting in a solitary wave of depression which propagates
to the left. Surprisingly, the stability of these solitary-waves of depression depends
on the speed c. In fact, it was shown in [12] that for negative values of c close to
zero, the solitary waves are unstable.

The original proof of stability of positive solitary waves was given by Ben-
jamin [5] and Bona [7], using previous ideas of Boussinesq concerning the char-
acterization of solitary waves as extremals of a constrained minimization problem
[1, 9]. While the main thrust of their work was in the direction of the Korteweg-
deVries equation

ut + ux +
(
u2

)
x

+ uxxx = 0,

their proof is also applicable to the regularized long-wave equation (1.1). In fact,
the proof of stability of positive solitary waves appears in the appendix of [5]. The
method of Benjamin has subsequently been refined and extended, and a general
theory has been developed [2, 4, 8, 10, 11, 16]. It appears however that almost
all previous work has exclusively focused on positive solitary waves. In order to
treat negative solitary waves, the general theory developed in [10, 16] cannot be
applied straightforwardly, and it is our purpose here to indicate a complete proof
of stability of negative solitary waves. Thus the main contribution of the present
article is the proof of the following theorem.

Theorem. The solitary wave Φ with velocity c is stable if c < − 1
6 .

Observe that this theorem provides a sufficient condition for the stability
of negative solitary waves. We must hasten to mention however that numerical
computations in [12, 13] suggest that our result is not sharp. For the sake of
clarity, we closely follow the original proof of Benjamin without paying much heed
to the more general theory.

Figure 1 is depicting a stable solitary wave of depression, with velocity c =
−1.2 and amplitude maxx |Φ| = 3.3, propagating to the left.

2. Preliminaries

As already observed by Benjamin and others [5, 6], a solitary wave cannot be stable
in the strictest sense of the word. To understand this, consider two solitary-waves
of different height, centered initially at the same point. Since the two waves have
different amplitudes, they have different velocities according to the formula (1.3).
As time passes the two waves will drift apart, no matter how small the initial
difference was. However, in the situation just described, it is evident that two
solitary waves with slightly differing height will stay similar in shape during the
time evolution. Measuring the difference in shape therefore will give an acceptable
notion of stability. This sense of orbital stability was introduced by Benjamin [5].
We say the solitary wave is orbital stable, if for a solution u of the equation (1.1)
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Figure 1. Stable solitary wave of depression with velocity c = −1.2.

that is initially sufficiently close to a solitary-wave will always stay close to a
translation of the solitary-wave during the time evolution. A more mathematically
precise definition is as follows. For any ε > 0, consider the tube

Uε = {u ∈ H1 : inf
s
‖u− τsΦ‖H1 < ε}, (2.1)

where τsΦ(x) = Φ(x− s) is a translation of Φ. The set Uε is an ε-neighborhood of
the collection of all translates of Φ.

Definition 2.1. The solitary wave is stable if for any ε > 0, there exists δ > 0 such
that if u0 = u(·, 0) ∈ Uδ, then u(·, t) ∈ Uε, ∀t ∈ R. The solitary wave Φ is unstable
if Φ is not stable.

The proof of stability is based on the conservation of certain integral quanti-
ties under the action of the evolution equation. Equation (1.1) has four invariant
integrals. In particular, the functionals

V (u) = 1
2

∫ ∞

−∞
(u2 + u2

x) dx, (2.2)

and

E(u) =
∫ ∞

−∞
(1
2u

2 + 1
3u

3) dx, (2.3)

are critically important to the proof of stability of Φ. Note that V (g) = 1
2‖g‖2

H1 .
The properties of these functionals are summarized in the following proposition.
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Proposition 2.2. Suppose u is a smooth solution of (1.1) with sufficient spatial
decay. Then V and E are constant as functions of t, invariant with respect to
spatial translations and continuous with respect to the H1(R)-norm.

Proof. The proof is standard. To see conservation in time for V and E, multiply
the equation by u and (−u− u2 + uxt), respectively. Translation invariance means

V (u) = V (τs(u)); and E(u) = E(τs(u)), ∀s ∈ R.

This follows immediately from the definition. Finally, we prove continuity of E
with respect to the H1(R)-norm. Let {wn} be any sequence in H1(R) such that
limn→∞ ‖wn − w‖H1 = 0. Then

∣∣E(wn) − E(w)
∣∣ =

∣
∣∣ 1

2

∫ ∞

−∞
[w2

n − w2]dx+ 1
3

∫ ∞

−∞
[w3

n − w3]dx
∣
∣∣

≤ 1
2

∣
∣
∣
∫ ∞

−∞
(wn − w)(wn + w)dx

∣
∣
∣ + 1

3

∣
∣
∣
∫ ∞

−∞
(wn − w)(w2

n + wnw + w2)dx
∣
∣
∣.

Using the Cauchy-Schwarz inequality, this can be dominated by
1
2 ‖wn − w‖L2‖wn + w‖L2 + 1

3 ‖wn − w‖L2‖w2
n + wnw + w2‖L2 .

Thus there appears the estimate

|E(wn) − E(w)|
≤ ‖wn − w‖H1

{
1
2

(‖wn‖H1 + ‖w‖H1

)
+ 1

3

(‖w2
n‖H1 + ‖wnw‖H1 + ‖w2‖H1

)}
.

This expression approaches 0 as n → ∞, because wnand w ∈ H1(R) imply
‖wrws

n‖H1 <∞ for r, s = 0, 1, 2; Thus, limn→∞ |E(wn) − E(w)| = 0. �

It is well known that the initial value problem for (1.1) is globally well posed.
In fact, as soon as local existence is established, the conservation of the H1-norm
can be exploited to obtain a global solution. For the exact proof, the reader may
consult the articles of Benjamin et al. [6] and Albert and Bona [3].

The notation used in this article is the standard notation in the theory of
partial differential equations. Since all functions considered here are real-valued,
we take the L2-inner product to be 〈f, g〉 =

∫ ∞
−∞ f(x) g(x) dx. We will also have

occasion to consider the L2-inner product on the half-line, and this will be denoted
by 〈f, g〉L2[0,∞) =

∫ ∞
0 f(x) g(x) dx.

3. Orbital stability

In this section, orbital stability of the solitary waves of depression will be proved.
Consider for a moment the difference in L2(R) of a solitary wave and a general
solution of (1.1). Intuitively, for each u in H1(R), there is an α ∈ R, such that

∫ ∞

−∞

{
u(ξ + α(u)) − Φ(ξ)

}2

dξ = inf
a∈R

∫ ∞

−∞

{
u(ξ + a) − Φ(ξ)

}2

dξ. (3.1)
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If the integral on the right is a differentiable function of a, and ‖u‖L2 = ‖Φ‖L2,
then α(u) could be determined by solving the equation

〈
u(· + α(u)),Φ′〉 = 0. (3.2)

A formal proof of the existence of a α(u) proceeds with the use the implicit function
theorem as follows.

Proposition 3.1. There is ε > 0, such that there exists a C1-mapping α : Uε −→ R,
with the property that

〈
u(· + α(u)),Φ′〉 = 0 for every u ∈ Uε.

Proof. For a given u ∈ Uε, consider the functional

F : (u, α) 	−→
∫ ∞

−∞
u(ξ + α(u))Φ′(ξ)dξ.

Observe that
dF (Φ, 0)
dα

=
∫ ∞

−∞
(Φ′(ξ))2dξ > 0,

and

F (Φ, 0) =
∫ ∞

−∞
Φ(ξ)Φ′(ξ)dξ. =

1
2

∫ ∞

−∞

d

dξ
Φ2(ξ)dξ =

1
2
[Φ2(∞) − Φ2(−∞)] = 0

Therefore, by the implicit function theorem, there exist a C1-map α(u) near Φ
such that 〈

u(· + α(u)),Φ′〉 = 0.
By translation invariance, the size of the neighborhood is the same everywhere.

�

A crucial ingredient in the proof of stability is the fact that for all c less
than some critical speed c∗, the functional E(u) attains its minimum value when
restricted to functions for which V (u) = V (Φ). In fact, we have the following
explicit estimate.

Proposition 3.2. If c < − 1
6 , there are β > 0, and ε > 0 such that

E(u) − E(Φ) ≥ β

2
‖u(· + α(u)) − Φ‖2

H1 ,

for all u ∈ Uε, satisfying V (u) = V (Φ).

Proof. The demonstration of this theorem follows the ideas outlined in the work of
Benjamin [5]. In that work, however, the focus was on positive solitary waves. To
accommodate negative solitary waves, the proof has to be modified accordingly.

For each u in Uε such that V (u) = V (Φ), let v = u(·+α(u))−Φ, where α is
defined in Proposition 3.1. Let ∆V = V (Φ + v) − V (Φ), and note that ∆V = 0.
However, according to the definition of V , we also have

∆V =
1
2

∫ ∞

−∞

{
v2 + v′2 + 2Φv + 2Φ′v′

}
dξ. (3.3)
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Defining ∆E in a similar way, we see that

∆E = E(Φ + v) − E(Φ) =
∫ ∞

−∞

{
1
2v

2 + Φv + Φ2v + Φv2 + 1
3v

3
}
dξ. (3.4)

On the other hand, since ∆V = 0, we may also write

∆E = ∆E − c∆V.

Therefore, in view of equations (3.3) and (3.4) there appears the expression

∆E =
∫ ∞

−∞

{
1
2v

2 + Φv2 + 1
3v

3 − 1
2cv

2 − 1
2cv

′2} dξ

+
∫ ∞

−∞

{
Φ − cΦ + Φ2 + cΦ′′} v dξ.

Since Φ satisfies (1.2), the integrand of the second integral vanishes identically.
Therefore,

∆E =
1
2

∫ ∞

−∞

{−cv′2 + (−c+ 1 + 2Φ)v2
}
dξ +

1
3

∫ ∞

−∞
v3dξ

Thus we have ∆E = δ2E + δ3E, where δ2E and δ3E are the second and third
variation of E, respectively. In order to obtain a lower bound for δ2E, v is written
as the sum of an even function f and an odd function g. Since Φ itself is even, it
can be shown directly that the even and odd parts of v contribute independently
to δ2E. In other words, we have

δ2E = δ2E(f) + δ2E(g). (3.5)

The contribution to δ2E from even functions is obtained as follows.

Lemma 3.3. If c < − 1
6 , there are positive constants κ1 and κ2 such that

δ2E(f) ≥ κ1‖f‖2
H1 − κ2‖v‖3

H1 .

Proof. The estimate for the lower bound of the contribution of δ2E(f), where f
is an even function will be obtained by comparison with the integral

J =
∫ ∞

0

{
2
√

c
c−1 f

′2 +
[

µ
2

√
c−1

c + 20
3

√
1

c(c−1) Φ
]
f2

}
d ξ,

where µ is a constant to be specified later. The substitution z = 1
2

√
c−1

c ξ yields

Φ = 3
2 (c− 1) sech2z, and puts the integral in the simpler form

J =
∫ ∞

0

{ (
∂f
∂z

)2

+
(
µ− 20 sech2z

)
f2

}
dz.

From here one, derivatives with respect to z will be denoted by ∂
∂z , while derivatives

with respect to ξ will be indicated by a prime. Moreover, the integrands will be
interpreted as functions of z or ξ as indicated by the variable of integration. Next,
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we will make use of the spectral theory for a certain linear operator on the Hilbert
space L2(0,∞). Let the operator Le be defined by

Le = − d2

dz2
− 20 sech2z, (3.6)

with domain defined as those functions φ ∈ H2(0,∞) that satisfy the boundary
condition φ′(0) = 0. As it turns out, Le has only two negative eigenvalues:

λ1 = −16 and λ2 = −4,

with corresponding normalized eigenfunctions

ψ1 =
√

35
16 sech4z, and ψ2 =

√
5
8

(
6 sech2z − 7 sech4z

)
. (3.7)

� λ�

λ1 = −16
�

λ2 = −4

0 Positive continuous spectrum λ > 0

Figure 2. The spectrum of Le.

The rest of the singular set consists of positive continuous spectrum. Now
it can be seen from the expressions in (3.7) that ψ1 and ψ2 have sech4z as a
common term. Thus we may write sech2z as a linear combination of ψ1 and ψ2.
In particular,

sech2z = 7
6

√
16
35 ψ1 + 1

6

√
8
5 ψ2. (3.8)

The connection between J and Le becomes apparent as follows.

〈Lef, f
〉

L2[0,∞)
=

∫ ∞

0

{
f ′2 − 20 sech2z f2

}
dz.

One should recognize the right-hand side of this equation as the first and last term
in the integral J. By the spectral theorem, the left-hand side of this equation is
equal to

−16 F 2
1 − 4 F 2

2 +
∫ ∞

0

F 2(λ) λdρ(λ), (3.9)

where ρ(λ) is the spectral-function on R. The coefficients F1, F2, and F (λ) are
defined by

F1,2 =
∫ ∞

0

ψ1,2 f(z)dz and F (λ) =
∫ ∞

0

ψ(z;λ)f(z)dz, (3.10)

where ψ(z;λ) is the generalized eigenfunction corresponding to the continuous
spectrum of Le. Moreover, the spectral decomposition

f(z) = F1ψ1 + F2ψ2 +
∫ ∞

0

ψ(z;λ)F (λ)dρ(λ),
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and Parseval’s identity give
∫ ∞

0

f2dz = F 2
1 + F 2

2 +
∫ ∞

0

F 2dρ(λ). (3.11)

From equation (3.9) and (3.11), we obtain a new form for the integral J as follows:

J = (µ− 16)F 2
1 + (µ− 4)F 2

2 +
∫ ∞

0

(µ+ λ)F 2dρ(λ). (3.12)

Next, we introduce the notation p = ‖v‖H1 , and write F2 as a linear combination
of F1 and p2. Here, the constraint ∆V = 0 will play a major role. According to
equation (3.3), the constraint ∆V = 0 is equivalent to

−p2 = 2
∫ ∞

−∞
(Φv + Φ′v′) dξ.

On the right-hand side, use integration by parts in the last term yields

−p2 = 2
∫ ∞

−∞
(Φ − Φ′′) v dξ.

In light of equation (1.2) and the fact that Φ is an even function, this equation
can be put in the form

−p2 =
4
c

∫ ∞

0

(Φ + Φ2) f dξ.

On the right-hand side of this equation, use the expression (1.3) for Φ, and make

a change variable z = 1
2

√
c−1

c ξ. Then (3.7) and (3.10) can be used to put the
equation in the form of

∫ ∞

0

sech2z fdz = − 3
2

√
16
35 (c− 1)F1 − 1

12

√
c

c−1 p
2. (3.13)

Using the definition of F2, (3.13), the definition of F1, it appears that

F2 = AF1 + Ip2,

where A and I are defined by

A = (−9c+ 2)
√

2
7 , and I = − 1

2

√
5
8

√
c

c−1 . (3.14)

Thus equation (3.12) becomes

J =
[
µ− 16 + (µ− 4)A2

]
F 2

1 + (µ− 4)(2AIF1p
2 + I2p4) +

∫ ∞

0

(µ+ λ)F 2 dρ(λ).

Now for positive µ, the integral term is nonnegative. We choose µ is such a way
that the coefficient of F 2

1 in the expression for J is nonnegative. Thus we need

µ ≥ 4(4 +A2)
1 +A2

. (3.15)
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Since 4(4+A2)
1+A2 > 4, the coefficient (µ − 4) is then automatically also positive.

Therefore, with this choice of µ, J can be estimated below by

J ≥ 24
1 +A2

AIF1p
2.

By using straightforward inequalities

F 2
1 ≤

∫ ∞

0

f2dz ≤ 1
2

∫ ∞

−∞
v2dz ≤ 1

2

∫ ∞

−∞

{
v2 + 1

4
c−1

c v′2
}
dz

=
1
4

√
c−1

c

∫ ∞

−∞

{
v2 + v′2

}
dξ =

1
4

√
c−1

c p2,

we obtain the lower bound for the integral as

J ≥ 12AI
1 +A2

(
c−1

c

) 1
4 ‖v‖3

H1 . (3.16)

Finally, a lower bound for the even contribution to δ2E is found as follows.

δ2E(f) =
∫ ∞

0

{
− 2c

5 f
′2 + (−c+ 1)

(
1 − 3

20 µ
)
f2

}
dξ +

3
10

√
c(c− 1) J

≥ 1
2

∫ ∞

−∞

{
− 2c

5 f
′2 + (−c+ 1)

(
1 − 3

20µ
)
f2

}
dξ

+
18AI

5(1 +A2)

√
c(c− 1)

(
c−1

c

) 1
4 ‖v‖3

H1 .

Now we need the coefficient 1 − 3
20µ to be positive, and considering (3.15), this is

possible only if 20
3 > µ ≥ 4(4+A2)

1+A2 . But by (3.14), this inequality can be satisfied
only if c < − 1

6 . Thus as long as c < − 1
6 , we have the estimate

δ2E(f) ≥ κ1

∫ ∞

−∞

(
f ′2 + f2

)
dξ − κ2‖v‖3

H1 , (3.17)

where κ1 = min
( − c

5 ,
1
2 (−c + 1)(1 − 3

20µ)
)
, and κ2 = −18AI

5(1+A2)

√
c(c− 1)

(
c−1

c

) 1
4

are positive constants. �

Next, we turn to the contribution to δ2E from the odd part of v.

Lemma 3.4. For all c < 0, there holds the estimate

δ2E(g) ≥ −c
8
‖g‖2

H1 .

Proof. For the odd contribution to δ2E, the result in Proposition 3.1 will play an
important role. By virtue of this lemma

∫ ∞

−∞
(Φ + v)Φ′dξ = 0.
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Since Φ is even, this is the same as
∫ ∞

−∞
gΦ′dξ = 0. (3.18)

Let s be a positive constant, and consider the linear operator

Lo =
1
s

[
− d2

dξ2
− 3s sech2

(
1
2

√
s ξ

)]
, (3.19)

defined on those functions φ ∈ H2(0,∞) that satisfy the boundary condition
φ(0) = 0. As illustrated in Figure 3, Lo has only one negative eigenvalue λ1 = −1
with corresponding eigenfunction

θ1 =
d

dξ

{
3s sech2

(
1
2

√
s ξ

)}
, (3.20)

and the rest of the spectrum of Lo is positive continuous [5].

� λ�

λ1 = −1

0 Positive continuous spectrum λ > 0

Figure 3. The spectrum of Lo.

Now the spectral theorem asserts that

〈Log, g〉L2[0,∞) = −〈g, θ1〉2L2[0,∞) +
∫ ∞

0

λG2(λ)dρ(λ),

where G(λ) =
∫ ∞
0
θ(ξ;λ)g(ξ)dξ, and θ(ξ;λ) is a generalized eigenfunction of Lo.

If we now choose s = c−1
c , where c < 0 then it follows from (3.18) that

〈g, θ1〉L2[0,∞) = 0.

Thus we obtain
〈Log, g〉L2[0,∞) ≥ 0. (3.21)

On the other hand, after integration by parts, there appears

0 ≤ 〈Log, g〉L2[0,∞) =
c

c− 1

∫ ∞

0

{
g′2 − 3 c−1

c sech2
(

1
2

√
c−1

c ξ
)
g2

}
dξ.

Thus it is immediate that the following integral is nonnegative.

K =
∫ ∞

0

{
g′2 − 2

cΦ g2
}
dξ ≥ 0. (3.22)

The contribution to δ2E due to the odd part of v may now be estimated by
comparison with the integral K.

δ2M(g) = −3c
4
K+

1
2

∫ ∞

0

{
Φ+ 3

2 (−c+1)
}
g2dξ+

1
4

∫ ∞

0

{− cg′2 +(−c+1) g2
}
dξ.
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In light of (3.22), −c+1 ≥ −c, and the fact that Φ ≥ 3
2 (c−1) [cf.(1.3) with c < 0],

there follows

δ2M(g) ≥ −c
8

∫ ∞

−∞

(
g′2 + g2

)
dξ . (3.23)

�

Proof of Proposition 3.2: Using (3.5), Lemma (3.3), and Lemma (3.4), it is plain
that

δ2E ≥ β

∫ ∞

−∞
(v′2 + v2)dξ − κ2‖v‖3

H1 , (3.24)

where β = min(−c
8 , κ1) is a positive constant, and κ1 and κ2 are defined in (3.17).

Now using the inequality supξ∈R
|v(ξ)| ≤ 1√

2
‖v‖H1

1, there appears an esti-
mate for δ3E.

δ3E = −1
3

∫ ∞

−∞
(−v)v2dξ ≥ −1

3
sup |v|

∫ ∞

−∞
v2dξ ≥ − 1

3
√

2
‖v‖3

H1 . (3.25)

Combining (3.24) and (3.25) yields the final estimate

∆E ≥ β

∫ ∞

−∞
(v′2 + v2)dξ − γ‖v‖3

H1 = ‖v‖2
H1(β − γ‖v‖H1).

where γ = κ2 + 1
3
√

2
. Therefore, if ‖v‖H1 is sufficiently small, say ‖v‖H1 < β

2γ , we
obtain

∆E ≥ β

2
‖v‖2

H1 . �

Finally, we will close this section by showing a necessary condition for stability
of the solitary-wave.

Theorem. The solitary wave Φ with velocity c is stable if c < − 1
6 .

Proof. The proof is based on the techniques of of Bona, Grillakis, Souganidis
Shatah, and Strauss in [8, 10]. In particular, the theorem will be proved by con-
tradiction as follows. Suppose Φ is not stable, then there exists an ε > 0, and a se-
quence of initial data u0

n ∈ H1(R) and corresponding solutions un ∈ C(R, H1(R))
with un(·, 0) = un

0 , such that

lim
n→∞ ‖u0

n − Φ‖H1 = 0, (3.26)

but
sup
t>0

inf
s∈R

‖un(·, t) − τsΦ(·)‖H1 ≥ 1
2ε,

for large enough n. By the continuity of un in t, we can pick the first time tn so
that

inf
s∈R

‖un(·, tn) − τsΦ(·)‖H1 = 1
2 ε. (3.27)

In other words, un(·, tn) ∈ ∂U 1
2 ε.

1This is known as the Sobolev lemma. The reader may refer to [5] for a simple proof.
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Since V is continuous in H1(R) and invariant under time evolution, we have
limn→∞ V (u0

n) = V (Φ), and consequently

lim
n→∞V (u(·, tn)) = V (Φ). (3.28)

Choose a sequence wn ∈ H1(R), such that V (wn) = V (Φ) and limn→∞ ‖wn −
un(·, tn)‖H1 = 0. 2 Note that by H1-continuity of E, and time invariance,

lim
n→∞

[
E(wn) − E(Φ)

]
= 0,

and also note that wn ∈ Uε for large n. On the other hand, so long as ε is small
enough, Proposition (3.2) shows that

E(wn) − E(Φ) ≥ β

2
‖wn(· + α(wn)) − Φ‖2

H1 ,

where β is the constant defined in (3.24). Therefore, since α(u) is a continuous
function, it appears that

lim
n→∞ ‖un(·, tn) − Φ(· − α(un(·, tn)))‖H1 = 0.

Finally, this is a contradiction to (3.27) �
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