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The Korteweg-de Vries (KdV) equation is a well-known model equation for unidirectional 
shallow-water (long) surface waves. The equation includes dispersion and weak non-
linearity. The derivation of the equation originates in assuming that the velocity potential 
takes the form of an asymptotic expansion, and applying this in the classical surface 
wave problem. While a typical assumption on the relative size of non-dimensional key 
parameters introduced in the derivation will give the KdV equation as a final result, one 
can change the assumption on the relative size of parameters, and end up with an equation 
including terms in higher orders in desired parameters. The present article presents the 
derivation of an extended form referred to as the eeKdV equation.
Information regarding various properties of the flow can be found by studying the 
derivation of the eeKdV equation itself, and some of the relations found can be used for 
studying the energy balance of a system modeled by the equation. In line with previous 
work for the KdV equation, we present here corresponding formulations of energy balance 
laws for an inertial reference frame, in context of the eeKdV equation. We also present a 
partial verification of the KdV and eeKdV energy flux expressions by looking at a far-field, 
uniform flow situation, as well as performing a numerical study to confirm the assumed 
behaviour of the error in the eeKdV energy equation in the context of a undular bore flow 
setup. Further, conserved integrals for the eeKdV equation are presented and numerically 
checked.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

As described in [1], the KdV equation dates back to the 1890s works of Boussinesq [13] and later Korteweg and de Vries 
[21]. For the KdV equation to be a reasonable model for water waves, the waves are typically required to have a limited 
amplitude and long wavelength when compared to the neutral (or undisturbed) fluid depth, and further the waves need to 
be mainly unidirectional and under negligible influence from transverse flow effects. The dimensional version of the KdV 
equation is given in [31] as

ηt + c0ηx + 3

2

c0

h0
ηηx + c0h2

0

6
ηxxx = 0 , (1.1)
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Fig. 1. Illustration of experiment 22 of Favre [18], showing that the parameter α = a/h0 is somewhat larger than the parameter β = h2
0/�2, justifying an 

assumption on the relative parameter sizes such as α2 ≈ β or α3 ≈ β . Note that these are waveforms on top of a neutral fluid level of h0 = 0.1075 m, and 
the wavelength l is approximately 1 m in this experiment.

where η(x, t) denotes the deflection of the free surface relative to the neutral water depth h0, g represents the acceleration 
by gravity, and c0 = √

gh0 denotes the limiting speed of long waves. Note that this version of the equation is most conve-
nient when using the equation to simulate waves on the surface of a fluid of undisturbed depth h0 . The standard form of 
the equation ut − 6uux + uxxx = 0 often used in the literature (see for example [17]) can be recovered by a re-scaling of the 
variables.

The KdV equation appears in the context of a certain scaling regime, namely the Boussinesq scaling regime. The key 
step here is to balance the amplitude and wavelength of the waves such that travelling-wave solutions are allowed to 
arise. If � is used to represent a typical wavelength and a is used to represent a typical wave amplitude, the parameter 
α = a/h0 measures the relative amplitude, and β = h2

0/�
2 is a measure of the relative wavenumber. For the waves to fit into 

the Boussinesq scaling regime, it is required that the parameters α and β are small and of comparable magnitude. Under 
this assumption the KdV equation will appear, as a simplified asymptotic model for the motion of waves. A more detailed 
explanation can be found in [1].

In the current work, we have had two key motivations to study KdV-type equations including higher order terms than 
the usual KdV equation itself. Firstly, as mentioned above, the Boussinesq scaling regime takes α ≈ β , but there may arise 
situations in which a more appropriate model equation may be aquired by assuming that α is somewhat larger than β , for 
example in experiments on undular bores done by Favre in [18]. This is shown in Fig. 1.

Under modified assumptions on the relative size of the two parameters, such as α2 ≈ β or α3 ≈ β , new equations 
including terms to higher power in the parameter α arise during the derivation. In this paper, we are considering the 
relative parameter size α3 ≈ β . This assumption will ultimately lead to the so-called eeKdV equation

ηt + c0ηx + 3

2

c0

h0
ηηx + c0h2

0

6
ηxxx − 3

8

c0

h2
0

η2ηx + 3

16

c0

h3
0

η3ηx = 0 . (1.2)

In [1], the challenge of finding expressions for and derivations of dynamical quantities associated with the KdV equation 
in relevant literature is mentioned, and as such that work presented equations for mass, momentum and energy fluxes and 
densities in terms of the main variable η of equation (1.1). These expressions were also compared to quantities found in [5]
for the steady KdV equation, and were found to agree in the limit of small α and β .

Serving as the second motivation for the current work is the observation of which energy flux relations result from 
applying horizontal fluid velocity expressions for respectively the KdV and eeKdV equations in the general energy flux 
expression for shallow water flow. In particular, while it is well known the dispersive equations develop oscillations behind 
the bore front (see also [23]), it was found in [5] and [30] that a small additional energy loss is required in the KdV 
equation which was ascribed to dissipative effects. It was shown in [3,4] that this is not necessary, and in an inviscid 
theory, the energy loss experienced by the shallow-water system can be accounted for by the development of oscillation in 
the free surface. Nevertheless, there was a small problem as the KdV equation and the Boussinesq system studied in [3,4] do 
not correctly reproduce the energy flux of the shallow-water system. In the current article, we put forward corresponding 
equations for the energy flux and energy density associated with the eeKdV equation, in terms of the main variable η of 
equation (1.2) It will be shown here that the energy flux in the eeKdV equation does reduce correctly to the shallow-water 
theory in the far field. The results of this inquiry are presented in section 4.

Given that the eeKdV equation is stated using its dimensional version (1.2), the first three conserved integrals will be

I1 =
∞∫

−∞
ηdx, I2 =

∞∫
−∞

η2 dx, I3 =
∞∫

−∞

(
η3 − h3

0
3 η2

x − 1
8h0

η4 + 3
80h2

0
η5

)
dx. (1.3)

It can be shown that the first integral is invariant in time t once it is observed that the eeKdV equation can be stated as

∂

∂t
(h0 + η) + ∂

∂x

(
c0η + 3

4

c0

h0
η2 + c0h2

0

6
ηxx − 3

24

c0

h2
0

η3 + 3

64

c0

h3
0

η4
)

= 0, (1.4)

where the expression being differentiated with respect to time is the total depth which is here understood as a mass 
density, and the terms subject to the spatial differentiation is the mass flux through a unit width cross section of fluid, 
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Fig. 2. The function η(x, t) describes the free surface. We denote the undisturbed fluid depth by h0. The x-axis (z = 0) is aligned with the resting position 
of the free surface. The light gray color represents the fluid, while the dark gray color represents the bottom. The fluid density is taken to be unity.

caused by a passing surface wave. One can find invariance of the two other integrals in (1.3) by stating similar identities. 
For example, a firm mathematical proof is given in [11]. However, in these two latter cases, the fluxes turning up are not 
representative for any particular physical quantities. Nevertheless, the conserved integrals in (1.3) are useful for testing the 
implementation of a numerical code. Numerical tests using a Gaussian initial data are presented in section 5.

The main idea of the derivation of energy equations in this article is, as in [1], to develop an expression for energy 
conservation under the condition that the expression should be valid to the same order as the eeKdV equation itself is 
valid. In section 2, it will be shown that the non-dimensional eeKdV equation is given as

η̃t̃ + η̃x̃ + 3

2
αη̃η̃x̃ + 1

6
βη̃x̃x̃x̃ − 3

8
α2η2ηx + 3

16
α3η3ηx = O(α4,αβ,β2) (1.5)

The dimensional eeKdV equation (1.2) will appear after re-dimensionalization when disregarding terms of O(α4, αβ, β2).
In section 3, it will be shown through the derivation of the energy balance law related to the eeKdV equation that if the 

non-dimensional energy density Ẽ(η̃) and non-dimensional energy flux q̃E (η̃) are defined correctly as functions of η̃ and 
derivatives of η̃, and truncated at the same order as the eeKdV equations, then the relation

∂

∂ t̃
Ẽ(η̃) + ∂

∂ x̃
q̃E(η̃) = O(α4,αβ,β2), (1.6)

will hold.
Note that as in [1], also in the current work the derivations are formal, and we give no mathematical proofs regarding 

convergence of the developed equations in the case that the parameters α and β approach zero. The primary aim of this 
work is to find and present an expression for the energy balance which satisfy (1.6). A proof of the validity of (1.6) is not 
given in the current article, but such a proof may possibly be done following the proofs given in [9,15,25] for the validity 
of the KdV equation itself as a model for water waves.

2. Derivation of the equation, velocity field and pressure

In this section, we derive the equations (1.2) using the method explained in detail in [31], and using the assumptions 
on the wavelength and amplitude outlined in the previous section. We emphasize that the relation α3 ∼ β is based on the 
observations and measurements on the propagation of bores in [18]. We then go on to show the equations for the velocity 
field and the fluid pressure, in terms of the surface deflection η.

We want to study fluid flow in a long channel of unit width. A coordinate system is positioned so that the x-axis 
(z = 0) is coinciding with the undisturbed level of the free surface. The fluid domain is assumed to be infinite in positive 
and negative x-direction. The channel bottom is taken to be flat, and we assume that we can disregard motion of waves 
transverse to the x-axis. The fluid itself is taken to be inviscid and incompressible, and it is assumed that the density of the 
fluid is unity.

Fig. 2 shows the geometry of the problem. The general description for the surface water-wave problem is the Euler 
equations (in which friction is disregarded so that the no-slip boundary condition at the bottom does not apply), with 
kinematic and dynamic boundary conditions applied at the free surface. The unknown variables will then be the surface 
deflection η(x, t), the pressure P (x, z, t), horizontal fluid velocity u1(x, z, t) and vertical fluid velocity u2(x, z, t). The domain 
is 

{
(x, z) ∈R2| − h0 < z < η(x, t)

}
which as mentioned above is considered having infinite extension in the x-direction.

The two-dimensional Euler equations on the stated domain are

ut + (u · ∇)u + ∇ P = g, (2.1)

∇ · u = 0, (2.2)

where the velocity field is denoted by u = (u1, u2), and g = (0, −g) is the gravitational acceleration associated with the 
body force. By the neglection of surface tension, the dynamic free-surface boundary condition requires the surface fluid 
pressure to equal the atmospheric pressure. Further, the kinematic free-surface boundary condition dictates that the normal 
velocity of the surface and the fluid velocity normal to the surface should be equal.
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Under the assumption of irrotational and incompressible flow, the surface-wave problem can be recast as the Laplace 
equation for the velocity potential φ(x, z, t), and the surface boundary conditions will then be

ηt + φxηx − φz = 0, on z = η(x, t) , (2.3)

φt + 1

2

(
φ2

x + φ2
z

) + gη = 0, on z = η(x, t) . (2.4)

With the purpose of bringing out the various sizes of the variables, we non-dimensionalize by using

x̃ = x

�
, z̃ = z + h0

h0
, η̃ = η

a
, t̃ = c0t

�
, φ̃ = c0

ga�
φ

In the subsequent part, we are using the standard method for the development of the velocity potential φ in an asymp-
totic series. Through the use of the Laplace equation and the flat bottom boundary condition, the velocity potential will be 
given by

φ̃ = f̃ − β
z̃2

2
f̃ x̃x̃ +O(β2), (2.5)

in which the function f̃ (x̃, ̃t) is selected so that f̃ x̃ represents the bottom horizontal fluid velocity. By the method described 
in Bona et al. [8] and Whitham [31], the above expression for φ̃ is substituted into the surface boundary conditions. From 
the second free-surface boundary condition (2.4) we get the relation

η̃ + f̃ t̃ − β

2
f̃ x̃x̃t̃ + α

2
f̃ 2

x̃ = O(αβ,β2). (2.6)

By the differentiation of (2.6) with respect to x̃, bringing in (2.3) as the first equation, and defining w̃ = f̃ x̃ , we arrive at the 
system

η̃t̃ + w̃ x̃ + α(η̃w̃)x̃ + 1

6
β w̃ x̃x̃x̃ = O(αβ,β2),

w̃t̃ + η̃x̃ + αw̃ w̃ x̃ − 1

2
β w̃ x̃x̃t̃ = O(αβ,β2).

(2.7)

From the system (2.7), various equations of KdV type can be derived through different assumptions on the relation between 
the non-dimensional bottom horizontal velocity w̃ and the surface deflection η̃. In the case of the KdV equation, it is 
explained in [31] how a wave solution of the system (2.7) travelling to the right requires the relation

w̃ = η̃ + αA + βB +O(α2,αβ,β2). (2.8)

Now, for the eeKdV equation, the corresponding required relation will be

w̃ = η̃ + αA + βB + α2C + α3 D +O(α4,αβ,β2). (2.9)

To find the functions A, B , C and D we substitute (2.9) into (2.7). Using the requirement that both equations in (2.7) should 
give an identical equation for η̃, combined with applying the first-order derivative relation

∂t̃ F (η̃) = −∂x̃ F (η̃) +O(α,β), (2.10)

in which F is a polynomial in η̃ and derivatives of η̃, yields

A = −1

4
η̃2, B = 1

3
η̃x̃x̃, C = 1

8
η̃3, and D = − 5

64
η̃4.

Then, the requirement of equality for the equations in (2.7) results in the non-dimensional eeKdV equation

η̃t̃ + η̃x̃ + 3

2
αη̃η̃x̃ + 1

6
βη̃x̃x̃x̃ − 3

8
α2η̃2η̃x̃ + 3

16
α3η̃3η̃x̃ = O(α4,αβ,β2), (2.11)

and the bottom horizontal fluid velocity w̃ is given by

w̃ = η̃ − 1

4
αη̃2 + 1

3
βη̃x̃x̃ + 1

8
α2η̃3 − 5

64
α3η̃4 +O(α4,αβ,β2). (2.12)

From (2.5) it then can be observed that the non-dimensional velocity field (φ̃x̃, φ̃z̃) at an arbitrary non-dimensional height 
z̃ inside the fluid can be written
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φ̃x̃(x̃, z̃, t̃) = η̃ − 1

4
αη̃2 + β

(1

3
− z̃2

2

)
η̃x̃x̃ + 1

8
α2η̃3 − 5

64
α3η̃4 +O(α4,αβ,β2), (2.13)

φ̃z̃(x̃, z̃, t̃) = −β z̃η̃x̃ +O(αβ,β2).

By disregarding terms of fourth order in α and second order in β , and going back to dimensional variables, the eeKdV 
equation (1.2) will be the result. The same equation with opposite signs will account for left-travelling waves.

We now look into the expression for the pressure in the fluid. To find a pressure relation to the correct order, it is 
necessary to leave out the hydrostatic pressure from the calculation. For that reason, we use the dynamic pressure (also 
referred to as perturbation pressure) given as

P ′ = P − Patm + gz.

The atmospheric pressure is typically much smaller than the equation’s significant terms, and as such will be disregarded 
from this point. It can be shown, as e.g. by Stoker [29], that P ′ may be rewritten, by applying the Bernoulli equation, to the 
form

P ′ = −φt − 1

2
|∇φ|2.

Non-dimensionalizing using P̃ ′ = 1
ag P ′ , and substituting equation (2.5) for φ gives

P̃ ′ = − f̃ t̃ + β
z̃2

2
f̃ x̃x̃t̃ − 1

2
α f̃ 2

x̃ +O(β2,αβ).

Then, following the procedure of Ali and Kalisch in [2], equation (2.6) is used to find the dynamic pressure as

P̃ ′ = η̃ + 1

2
β(z̃2 − 1) f̃ x̃x̃t̃ +O(αβ,β2).

In agreement with preceding computations, the expressions (2.9) and (2.10) are then applied, to find the expression

P̃ ′ = η̃ − 1

2
β(z̃2 − 1)η̃x̃x̃ +O(αβ,β2). (2.14)

In the following sections, we use (2.14) for the dynamic pressure, only truncating further if necessary in the energy balance 
law.

3. Energy balance

We now look into the energy balance of the fluid. Rewriting (2.1) and (2.2) in terms of the velocity potential, taking the 
scalar product with the fluid velocity vector and using the incompressibility conditions, an energy equation may be written 
in the form

∂

∂t

{
1

2
|∇φ|2 + g(z + h0)

}
+ ∇ ·

{(
1
2 |∇φ|2 + g(z + h0) + P

)
∇φ

}
= 0.

The exact details of the derivation of this balance law can be found in [16]. Integrating over the fluid depth gives

∂

∂t

η∫
−h0

{
1
2 |∇φ|2 + g(z + h0)

}
dz + ∂

∂x

η∫
−h0

{
1
2 |∇φ|2 + g(z + h0) + P

}
φx dz = 0.

Through a non-dimensionalization using the previously stated relations, the above equation becomes

∂

∂ t̃

1+αη̃∫
0

{
α2

2

(
φ̃2

x̃ + 1
β
φ̃2

z̃

)
+ z̃

}
dz̃

+ α
∂

∂ x̃

1+αη̃∫
0

{
α2

2

(
φ̃3

x̃ + 1
β
φ̃2

z̃ φ̃x̃

)
+ z̃φ̃x̃

}
dz̃

+ α2 ∂

∂ x̃

1+αη̃∫
0

P̃ ′φ̃x̃ dz̃ + α
∂

∂ x̃

1+αη̃∫
0

(1 − z̃)φ̃x̃ dz̃ = 0.
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By carrying out the integrals and doing the substitution of expressions for φ̃x̃ and φ̃z̃ , we get

∂

∂ t̃

(1

2
+ αη̃ + α2η̃2 + 1

4
α3η̃3 − 3

32
α4η̃4

)

+ ∂

∂ x̃

(
αη̃ + 7

4
α2η̃2 + 1

6
αβη̃x̃x̃ + 9

8
α3η̃3 + 3

64
α4η̃4

)
= O(α5,α2β,αβ2).

Now, removing the constant term 1
2 in the first bracket does not change the expression, and it is then permissible to factor 

out an α from both parentheses on the left, leading to

α
∂

∂ t̃

(
η̃ + αη̃2 + 1

4
α2η̃3 − 3

32
α3η̃4

)
+ α

∂

∂ x̃

(
η̃ + 7

4
αη̃2 + 1

6
βη̃x̃x̃ + 9

8
α2η̃3 + 3

64
α3η̃4

)
= O(α5,α2β,αβ2).

Dividing through by α finally gives

∂

∂ t̃

(
η̃ + αη̃2 + 1

4
α2η̃3 − 3

32
α3η̃4

)
+ ∂

∂ x̃

(
η̃ + 7

4
αη̃2 + 1

6
βη̃x̃x̃ + 9

8
α2η̃3 + 3

64
α3η̃4

)
= O(α4,αβ,β2).

Thus by defining the non-dimensional energy density and flux according to the above expressions, we obtain the non-
dimensional energy balance (1.6). Through the scaling relations E = c2

0h0 Ẽ and qE = h0c3
0q̃E , the energy density and energy 

flux in dimensional form are found to be

E = c2
0

(h0

2
+ η + 1

h0
η2 + 1

4h2
0

η3 − 3

32h3
0

η4
)
, (3.1)

and

qE = c3
0

(
η + 7

4h0
η2 + h2

0

6
ηxx + 9

8h2
0

η3 + 3

64h3
0

η4
)
. (3.2)

Observe that the three first terms in each of the above expressions are identical to the terms found for the KdV equation in 
an inertial reference frame in [1], as expected. Observe also here that work done by pressure forces on the fluid is included 
in the energy flux.

4. Energy flux expressions in the shallow water limit

Interesting observations can be made by studying the expression for the energy flux associated to the KdV equation in 
the dimensional form (1.1). As shown in [1], the energy flux associated to the equation (1.1) is given by

qE = c3
0

(
η + 7

4h0
η2 + h2

0

6
ηxx

)
.

Here, we investigate the ramifications of the equivalent flux expression (3.2) found for the eeKdV equation in the previous 
section. In the context of a steady farfield flow situation, it is possible to conduct a partial algebraic verification of eeKdV 
energy flux expressions.

We are assuming a uniform surface displacement η and consequently zero-values of its derivatives, as well as a uniform 
horizontal fluid velocity over the depth of the fluid. In such a flow configuration, the expression for the dimensional energy 
flux across a vertical section of the flow should be the shallow water energy flux

qE = 1

2
u3h + guh2 (4.1)

where u denotes the horizontal fluid velocity, h is the total depth of the fluid, and g is the gravitational acceleration [3]. At 
this point, it is beneficial to introduce for simplicity a new method of non-dimensionalizing using

x̃ = x

h0
, η̃ = η

h0
, t̃ =

√
g

h0
t.

As the horizontal fluid velocity is assumed to be uniform in the vertical coordinate direction, expressions for the bottom 
velocities in the KdV and eeKdV scaling regimes can be used over the entire depth of the fluid. These expressions are, in 
the non-dimensional variables introduced above,

w̃ = η̃ − 1

4
η̃2 (4.2)

in the KdV scaling regime, and
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w̃ = η̃ − 1

4
η̃2 + 1

8
η̃3 − 5

64
η̃4 (4.3)

in the eeKdV scaling. Note that compared to (2.12), the derivative term disappears because of the assumed uniform η, and 
the two extra terms in the bottom velocity for the eeKdV is a result of the difference in the two scaling regimes. Now, by 
using (4.2) for the velocity in the consistently non-dimensionalized version of (4.1), as well as representing the total fluid 
height h by the correct non-dimensional expression in terms of η̃ we get

q̃E = 1

2

(
η̃ − 1

4
η̃2

)3
(1 + η̃) +

(
η̃ − 1

4
η̃2

)
(1 + η̃)2

which after some calculations reduces to

q̃E = η̃ + 7

4
η̃2 + η̃3 − 1

8
η̃4 + ...

where one can observe that the two first terms carry the correct numerical coefficients when comparing with (3.2), while 
the numerical coefficients of the two last terms do not match their corresponding terms in (3.2).

Performing the same exercise for the eeKdV, we get first

q̃E = 1

2

(
η̃ − 1

4
η̃2 + 1

8
η̃3 − 5

64
η̃4

)3
(1 + η̃) +

(
η̃ − 1

4
η̃2 + 1

8
η̃3 − 5

64
η̃4

)
(1 + η̃)2

which reduces to

q̃E = η̃ + 7

4
η̃2 + 9

8
η̃3 + 3

64
η̃4 − 3

16
η̃5 + 9

64
η̃6 + ...

which has the correct numerical coefficients for all terms in (3.2), when disregarding the derivative term. This small check 
confirms that, when disregarding the derivative term, the energy flux expressions found for KdV in [1] and for the eeKdV 
in the current work are indeed the correct ones.

Note that expressions for the KdV and eeKdV behave here in the exact same way, in the sense that an expression for the 
horizontal fluid velocity corrected to a given power in the parameter α inserted into the general non-dimensional shallow 
water energy flux expression will provide energy flux expressions for KdV and eeKdV that are correct to the same order in 
α as the respective horizontal velocity expressions. Note however, that the exponents in the two terms of expression (4.1)
as well as the form of the non-dimensional expressions for velocity w̃ and the total fluid height h predicts terms in rising 
powers of η̃ up to and including at least η̃4. The parameter correction order of the eeKdV scaling regime is necessary to get 
the correct coefficients on all terms up to and including η̃4.

5. Numerical considerations

To acquire the results in this section, a numerical method using finite differences for spatial derivatives and a combined 
Adams–Bashforth/Crank–Nicolson method for the time step has been used for the numerical experiments. The method and 
its derivation are the same as thoroughly described in the appendix of [14], the only difference being the addition of the 
two new terms in the eeKdV equation, as compared to the KdV equation. The derivation of the numerical scheme used in 
the current work is shown in the appendix. Note that all results in this section have been found using non-dimensional 
equations following the scalings introduced in section 4.

As mentioned in section 1, the conserved integrals in (1.3) have been checked numerically. This was done by running a 
numerical simulation on a domain x̃ ∈ (−90, 90) using an initial profile given by the Gauss normal distribution function

η̃(x̃) = 1

σ
√

2π
e− 1

2 (
x̃−μ
σ )2

with σ = 1 and μ = 0. For this simulation, stepsizes δx̃ = 0.01 and δt̃ = 0.001 were used, and the simulation was run to 
30000 timesteps. Theoretically, these integrals should be invariant in time. When calculated numerically, one have to expect 
some fluctuations, but the fluctuations observed are small enough to build confidence that these are indeed the correct 
three first conserved integrals of the eeKdV equation, where the third one is the most interesting, as it is new for this 
particular eeKdV equation. The results of the numerical check are given in Fig. 3. It can be seen that Ĩ1 develops oscillations 
after about 10000 time steps. This is due to oscillations in η̃ hitting the left boundary. Conservation of Ĩ2 and Ĩ3 is better 
due to the fact that they contain quadratic and higher-order powers of η̃, and we have |η̃| << 1.

In order to assess the theoretical energy expressions derived in the previous section, a numerical simulation was set 
up. A bore was chosen as the initial condition, similarly to the work done and thoroughly described in [6]. Simply stated, 
the term bore refers to a shift between two distinct fluid depths in a free-surface flow, as illustrated in Fig. 4. A typical 
real-world example could be a tidal bore entering and travelling up a river outlet. Note that bore conditions require special 
treatment of the boundary conditions, as Dirichlet and Neumann conditions are imposed on the right, and non-zero Dirichlet 
conditions are imposed on the left (i.e. upstream). These issues are also explained more thoroughly in [26].
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Fig. 3. Time series of numerically calculated values of non-dimensional versions of the conserved integrals given in (1.3), and in the same order. Small 
fluctuations observed due to normal inaccuracies in a numerical calculation.

Fig. 4. Combined plot of the bore initial condition and the final surface profile for a typical numerical experiment. The initial profile is shown in dashed 
line, the final surface profile in a wide solid line, and the boundaries of the control volume are shown in thin solid lines. Note that the bore strength of 
the initial bore profile is r = 0.2.

We define the bore strength r as the ratio of the bore amplitude a to the neutral water depth h0. The bore strength is 
illustrated for a non-dimensional case in Fig. 4.

Experience from [6] and [7] shows that numerical simulations of KdV-type and related equations combined with an 
initial fluid profile shaped as a sharply defined bore front will result in the appearance of a travelling train of waves where 
each wave is developing into approximations of solitary wave solutions of the equation, given enough time to develop. The 
theoretical solitary wave has a wavelength � approaching infinity [31], causing the parameter β = h2

0/�
2 to approach zero. 

As the error in the energy expression in section 3 involves terms in β , for simplification, we chose here to define a control 
volume x̃ ∈ [60, 80] far to the right in the spatial domain x̃ ∈ (−100, 100) in order to let the wave train leading wave have 
time to develop into a sufficiently close approximation to a theoretical solitary wave solution, thereby reducing the error 
contribution from terms involving β , and then comparing the calculation error directly to the parameter α4, consistent with 
(1.6). For this series of simulations, stepsizes δx̃ = 0.05 and δt̃ = 0.005 were used. The simulations were run for different 
large enough time step numbers to allow for the leading wave to pass the right hand side control volume boundary.

The experiments show that the maximum error occurs around the time when the crest of the leading wave of the 
wave train reaches either the left control volume boundary or the right control volume boundary, depending on the initial 
bore strength r. Further, the relative size of the error compared to the fourth power of the leading wave non-dimensional 
amplitude α at the time of the maximum error decreases when going from small initial bore strengths to larger initial bore 
strengths. It is believed that this result is due to the fact that larger initial bore strengths result in a wave train where the 
waves develop faster into solitary waves, thereby limiting the influence of parameter β in the error term, as mentioned 
above. Further discussions of the role of the parameter β in errors in similar calculations can be found in [2].

To fourth order in parameter α and second order in parameter β , and on the chosen control volume, the energy balance 
expression takes the dimensional form

d

dt

80∫
60

E(x, t)dx − qE(60, t) + qE(80, t) = 0, (5.1)

and we have defined the non-dimensional error to be
160



A.M. Norevik and H. Kalisch Applied Numerical Mathematics 199 (2024) 153–164
Table 1
Shown in this table is the results of a series of numerical 
experiments as shown in Fig. 4. The left column states 
the initial bore strength r , the second column shows the 
non-dimensional amplitude α for the leading wave at 
the time of the maximum error, while the third column 
shows the ratio of the maximum error to α4. Note that 
the error is on the order of α4 for all cases, and less than 
α4 for the last two cases.

r α Err(E)

α4

0.05 0.069 7.90
0.10 0.158 3.56
0.15 0.256 2.09
0.20 0.358 1.28
0.25 0.448 1.15
0.30 0.550 0.95
0.35 0.663 0.85

Err(E) = 1

h0c3
0

max
t

∣∣∣∣ d

dt

80∫
60

E dx − qE(60, t) + qE(80, t)

∣∣∣∣. (5.2)

However, for simplification, these simulations were also done using the nondimensionalizing described at the start of 
the section, which allows for the error to be calculated directly from non-dimensional variables as

Err(E) = max
t̃

∣∣∣∣ d

dt̃

80∫
60

Ẽ dx̃ − q̃E(60, t̃) + q̃E(80, t̃)

∣∣∣∣. (5.3)

It has been confirmed numerically that this method yields the same results for the error as numerically simulating (5.2)
directly. The numerical experiment setup is shown in Fig. 4, and the results are given in Table 1.

6. Conclusion

Following the techniques used in [1], this article presents expressions found for the energy density E and energy flux qE

valid in the eeKdV approximation, by motivations from experimentally observed size relations between key parameters α
and β , as well as differences for KdV and eeKdV scaling regimes horizontal velocity expressions when applied in a far-field 
steady uniform flow context.

Numerical experiments confirm that the error in the eeKdV energy balance using the derived expressions is on the order 
anticipated from the theoretical derivations, and the error is within the limit given by the relevant power of the parameter 
α as long as the waves are allowed to develop into sufficiently close approximations of theoretical solitary waves before 
the maximum error occurs, presumably because the parameter β , and consequently its influence in the energy expressions, 
approaches zero in the context of such waves.

As previously pointed out, it should be noted that a formal procedure to find the expressions for the energy density and 
energy flux has been used. As such, the results given here may provide the starting point in the search for a mathematical 
method to prove that the energy balance (1.6) is valid to identical order and over identical time scales as the eeKdV equation 
(1.2) itself. It is not quite obvious how to utilize available methods of mathematical justification for various model equations 
to justify the associated energy balance law found here. Some results in this direction can be found in [20], but much more 
remains to be done.

We should also mention that while the relation α3 ∼ β was found from the experiments of Favre [18], other scaling 
relations can be relevant. In some cases, the relation α2 ∼ β would be more appropriate, leading to the extended KdV 
equation (eKdV) [27,28] or variants thereof [24]. On the other hand, there has been recent work on the fully dispersive 
scaling regime associated to the Whitham equation [31] (see [19,22] and references therein).

Appendix - Numerical method for the eeKdV equation

Finite-difference methods applied to the spatial derivatives, as well as a combination of the Adam-Bashforth and Crank-
Nicolson methods for the timestep, constitute the numerical procedure to find an approximation of the solution η(x, t) in 
(1.2). The method has been used before in e.g. [7,14,26], but in those works it was applied to variants of the KdV equation. 
For a KdV equation having common terms with the eeKdV equation studied in the current work, the method is described in 
the appendix of [14]. The difference in the current work is solely the inclusion of the two extra terms in the eeKdV equation 
in the derivation of the numerical scheme. Nevertheless, we include the main steps of the derivation here for clarity.
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The imposing of boundary conditions are required for a proper definition of a numerical discretization. We specialize 
here to a bore case, as shown in Fig. 4. At far-field locations far away from the bore front on the chosen spatial domain, 
the surface deflection η will approximate α to the left and 0 to the right. For a sufficiently sizable spatial domain, the 
above-mentioned boundary conditions will be exact to machine precision. Further, we need to define a Neumann boundary 
condition for the right far-field boundary, as described in e.g. [12]. Utilizing a homogenous Neumann condition together 
with the described Dirichlet boundary conditions, we now have an initial/boundary-value problem given as

ηt + ηx + 3
4 (η2)x − 3

24 (η3)x + 3
64 (η4)x + 1

6ηxxx = 0, x ∈ (−l, l), t ≥ 0,

η(x,0) = η0(x),

η(−l, t) = α,

η(l, t) = 0,

ηx(l, t) = 0.

(6.1)

For the bore case, the initial profile is η0(x) = 1
2 a0

[
1 − tanh(kx)

]
, in which the parameter k controls the slope of the initial 

front of the bore, where larger values will give a steeper bore front. As in [7], we choose here to use k = 1.
At this point it is advantageous to rephrase the problem so that the boundary conditions will be homogenous. We 

achieve this by introducing an auxiliary function

ζ(x, t) ≡ η(x, t) − η0(x). (6.2)

With ζ , we can now rewrite the problem in terms of an inhomogeneous equation having forcing represented by ζ and η0, 
while the boundary conditions and initial conditions are now homogenous. Recast in terms of ζ , the equation becomes

ζt + ζx + 3
4 (ζ 2)x + 3

2 (ζη0)x − 3
8 (ζ 2η0)x − 3

8 (ζη2
0)x − 3

24 (ζ 3)x

+ 3
16 (ζ 3η0)x + 3

16 (ζη3
0)x + 9

32 (ζ 3η2
0)x + 3

64 (ζ 4)x + 1
6 ζxxx = −F , x ∈ (−l, l), t ≥ 0,

where

F ≡ η′
0 + 3

2η0η
′
0 − 3

8 (η2
0η

′
0) + 3

16 (η3
0η

′
0) + 1

6η′′′
0 ,

while also imposing homogenous boundary and initial conditions. Discretization of the spatial domain [−l, l] is done uti-
lizing a confined selection of grid points, {x j}N

j=0 ⊂ [−l, l], where x0 = −l and xN = l, while δx = 2l/N gives the spacing 
between two adjacent points on the grid. For the temporal domain, a uniform discretization is carried out by using tn = nδt , 
for which t0 equals zero. In the introduced notation, the approximation of the exact value of the function ζ(x, t) at time tn

and gridpoint x j is represented by vn
j ≈ ζ(x j, tn).

As can be seen above, special interest is associated with the first and the third derivatives in the spatial discretization. 
The values of these derivatives at a grid point x j are estimated using the central difference formulas

ζx(x j, t) ≈ v j+1 − v j−1

2δx
(6.3)

and

ζxxx(x j, t) ≈ v j+2 − 2v j+1 + 2v j−1 − v j−2

2δx3
. (6.4)

Due to the enforcing of Dirichlet boundary conditions v0 = 0 and v N = 0, we can solve the equation for spatial grid points 
{x j}N−1

j=1 , leaving only two grid points where the validity of the approximation of the third derivative breaks down. From the 
Neumann boundary condition in addition to the central difference approximation, we get (v N+1 − v N−1)/2δx = 0 with the 
implication v N+1 = v N−1, which makes it possible to use the below expression to approximate the third derivative at the 
point xN−1

ζxxx(xN−1, t) ≈ v N+1 − 2v N + 2v N−2 − v N−3

2δx3
= v N−1 + 2v N−2 − v N−3

2δx3
. (6.5)

The absence of a Neumann boundary condition at the left-hand side of the domain enables us to calculate an approximation 
of the third spatial derivative at the grid point x1 by forward difference as given below:

ζxxx(x1, t) ≈ −v4 + 6v3 − 12v2 + 10v1 − 3v0

2δx3
. (6.6)

Employing the difference expressions (6.3), (6.4), (6.5) and (6.6) at grid points throughout the entire domain results in the 
following discrete differentiation matrices D1 and D3:
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D1 = 1

2δx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

−1 0 1 0
...

0 −1 0 1 0
...

. . .

0 · · · 0 1
0 · · · −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D3 = 1

2δx3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 −12 6 −1 0 · · · 0
2 0 −2 1 0 · · · 0

−1 2 0 −2 1 0

0 −1 2
. . .

...
. . .

. . . 1
. . . 0 −2

0 · · · −1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We proceed now by using a Crank-Nicolson scheme for the linear terms in the equation’s right-hand side, while we 
apply an Adams-Bashforth scheme for the non-linear terms. By doing this, we aquire the following difference equation for 
vector vn+1:

vn+1 − vn

δt
= − 3

4 D1

[
3
2

((
vn)2 + 2vnη0 + 1

16

(
vn)4 − 1

6

(
vn)3 + 1

4

(
vn)3

η0

+ 3
8

(
vn)3

η0
2 − 1

2

(
vn)2

η0 − 1
2 vnη2

0 + 1
4 vnη3

0

)

+ 1
2

((
vn−1)2 + 2vn−1η0 + 1

16

(
vn−1)4 − 1

6

(
vn−1)3 + 1

4

(
vn−1)3

η0

+ 3
8

(
vn−1)3

η0
2 − 1

2

(
vn−1)2

η0 − 1
2 vn−1η2

0 + 1
4 vn−1η3

0

) ]

− 1
2

[
D1

(
vn+1 + vn

)
+ 1

6 D3

(
vn+1 + vn

)]
− F,

for which vn = (vn
1, v

n
2, ..., v

n
N−1)

T , η0 = (η0(x1), η0(x2), ..., η0(xN−1))
T and F = (F (x1), F (x2), ..., F (xN−1))

T . The above n ×n-
system of equations is readily solved for vn+1, and the requirement is just three multiplications by sparse matrices to 
progress the numerical approximative solution one step forward in time.

Through an introduction of the matrix E = (I + δt
2 D1 + δt

12 D3), the equation above can be rewritten as

vn+1 = E−1
[

I − δt
2 D1 − δt

12 D3

]
vn

− 3δt
4 E−1 D1

[
3
2

((
vn)2 + 2vnη0 + 1

16

(
vn)4 − 1

6

(
vn)3 + 1

4

(
vn)3

η0

+ 3
8

(
vn)3

η0
2 − 1

2

(
vn)2

η0 − 1
2 vnη2

0 + 1
4 vnη3

0

)

+ 1
2

((
vn−1)2 + 2vn−1η0 + 1

16

(
vn−1)4 − 1

6

(
vn−1)3 + 1

4

(
vn−1)3

η0

+ 3
8

(
vn−1)3

η0
2 − 1

2

(
vn−1)2

η0 − 1
2 vn−1η2

0 + 1
4 vn−1η3

0

) ]

− δt E−1F.

In general, and as can be observed from the above expression, this scheme needs values of the function v from the two 
preceding time steps to advance forward in time. As mentioned in [14], a possible technique to solve this is to apply the 
forward Euler method for the non-linear terms for the initial step forward in time. However, in the current work we have 
solved this by using a “work-around” in the code in which we set both vn and vn−1 to be 0 at the start of the numerical 
simulation.

In conclusion of this appendix, it should also be mentioned that all terms in the numerical code for (1.2) have been 
tested through running convergence checks of the generalized KdV equation (GKdV)

ηt + ηpηx + εηxxx = 0 ,

with ε = 1 and p = 1, 2 and 3, using analytical solutions given in [10]. All checks confirm that the numerical scheme 
exhibits second order accuracy in both the spatial step and the time step respectively.
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