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ABSTRACT

We derive a Hamiltonian formulation of the problem of a dy-
namic free interface (with rigid lid upper boundary condits),
and of a free interface coupled with a free surface, thislasit-

uation occurring more commonly in experiment and in nature.

Based on the linearized equations, we highlight the disamep
cies between the cases of rigid lid and free surface uppentbou
ary conditions, which in some circumstances can be sigmfica
We also derive systems of nonlinear dispersive long wava-equ
tions in the large amplitude regime, and compute solitaryeva
solutions of these equations.

INTRODUCTION

Internal waves in a fluid body occur in a sharp interface be-

tween two fluids of different densities. Scientific intergstn-
ternal waves includes the need to quantify induced loadsibn s
merged engineering constructions (such as oil platforndgaih
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servations, waves on the sea surface are affected in aviahtri
manner by the presence of disturbances in the interfaceethd
one characteristic signature of internal waves can be agehiain
the smaller scale wave patterns in the surface, giving dsa t
differential reflectancy property under oblique lighting/e are
also motivated by the recent work of Choi and Camassa [1] on
internal waves, and their models for larger amplitude loagev
motion.

In this paper we give a formulation for the equations of mo-
tion of a system of one or several ideal fluids with a dynange fr
surface, free interfaces, or both, as Hamiltonian systeitisin¢
finitely many degrees of freedom. The top surface of the upper
layer is either subject to rigid lid boundary conditions,eise
it is itself a free surface. We confine our considerationsvo t
dimensional fluid motions, which are valid approximations f
long-crested waves. In principle our methods extend touh f
three dimensional case. A Hamiltonian formulation of thetpr
lem of a free interface between two ideal fluids, under rigid |

and road tunnels lying on the sea bed), as well as the mathe-y ., ,,qary conditions for the upper fluid, was given by Benjami

matical interest in the variety of nonlinear dispersiveletion
equations that occur in the discipline of free surface hggro

and Bridges [2]. Craig and Groves [3] gave a similar expres-
sion for Benjamin and Bridges’ Hamiltonian for the free imte

namics. In nature they are observed in the pycnocline indiuce face problem, using the Dirichlet-Neumann operators fahbo

by an abrupt jump in salinity, often occurring in fjords, aind
thermoclines found in relatively common situations in toapb
seas. Observations report amplitudes of internal wavestgre

than 100m in fluid bodies of depth less than 1000m with wave-

length of one to ten kilometers. This is a highly nonlinegjimee

the upper and lower fluid domains. Our present formulation of
the problem is complete, with the Hamiltonian being given in
terms of the deformations of the free surface and the fres-int
face, the traces of the velocity potential functions on thend

the Dirichlet-Neumann operators for the upper and lowedflui

of wave motion, characterized by large amplitudes which are ;1 7ins This formulation has implications for the coneere

nevertheless of small slope. Additionally, in oceanographb-

*Address all correspondence to this author. 1

of perturbation calculations in these variables.
We focus here on quantifying the difference between the
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choice of rigid lid boundary conditions, most often used itim
ematical modeling, and the setting of a free surface top taxyn
which is the physically most relevant case. There are a nuofbe
important differences, affecting in particular the lindapersion
relation and the linear wave speed. In addition we develop ne
model systems of equations for perturbation regimes in khic
wave profiles have small slope, but with amplitudes that alie f

of the same order as the mean depth of the fluid layers. This

regime reflects the realities of the observed interfacialesan

the ocean, where the ratio of amplitude to layer depth mayf be o

orderO(1), while the ratio of amplitude to wavelength remains
small. In this scaling regime, we have found unusual and-inte
esting Hamiltonian models which have nonlinear rationaifffio
cients of dispersion. These models admit solitary wavetsois
which are computed numerically and compared with othet-exis
ing models.

This paper is structured as follows. In the next section, we

derive the Hamiltonian formulation of the free interfacelgiem
and the problem of a free surface above a free interfaceg tisen
description of the Dirichlet integral for the velocity pot&ls in

terms of the Dirichlet-Neumann operators on the fluid domain

boundaries. This is followed by the analysis of two lineatiz
problems; the free interface case with rigid lid boundargdie
tions on the upper surface, and the free interface with ueflase
boundary conditions on the upper fluid surface. We quarttiéy t
behavior of the dispersion relations of the two problemsd,ian

dicate a number of significant differences. We then study the
long wave regime for the free interface problem with an upper

rigid lid. We describe the setting of large interfacial dgions
of small slope, between finite upper and lower layers. Nucaéri
results on solitary wave solutions are shown.

Most of the results presented here have been described in

[4-6].

EQUATIONS OF MOTION

The fluid domain is the region consisting of the poifty/)
suchthat-h<y< h;+n1(xt), anditis divided into two regions
Stn) ={(xy): —h<y<n(xt)} and§(t;n,n1) = {(xy) :
n(x,t) <y < hi+n1(x,t)} by the interfacely = n(x,t)}. The
two regions are occupied by two immiscible fluids, wihhe
density of the lower fluid an@; the density of the upper fluid.
The system is in a stable configuration, in tpat p;. In such
a configuration, the fluid motion is assumed to be potentia,flo
namely in Eulerian coordinates the velocity is given by a po-
tential in each fluid regiony(x,y,t) = O¢(x,y,t) in S(t;n), and
ui(x,y,t) = O¢1(x,y,t) in Si(t;n,Nn1), where the two potential
functions satisfy

AD =0,
Apy =0,

in the domainS(t;n)
in the domainS;(t;n,n1) .

1)

The boundary conditions on the fixed bottdypn= —h} of the
lower fluid are that

Dq) ' NO(Xa _h) = _ayq)(xa _h) =0 ) (2)
whereNp is the exterior unit normal, enforcing that there is no
fluid flux across the boundary.

On the interfacg (x,y) : y =n(x,t)} it is natural to impose
three boundary conditions, two kinematic conditions wracé
essentially geometrical, and a physical condition of fded
ance. The kinematical conditions assume that there is ritacav

tion in the interface between the fluids, and therefore thetion
n(x,t) whose graph defines the interface satisfies simultaneously

N =dyd —andxd =06 -N(1+[anHY2  (3)
whereN is the unit exterior normal on the interface for the lower
domain, and

0N = dyp1 — 0 Oxd1 = —0p1- (—N)(L+ (a2 . (4)
The third boundary condition imposed on the interface is the
Bernoulli condition, which states that

P(Gd + 3106 +9n) = p2(8td1+ 31091/>+agn) . (5)

Finally, in assigning boundary conditions for the upper
boundary in the problem, we are interested in considerirg tw
situations. The first is wheng; = 0 and the top surface is con-
sidered a solid boundary (a rigid lid). In this case the bamd
condition

Oz - Ni(x,hy) = dypa(x,h1) =0 (6)

is appropriate, wherhl; is the unit exterior normal to the upper

fixed surface. The problem is therefore to find the evolutibn o

a single free interfacé(x,n(x,t))}. We allow 0< h,h; < oo,

and eitheih or hy or both are specifically allowed to be infinite.
The second situation that we consider is where the top sur-

face is itself a free surfacg(x,y) : y = h1 + n1(x,t)}, on which

the velocity potentialh; and the functiom; satisfy a surface

kinematic condition

3Ny = Byd1 — 0xn10x01 = 01 - Na(1+ (91D Y2 (7)
and a Bernoulli condition
Ocd1+ 3/001/>+gn1=0. (8)
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The problem then is to describe the simultaneous evolution
of the free surface{(x,h1 + ni(x,t))} and the free interface

{(xn(x,1))}.

HAMILTONIAN FORMULATION AND DIRICHLET-
NEUMANN OPERATOR
Hamiltonian for Free Interfaces

It is straightforward to derive useful expressions for tite k
netic energy and the potential energy for the first systenvabo
consisting of one free interface separating two otherwise c

fined fluid regions. From these one can pose a Lagrangian for

the system. In an analogy with classical mechanics the Hamil
tonian for the system and the form of the canonically conjega
variables can be derived. In this way we deduce from the ‘first
principles’ of mechanics the form of the canonical varialileat
were originally given in Benjamin and Bridges [2].

The kinetic energy is given by the weighted sum of Dirichlet
integrals of the two velocity potentials,

k=3[ " olnecey)Payx

+%// p1|001(x.y)|*dydx, (9)
R J/n(x)
and the potential energy is
o oo [ oo
R/ h gpyay R r](X)gply y
= %/Rgpnz(x)dx— %/Rgpmz(x)derC. (10)

The constant terr@ is superfluous to the dynamics, and it is able
to be normalized to zero. Following the analogy with mecbsni
the Lagrangian of the system is givenlby- K —V.

To place the kinetic energy in a more convenient expression
for analysis, we introduce the Dirichlet-Neumann opesfor
the two fluid domains. Lel be the unit exterior normal to the
lower fluid domainS(n) along the free interface. Giveh(x) =
d(x,n(x)) andP1(x) = d1(x,n(x)) the boundary values of the
two velocity potentials on the free interfagéx,n(x,t))}, and
following Craig and Sulem [7], define the operators

G(n)® = - N(1+[axn|?)Y2, (11)

which is the Dirichlet-Neumann operator for the fluid domain
S(n), and

G1(n)®P1 = —0¢1-N(1+ |9 [3)¥?, (12)

the Dirichlet-Neumann operator for the fluid domasa(n).
These operators are linear in the quantitieand @4, however
they are nonlinear and reasonably complicated in their mepe
dence om(x) which determines the two fluid domains. Using
Green’s identities, the kinetic energy (9) can be rewritien

K:%/quae(q)cpdwr%/Rplqalel(n)mldx. (13)

Under the conditions of no cavitation at the interface, tinetc
boundary conditions (3)-(4) read

on = G(n)® = —Gy1(n) Py (14)

Solving (14) for®d(x) = G~1(n)A (x) and®s (x) = —G; ()R (%)
and substituting into the quantity (13) one obtains a realsten

expression for the Lagrangian

L(n.A) = § [, PAG™2(m)A+ oGy () dx

-1 /Rg(p— pIN?(x) dx.

From this Lagrangian, which depends upann), we are
in a position to deduce from the principles of classical nageh
ics the Hamiltonian and the canonically conjugate varighlih
respect to which the system (1)-(6) is formally a Hamiltonia
dynamical system. Namely, we define

E(x) =8L=pG*
= pP(x) -

(MN+p1G;™M
P1P1(X) , (15)
which is precisely the expression of Benjamin and Bridgés [2
for the variable conjugate 1p(x).

The Hamiltonian for the system is given By+V sincelL
is a quadratic form im. Using (14) and (15), one finds that

(P1G(n) + pG1(n))® = G1(n)& and (pGa(N) + P1G(n))P1 =
—G(n)&, whereupon the Hamiltonian can be written

H(NE) = § [ EG1)(P2G(n) +pGa(n)) 2C()E

+§/Rg (p—p2)n?dx. (16)

This expression for the Hamiltonian has appeared in [3]. The
system of equations of motion for the interface takes thenfof
a classical Hamiltonian system, namely

atl’] = 6EH R

0t§ = —OnH (a7)
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which is equivalent to (1) subject to the boundary cond&ion which takes the form
(2), (6) and the free interface conditions (3)-(5). Expi@ss

for G(n) andGi(n) can be foundin [3, 7]. G11 G12) [ P1(X)
We note that by setting; = 0 the expressions (10) and (13) G21 Ggz /) \ ®2(X)
reduce to the ones for a single free surface alone, the canon- (01 -N)(xn(X)(L+ (BN (x))?): /2
ical conjugate variables (15) state tHdk) = p®(x) which is = <(D¢1 No) (% B+ 1110))(1+ (81 ()2 )1/2) . (20)

precisely the choice of Zakharov [8], and the sdm-V is the

Hamiltonian for the system. . . .. . -
y Using Green'’s identities, and expressing the normal dives

of the velocity potentials on the boundaries in terms of @ilét-
Hamiltonian for Free Surfaces and Interfaces Neumann operators, the kinetic energy takes the form
In the second situation described above, the system of in-
terest involves the coupled evolution of the free interfand a T /G G
11 G12
free surface lying over the upper fluid. This problem can also K= 2/ pPPG(n)Pdx+ 3 / P1 <¢ > <G G > ( ) ax.
R 2 21 522
be described in terms of a Lagrangian, which will depend upon

both the deformations, (x,t) of the free surface, as well as those |, terms of the Dirichlet-Neumann operators (11)(20), theek

of the free interface|(xt). Again the ‘first principles’ of me-  matic boundary condition (14) fab(x) is unchanged, while (4)
chanics can be cited in deriving the natural canonicallyugate and (7) become

variables for a Hamiltonian description of the problem, forch

convenient expression for the Hamiltonian function. THisice .

of variables has been previously given by Ambrosi [9], hogrev n= —(Gr1®1 + G12®2)

the form of the Hamiltonian is to our knowledge new. N1 = G21®1 + G . (22)
As in the first case, the kinetic energy is again given as a

weighted sum of the Dirichlet integrals of the two velocity-p Using (14) and (22) we rewrite the kinetic energy in termshef t

tentials, namely variables(n,n1,Nn,N1), giving the following expression for the
Lagrangian for the free surface/free interface problem;
K= /R/ p|0d(x,y)|*dydx L= %/anefl n)h dx (23)
hi+n1(x)
+%/R/ p1|001(x,y)|2dydx. (18) 41 / Gi11 Gi2\ * - dx
ne) rP ﬂl G21 G22 N1
1 2 1 2
In a manner similar to (10), the potential energy is T2 /Rg(p —PN" () dx— 3 /Rgpl(hﬁ— N1)"(x)dx.

L ) In these terms we are able to deduce from ‘first principles’
V= ?/ g(p— p1)n-(x)dx the appropriate canonically conjugate variables for thubjam,

namely
+3 [ opini(9 -+ 20pshuns (9 dxC. (29)

&) _ (&L _, (G N G —Gi2\ '/
| ics impli i &) " \&,L) P 0 )TP{—Gx G :
The analogy with mechanics implies that the Lagrangian ef th 1 N1 21 922 N1

system is given by = K — V. _ (pCD - p1¢1> (24)
Following (13), we express the Dirichlet integrals in terms N pP1P2 '

of the boundary values for the two velocity potentials anel th

Dirichlet-Neumann operators for the two fluid domains. We de  The expression (24) also appears in [9]. Using (24), thetkine

fine the quantitiesP(x) = ¢(x,n(x)), P1(x) = d1(x,n(x)) as energy (21) has the form

above, andbz(x) = ¢1(x,h1 +n1(x)) on the free surface. The

Dirichlet-Neumann operator for the lower domain is the same

as in the first case, nameG(n)®(x) = 0 - N(1+ (3,n)2)Y/2. K = / ( ) ( ) dx

For the upper fluid domai8; (n,n1) both®1(x) and®(x) con- R\&/ \M

tribute to the exterior unit normal derivative@f on each bound- B ;/ < > (—Gll —G12> <d91> dx (25)
ary. That is, the Dirichlet-Neumann operator is a matrixrafe T 2R \& Go1 G2 ’

4 Copyright © 2007 by ASME



Solving (14) and (24) fo(®, d;,dy) in terms of (§,&1), and

definingpG11+ p1G(n) = B, we have
® = B 1(G11€ — Gr2t1)
®; =B (—G(H)E - £G1221> (26)
p1P2 = &1,

and (25) can be written as
~G(n)B 'Gr2 )

. / £\" ( GuBG(n)
2JR \&1 —G21B~1G(n) p—llez——Gle 1G12

&
(El> dx. (27)

The Hamiltonian for the free surface and free interface |emb
isH =K +V whereK =K(n,n1,§,&1) is given by (27) and the
potential energy¥ =V (n,n1) is simply (19). This expression
corrects [9] in giving the full coupling in the kinetic engrge-
tween the variable§ and&,. Expressions for th&;; can be
found in [5]. Hamilton’s equations of motion take the form

atl’] = 6EH R
at"]lzéélH )

OE = —;H
atal = —6n1H ) (28)

for the interface and free surface respectively.

LINEARIZED EQUATIONS
Linear Free Interfaces

Restricting to the quadratic part of the Hamiltonian (18 o
obtains

/ Dtanh’hD)tanh(h;D)
) R "ptani(hiD) + pitanh(hD

)E+gm—pﬂ¥dw

(29)
The linearized form of (17) then reads
_ _ DtanhhD)tanh(h;D)
o = oH = ptant(th)erltanl*(hD)E ’
0 = —dH =—-g(p—p2)n. (30)

The corresponding dispersion relation giving the wavedessgy
w(k) as a function of the wavenumbleis

> 9(p — p1)ktanh(kh) tanh(khy ) (31)
~ ptanhkhy) + pstanh(kh)

Equivalently, it can be stated in terms of the phase velaufity
single Fourier mode

W \/g(p — p1) tanh(kh) tanh(khy ) (32)

%~ k(ptanh(khy) + pytanhkh))

In the long-wave regime, we can distinguish three different
situations giving rise to characteristic asymptotics far phase
speed (32); the first being where bdth— 0 andkh; — 0 (two
finite layers), with the ratitn /h fixed,

2 2 9(p—p1)
~Chi= ———— 33
¢ o P/ (33)

The second is wher¢éh > O(1) (deep lower layer) whilé&h; —
0 (finite upper layer) (or the reverse situation in whidih— 0
while khy > O(1)). Then

Pxg=gP— P (34)

(respectivelyc3 = g(p— p1)/(p/h)). The third situation occurs
for two deep layers separated by the free interface. Lekting0
while bothkh andkh; > O(1), one finds

> 9(p—p1)
— AP PY 35
W ==, (35)

In the opposite regime, one lets— 4o while fixing the fluid
domain geometry. The resulting asymptotic behavior of tke d
persion relation is that

09:9%£§2k, (36)
1

00

which coincides with the scaling invariant third situatiamove.

These expressions are to be compared with the case of a free

surface lying over a free interface in a two fluid system.

Linear Free Surfaces and Interfaces

Using (19) and (27), the quadratic part of the Hamiltonian
for the problem of a free interface underlying a free surface

Copyright © 2007 by ASME



given by

DtanhhD) coth(h;D)
pcoth(hiD) + pstanh(hD)
DtanhhD)cschhiD)

pcoth(hiD) + p1tanh(hD) &
D(coth(hyD) tanH(hD) + (p/p1))
pcoth(h;D) + p1tanh(hD)

+9(p — p)n? +gpinZdx.

TA

+28

3

+&1 &1

(37)
The linearized equations of motion are

Dtanh’hD) coth(h;D)
pcoth(h;D) + pytanh(hD)
Dtanh(hD)csch(hiD)
pcoth(hiD) + pytanh(hD)
0§ = =0 H = —g(p—p1)N ,

&1

and

_ DtanhhD)cschh;D) £
pcoth(h1D) + pstanh(hD)
D(coth(h; D) tanh(hD) + (p/p1))
pcoth(h;D) + p1tanh(hD)
—0paN1 .

0tn1 = O,

&1

0té1 = — Oy, H = (38)

The corresponding dispersion relation fof is determined by
the quadratic equation

4 ook 1+ tanh(kh)coth(khy)
pcothkhy) + prtanh(kh)
tanh(kh) B
pcoth(khy) + prtanh(kh)

+ g*(p— p1)K? (39)

The two solutionso® (k) of (39) are associated with two different
modes of wave motion, namely surface and interface displace
ments. They are given by

1 K 1+ tanh(hk) coth(h;k)
pcoth(h1k) + p1tani(hk)
i%gk[pz(l—tanr(hk) coth(hik))?
+ 4pp1tanh(hk)(coth(h1k) — tanh(hk))
+ 4p3tani(hk)?] 12
/(pcoth(hik) + p1tani(hk)) .

:t)2 —

(40)

The radicand is always positive, as can be assured by the fact
that for all wavenumberk > 0, tanithk) < 1 < coth(h;k). The
branchw' is associated with free surface wave motion, while the
linear behavior of the interface is governeddy (at least in the

limit of large k). This expression also appears in [10].

Comparison With the Rigid Lid Case

It is important to compare the dispersion relation for the
interfacial mode with the dispersion relatiarfor the case with a
rigid lid (31). In the regime wherk — oo, fixing other aspects
of the fluid domain, one finds that

(mo—o)Z _ g(p - pl) k

wi)? =
(0eo) 0+ p1

ok, (41)

The latter agrees with the asymptoticskas: +o of the disper-
sion relation (36) of the case with a rigid lid. The expresdiar
(wy;)? = gk agrees with the dynamics of the free surface with no
free interface present.

However the behavior of the dispersion relations for long
wave regimes are very different when considering the case of
free surface lying over a free interface and the case of figid
upper boundary conditions. Lettitkdp andkh; — O while fixing
the ratioh/h; to be finite, one finds that the two phase speeds
associated with the two branches of the dispersion cufvare
asymptotic to

(7= (n+hu /I apy/pih ) . @2

We only considep; < p, so the ‘faster’ free surface phase veloc-
ity car is somewhat slower than if there were no interface present.
Note that the phase velocifg, )? associated with the free inter-
face (the ‘slower’ dispersion curve) is positive for> p; (sta-
ble stratification). Examining, we conclude that it can behave
completely differently than the case of the rigid lid, giverg33).
There is also a significant difference between the dispeisés
havior in this long wave regime, in the case of a free surfacke a
a free interface, as compared to the case of a rigid lid.

In other situations, such as whé&h — o (infinitely deep
lower layer) andkh; — O (finite upper layer),

(43)

(cg)zzg and  (cy)?=gh (1—%) .

This differs from the regime of two finite layers where btf )?
are of the same order of magnitude, as shown in (42).

In Fig. 1, we plot the linear phase speeds for the differ-
ent configurations as functions of the wavenumber. The llinea
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Figure 1. Linear phase speed C vs. wavenumber K for (left column)
p1/p = 0.2 and (right column) p1/p = 0.8: (a) hy/h = 10, (b)
hi/h =1, (c) hy/h = 0.1 The linear phase speed for the interface
in the rigid lid case is represented in solid line. The linear phase speeds
¢ and C' in the coupled system are represented in dashed line and
circles respectively.

phase speed = w/k for the interface in the rigid lid case is
given by (32), while those of the coupled system are given by
(40) (c* = w*/k). We show the comparison betweemand c*

for two different values of the density ratm /p = 0.2,0.8 and

for three different values of the depth ratig/h = 10,1,0.1. As
expected¢c™ coincides withc at largek and their graphs always
lie below that ofct. The differences betweenandc™ are most
significant for small values gb1/p. Also, the values ot and

¢~ are slightly larger for smafb1/p than largeps1/p. This is the
fact that interfacial waves propagate more rapidly benaddiss
dense fluid. For a given value pf /p, the differences between
candc™ are most important when the ratip/h is small. When
h;/his large, their graphs match perfectly since in this case the
effects of a rigid lid or a free surface are negligible.

LONG WAVE MODELS
Large-Amplitude Long Internal Waves

We focus on the regime in which the typical wavelength
of the internal waves is long compared to the degttand hy
of the two layers. However the typical wave amplituadis not
assumed to be small comparedhar h; unlike the classical
Boussinesq regime. In the framework of Hamiltonian pedtrb

7

tion theory, we take the small parameter tode~ (h/A)? ~
(h1/M)? ~ (a/N)? < 1 characterizing steepness, and we intro-
duce the scaling’ = ex,n’ =n,& = &€. ExpandingG(n) and
Gi(n), and grouping terms in powers efin the Hamiltonian,
one finds up to orded(1)

H= %/R[Ro(n)uzﬁtg(p—m)ﬁ dx+0(e%),  (44)

where

(h+n)(h—n)
pi(h+n)+p(hi—n)’

Ro(n) =

andu = 04§. For convenience, we have dropped the primes in
(44). The corresponding approximate equations of motien ar
given by

0N = —0xdyH = —dx(Rou),

1
atU = —axar]H = _ax E(an Ro)U2+ g(p - pl)ﬂ (45)

Note that the factoRp(n) is nonsingular in the whole domain
—h < n < hy, vanishing at both endpoints= —h andn = h;.

In the casep; = 0, the canonical variables argx) and&(x) =
pd(x), and the equations of motion (45) reduce to

1 1
on = —Bax((h+n)u) , OGu= —BUOXU— gpoxn,  (46)

which are the classical shallow water equations for sunfeater
waves.

The next approximation can be derived in a straightforward
manner. Retaining terms up to ord@fs?), one gets

H= %/RRo(n)uﬁg(p—pl)nz (47)

+€% [Ru(n) (0xu)?+ (0xRe(N) )0 (1?)
+Rs(n) (9xn)?u?] dx+ O(e).

The corresponding equations of motion read

0N = —0x(Rou) — €20 [—0x(R1dxu) — 0%(Ro)u+ Ra(8xn)2u] |

oo =~ 3 @nRo0E-+alp - pin (48)
— €20, B(an R1)(dxu)2 — %(an R2)02(u?)

+

NI =

(%&xmm%kﬁm%wmwﬁy
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where
R (q):_}(h+”)2(hl— n)*(pa(hs—n) +p(h+n))
' 3 (p2(h-+n) +p(hy—n))2 ’
oxRe(n) = _%ppl(h+h1)(h+n)(hl—n)
(h1—n)*—(h+n)?

“Toathn) 1 plhy B

__1 2 P1(h+1)°+p(hy —n)°
Re(n) = —zpPalh o) ot =)

These are novel evolution equations which exhibit nonlines-
ations in wave speed and in their coefficients of dispersidss.
ing a different formulation and a different method, Choi @a
massa [1] also derived model equations with rational coeffts
which have some similarities with (48), for large amplitudeg
internal waves in the configuration of two finite layers. The
three-term expansion of (48) in small amplitudesu), when
additionally one specializes to the case of uni-directioveve

1 (hhy)?(paha + ph)
3 (pih+phy)?

_ phi—pih?
~ (pth+phy)2’

)

andc denotes the wave speed.

Solitary Wave Solutions

We look for solutions of (48) which are stationary in a ref-
erence frame moving at constant speexhd which decay very
fast at infinity. These correspond to fixed pointsdff — cl),
wherel = [pnudxis the momentum of the system. We thus
need to solve the following system of nonlinear, ordinaiffedi
ential equations

0=—cn+ RoU (Rut')’ — (Re)"u+ Ra(rl')z 7

0=—cu+= (anRo)u +9(Pp—p)n+5 (Oan)( ')?

—%(anRZ)(U '+ S (@nRe) ()22~ (Ron?)' ., (51)

motions, bears some resemblance to the extended Korteweg-where the symbdlstands for differentiation with respectxan

de Vries equation. There is a well-known singularity of the
small amplitude/long wave limit in two-layer flows, having t
do with the vanishing of the coefficient of nonlinearity when
p/h? = p1/h2. Our rational coefficients for the nonlinearity in-
clude this case, in which the first Taylor coefficient of thexno
linear term vanishes.

In the limit of small amplitudes, Eq.s (48) reduce to the
Kaup-Boussinesq (KB) equations

dn = -0 _hhw n 2<E(hh1)2(plh1+ph) )
*| pah+phy 3 (pth+ph)z %
+(plh+ phy )z(nu) ’
[ 2 ph2 — pyh? 2}
oiu= —0 _|_ ol S 49
i x| 9P = PN+ 5 o o (49)
which admit explicit solitary wave solutions of the form
c y )
X’t =xUu X7t —5p4 X7t ) 50
(XY = Fuxt) ~ Hu(xt) (50)
CZ
Vap &1
ux,t) =2 ?B (GB ) 7
a c
where
hhy
~ pth+phy’ B=a(P—p), .

the moving reference frame. Note ttdgR, in (51) is related to
0xR> through the chain ruléxR, = dpR20xn.

System (51) can be solved numerically using a pseudospec-
tral method and assuming periodic boundary conditions.in
Both n andu are expanded in truncated Fourier series with the
same number of modé$. All operations are performed using
the fast Fourier transform, which yields high accuracy é&-re
tively low cost. We solve the resulting discretized systgmahb
iterative procedure (Newton—Raphson’s method), and the-bi
cation parameter in the problem is the wave spee@ecause
small-amplitude waves of the KB equations are close approxi
mations to those of (48) in the weakly nonlinear regime, we us
the KB solutions (50) as the initial guess in the iterativeqe-
dure, to find solitary wave solutions of (48). We then grabjual
increase the parameter(thus increasing the wave amplitude)
and repeat the procedure, using smaller-amplitude solsités
an initial guess to compute higher-amplitude solutions.

Numerical Results

Computations have been performed with a discretization
N = 1024, for a domain of length/h = 50. The domain is
specified long enough to ensure that the tails of the solitary
waves are rapidly decaying at its ends and that periodigty h
no significant effect on the solutions. As determined by the
initial guess (50), we look for solitary waves moving at jee
¢? > ¢ = ap = ghhu(p — p1)/(p1h+ ph1) wherecy denotes the
linear wave speed for two-layer flows. Fig. 2 shows the com-
puted wave profiles fon; /h = 1/3 andp/p1 = 0.997; the soli-
tary waves being of depression in this case. This regime -of pa
rameters was chosen because it is representative of sitgati
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close to oceanic conditions [11]. The linear wave speedis th
configuration isco/+/gh = 0.0274 (orcy/+/ghy = 0.0475). For ’
comparison, solitary wave solutions of the Korteweg—dee¥ri
(KdV) and Gardner equations [12,13] as well as those congpute s o
by the fully nonlinear model of Gruet al. [14], with matching
amplitudes, are also shown in the figure. The model of Grue
et al. [14] solves the full equations for two-layer flows using s w e T S T T
a boundary integral method. The KdV equation has a family (2) = (b) a
of well-known ‘secR’ solitary wave solutions. For the Gardner
equation (also known as the extended KdV equation), theaspli
waves (also called kink-antikink solutions) are of the form

nixt) = _o%% {tanh(X_ACtnLé) —tanh(X_ACt —6)] :

1

52 0 5 10 15 20 25 30 o 5 vk 20 25 30
Where ( ) (C) x/h, (d) /hy
_3a(h—h) o _ ghh(p—p1)
2hhy T p(hthy)
3c1 [7 hd+h3 ; /
1= [g(h—h)?— =1, :
h hl 8 h + hl o 5 10 15 20 25 30 o 5 10 15 20 25 30
(e) xih, (f) xih,
N — _242‘;%; , B — Clghl , Figure 2. Comparison of wave profiles I for the KdV equation (dots),
asv

Gardner equation (triangles), fully nonlinear model of Grue et al. [14]

5 o (dashed line) and present model (solid line). The parameters are hl/h =
c=cp— amv” , 0= 1‘|n (ﬂ) , 1/3 and p1/p = 0.997. The different plots correspond to amplitudes
6a 4 \1-v (@) a/hy = 0.064 (b) a/h; = 0.353 (c) a/hy = 0.582, (d) a/hy =
0.795 (e) a/h; = 0.833 (f) a/h; = 0.929

andv is a nonlinearity parameter with values<Ov < 1. Soli-

tary waves of the Gardner equation are broader than their KdV

analogues, and they become more box shaped with flat crestsCONCLUSIONS

(table-top solutions) as the amplitude increases towagdintit In this paper, we have derived a Hamiltonian formulation
a/a; = 0.857h; (hereafter we define the wave amplitude as for the problem of coupled free interface and free surfaceewa
a=|N|max- motion, in the spirit of the Hamiltonian given by Benjamindan

As expected, for small amplitudes, the KdV wave profiles Bridges [2] and Craig and Groves [3] for the case of one free
are close to those of (48) but the latter become significantly interface with an upper rigid lid.
broader as the amplitude increases. Broad internal splitaves We have found a number of significant differences between
have also been observed by other authors, e.g. [15, 16]. ¥e se the two cases. Even at the level of the linear dispersiotioela
in Fig. 2 that the ‘computed’ profiles (i.e. of model (48)) are the linear phase and group velocities can differ. We showftina
also broader than the Gardner and fully nonlinear profiles fo small values of the density differenpe- p1, the differences are
amplitudes up t@/h; ~ 0.795; the fully nonlinear solutions ly- small between the rigid lid and the free surface cases. Hewev

ing between the Gardner and computed onesalFby ~ 0.795, there can be significant deviations when the difference imsde
the computed, Gardner and fully nonlinear wave shapes @lmos ties is large. The deviations are most important when the rat
coincide, especially in the lower part around the wave cifest hi/his small, as one would expect.
higher amplitudes, as— 1, the picture is reversed; the Gardner Using the framework of Hamiltonian perturbation theory,
solitary waves flatten and become broader than the compnted a in the setting of a free interface between two finite layers, w
fully nonlinear waves. have derived Hamiltonian models involving coefficients &f-d
Similar features are observed flor/h = 0.24 andp/p1 = persion and nonlinearity which are rational functions & th-
0.977, which was the configuration considered by Camassa et terface displacement. Solitary wave solutions of theseetsod
al. [17] (Fig. 3). have been computed numerically in parameter regimes ofose t

9 Copyright © 2007 by ASME



n’h
2

(@) xdh, (b) xdh,

(C) ></h1 (d) i ></h1

Figure 3. Comparison of wave profiles N for the KdV equation (dots),
Gardner equation (triangles), fully nonlinear model of Grue et al. [14]
(dashed line) and present model (solid line). The parameters are hl/h =
0.24 and p1/p = 0.977. The different plots correspond to amplitudes
(@) a/hy = 0.065 (b) a/hy = 0.245 (c) a/h; = 0.677, (d) a/hy =
1.161 (e) a/hy = 1.206 () a/hy = 1.412

oceanic conditions. They are found to compare reasonahly we
with solutions of other existing models.
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