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Abstract: Consideration is given to the shallow-water
equations, a hyperbolic system modeling the propagation
of longwaves at the surface of an incompressible inviscible
fluid of constant depth. It is well known that the solution of
the Riemannproblemassociated to this systemmay feature
dry states for some configurations of the Riemann data.
This article will discuss various scenarios in which the
Riemann problem for the shallow water system arises in a
physically reasonable sense. In particular, it will be shown
that if certain physical assumptions on the disposition of
the Riemann data are made, then dry states can be avoided
in the solution of the Riemann problem.

Keywords: bores; cavitation; Hugoniot locus; Riemann
problem; shallow-water equations.

1 Introduction

Many physical systems can be described by systems of
conservation laws. Such systems are first-order quasilinear
partial differential equations, and for one-dimensional
problems they can be written in the general form

ut + f(u)x � 0 for (x,  t) ∈ R × R+, (1)

where u is a vector of unknowns, x is the one-dimensional
spatial coordinate, and t is the time. The flux function f is a
nonlinear vector function often satisfying certain mild as-
sumptions, such as that the function be twice continuously
differentiable, the flux Jacobian∇f have a full set of distinct
eigenvalues and the wave families be either genuinely
nonlinear or linearly degenerate [12, 17, 24].

Due to the special nonlinear structure of such systems,
solutions naturally develop discontinuities in time, even if

the original state of the system is given by a smooth func-
tion of x. Once a discontinuity has developed, solutions of
the system need to be interpreted in a weak sense. If the
solution is to include a jump between a left state uL and a
right state uR, the weak formulation leads to the well-
known Rankine-Hugoniot condition

σ(uR − uL) � f(uR) − f(uL). (2)

The Riemann problem distills the essence of the
problem of singularity formation into a simple initial-value
problem where the initial data have a prescribed discon-
tinuity. For the system above, the Riemann problem would
prescribe initial data of the form

u(x,  0) � {uL for  x < 0,uR  for  x > 0, (3)

where uL and uR are given left and right states. Under the
conditions on f mentioned above, the Riemann problem
can always be solved as long as the left and right states are
close enough (see [12, 17, 19, 20]). However, if the left and
right state are not close, then there is no general theory
guaranteeing the existence of a solution to the Riemann
problem (see [8]). Indeed, it can be shown explicitly, that
there is no solution using the standard theory in some cases
because the solution becomes unbounded [27]. On the
other hand, for a large number of systems, solutions of the
Riemann problem can be shown to exist by elementary
methods.

In the present work, our focus is on the well-known
shallow-water systemwhich appears in the general form (1)
when defining the principal unknown vector u and the flux
function f, respectively by

u � [ h
hu
],  f(u) � ⎡⎢⎢⎢⎢⎢⎢⎣ hu

hu2 + 1
2
gh2
⎤⎥⎥⎥⎥⎥⎥⎦.

In physical terms, the unknown h(x,  t) represents the
local flow depth at a point x in space and at a time t. The
unknown u(x,  t) represents the horizontal fluid velocity at
x and t, averaged over the fluid column.

The solution of the Riemann problem for the shallow-
water equations is well known, and can be found in many
texts on conservation laws (cf. [2, 12]). Oneway to normalize
the problem is to consider the left stateuL given, and look at
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all possible right states. Since h represents the total flow
depth of the fluid, an additional admissibility condition is
usually imposed, requiring both uL and uR to feature non-
negative flow depth. Indeed, if imposing the requirement
that hL ≥ 0 and hR ≥ 0, then it can be shown that the Rie-
mannproblem can be solved for all right statesuR satisfying
this admissibility condition.

As can be gleaned from Figure 1, the condition that h be
non-negative restricts the analysis to the right half-plane in
the (h,  u) phase space. However, if one looks closely at the
solution of the Riemann problem, it appears that the solu-
tion features dry states for many possible right states (see
Figure 1). In particular, in order to resolve the Riemann
problem with a right state in the shaded region in Figure 1,
one needs to incorporate a dry region (h � 0) into the so-
lution. Even though the solution is well defined mathe-
matically, from a physical point of view, it does not seem
reasonable for a dry region todevelop from initial conditions
which otherwise seem perfectly normal (just as it does not
seem reasonable to include states with h < 0). Note that one
obvious admissibility condition would be to simply specify
that any right state in the shaded regionofFigure 1 shouldbe
disregarded. To set such a criterion we would set the

threshold by uR ≤ u* + 2
���
gh
√

, representing the boundary of
the shaded regionwithu* given by theR1 curve evaluated at
h � 0 (see general solution in Section 4 for context). How-
ever, there does not appear to exist any physical motivation
for this condition. Therefore, in the present work, we aim to
identify conditions on the right state uR which are rooted in
the physical interpretation of the equations, and also guar-
antee that the solution of the Riemann problem does not
include a dry state.

Recall that the shallow-water assumption applies to
surface waves that are slowly varying, and a shock rep-
resents a bore (i. e., a traveling hydraulic jump) where the
shock structure which may feature oscillations or turbu-
lent structures) has been neglected [7, 22, 28]. If this
physical interpretation is taken as a point of departure,
then it appears that a Riemann problemmay develop from
the collision of two bores, and a natural admissibility
condition would be to consider only such Riemann
problems. Thus we will study the history of the Riemann
problem, or more succinctly the backwards problem for
t < 0. Examining possible solutions of the backwards
problem will lead to clear conditions on whether or not a
Riemann problem can develop. As it turns out, these
conditions will exclude Riemann problems whose solu-
tion involves a dry state.

Note that a Riemann problem could also develop from
certain initial data which are arranged in such a way that
the solution lines up at some time so as to give a perfect
Riemann problem. While this is possible, it would clearly
be unstable to even the smallest perturbations. On the
other hand, onemight also consider the collision of three or
more traveling hydraulic jumps, or the collision between
rarefaction waves and shocks, but these situations are so
unlikely to happen that they would constitute a set of
measure zero in the configuration space. In the current
work,we focus on the origin of the Riemannproblemwhich
can be represented by a set of non-zero measure in the
configuration space given by the phase plane.

The outline of this paper is as follows. In sections 2
and 3, a short discussion of the properties of basic ad-
missible waves for the shallow-water system is given, and
the standard solution of the Riemann problem is
explained in section 4. This is standard fare, but we need
various formulas in order to set up the problem to be
attacked. In sections 5, 6, and 7, Riemann problems
originating from various configurations are investigated.
Some ramifications of our results are discussed in the
Conclusion.

2 Shock waves and bore properties

As alreadymentioned above, the shallow-water system can
bewritten in terms ofmass andmomentum conservation in
the form

ht + (hu)x � 0, (4)

(hu)t + (hu2 + 1
2
gh2)

x
� 0. (5)

Figure 1: Phase space for a particular left state (hL,  uL). The red
curves denotedbyS1 andS2 indicate possible right stateswhich can
be reached through a single discontinuity. The blue curves denoted
by R1 and R2 show right states which can be reached through a
continuous solution.
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A derivation of this system from first principles can be
found in [25], where it is also shown that the conservation
of energy is formulated as

(1
2
hu2 + 1

2
gh2)

t
+ (1

2
hu3 + gh2u)

x
� 0. (6)

Discontinuous solutions develop naturally in this sys-
tem even in the case of flat bathymetry which is under study
here. In the case when the solution features jumps, the
imposition ofmass andmomentumconservation leads to an
energy loss (see [23])which has been the subject of a number
of studies [3–6, 15, 26]. In the context of the conservation
laws, the energy loss means that (6) becomes an inequality,
which is then taken as the mathematical entropy in order to
pick out physically reasonable discontinuous solutions.

In the context of the shallow-water equations (4) and
(5) the Rankine-Hugoniot condition (2) yields the following
relations:

(hR − hL)σ � hRuR − hLuL,

(hRuR − hLuL)σ � (hRu2
R +

1
2
gh2R) − (hLu2L + 1

2
gh2L).

Combining these two equations enables us to find an
expression for uR in terms of h,  hL and uL as shown in [2, 12].
Indeed, one may define the Hugoniot locus of all possible
right states (h,  u) for a given left state (hL,  uL) in terms of
the shock curves S1 and S2 as follows.

S1(L) : u(h) � uL − (h − hL)
����������
g
2
(1
h
+ 1
hL
)√
, (7)

S2(L) : u(h) � uL + (h − hL)
����������
g
2
(1
h
+ 1
hL
)√
. (8)

A useful observation to be used later is that the fluid
velocity of u on S1 is strictly decreasing, while the velocity
on S2 is strictly decreasing. In fact taking the derivative
yields the expression

u′(h) � ∓

��
g
2

√ (2h2 + hhL + h2L)
2h2hL

�����
1
h + 1

hL

√ ,

where the minus sign refers to the S1 curve and the plus
sign to the S2 curve. Inspecting the term on the right in the
above relation confirms that the sign of the derivative u′(h)
depends only on whether the derivative is taken on S1 or
on S2.

TheHugoniot locimay also be described in terms of the
momentum q � hu. Indeed, for a given left (hL,  qL), the
possible right states must satisfy one of the following re-
lations

S1(L) : q(h) � qL
hL

h − h(h − hL)
����������
g
2
(1
h
+ 1
hL
)√
, (9)

S2(L) : q(h) � qL
hL

h + h(h − hL)
����������
g
2
(1
h
+ 1
hL
)√
. (10)

Taking the second derivative of these expressions
shows that these curves are strictly concave and convex,
respectively:

q″(h) � ∓

��
g
2

√ (8h3 + 12h3hL + 3hh2L + h3L)
4h3h2L(1h + 1

hL
)32 .

Finally, the speed of the discontinuity may be found
from the Rankine-Hugoniot condition as

σ � uL ∓ hR

�����������
g
2
( 1
hR

+ 1
hL
)√
� uR ± hL

�����������
g
2
( 1
hR

+ 1
hL
)√
. (11)

Next, let us discuss the entropy condition for shock
waves. It is well known [12, 24] that it is necessary to impose
both the Rankine-Hugoniot and the entropy condition to
ensure uniqueness of a solution. In the context of the
shallow-water theory, the mechanical energy serves as a
mathematical entropy. In fact, it is well known that energy
is lost in a shock either due to turbulence or the continuous
creation of surface oscillations [3, 6, 11, 13, 14, 25]. Similar
considerations can be used in various other applications,
such as for example in the context of porous media [1].

In the present case, the expected loss of mechanical
energy is enforced by imposing the inequality

ΔE � (1
2
hu2 + 1

2
gh2)

t︸������︷︷������︸
η(u)t

+(1
2
hu3 + gh2u)

x︸�������︷︷�������︸
ψ(u)x

<0, (12)

for discontinuous solutions. It is also convenient to intro-
duce the relative mass flux m by

m � hR(uR − σ) � hL(uL − σ) � ±hRhL

�����������
g
2
( 1
hR

+ 1
hL
)√
. (13)

Usingm, we can express the rate atwhich energy is lost
at the shock by

ΔE � ψ(uR) − ψ(uL) − σ(η(uR) − η(uL)),
� −

mg
4

(hR − hL)3
hRhL

.

Note that since we always require ΔE < 0 for discon-
tinuous solutions, if hL < hR, then we must havem > 0 from
the previous relation. Invoking (13) then shows that uR > σ
and uL > σ. On the other hand, similar considerations show
that if hL > hR, then (12) requires that uR < σ and uL < σ.
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These relations show that fluid particles alwaysmove across
the shock from the region of lower depth to the region of
higher depth, a fact already noted in [25]. Moreover,
combining equations (7), (8) and (13) and using the condi-
tion (12) shows that we must have uR < uL for all discontin-
uous solutions. The most important properties of the shock
curves are summarized in Tables 1 and 2 and Figure 2.

One should also remark that both S1 and S2 shocks
satisfy the Lax entropy condition (cf. [12]). This condition
states that the speed σi of an Si shock must satisfy the
relation

λi(R) ≤ σi ≤ λi(L),  i � 1,  2, (14)

where λi are the eigenvalues of the flux Jacobian matrix ∇f.
For the shallowwater equations this eigenvalues are givenby

λ1 � u −
���
gh
√

,  λ2 � u +
���
gh
√

. (15)

A geometrical representation of the Lax entropy con-
dition in the (x,  t)−plane is shown in Figures 3 and 4.

3 Rarefaction waves

Following the classical theory (presented for example in
[10, 28, 12]) we seek traveling wave solutions of the form

u(x,  t) � v(ξ )with ξ � x
t . Substituting this term the into the

conservation law one can easily verify that the system re-
duces to a system of ODEs of the form

v̇ � r(v). (16)

The solution is then given by the integral of (16).
We may now exploit this insight using the theory of

Riemann invariants w : R2 → R, which is a smooth
function that is constant along the integral curves [10].
For the shallow-water equations the Riemann invariants
are given by

Table : Properties of shock curves S and S.

Hugoniot locus Fluid velocity uðhÞ Momentum qðhÞ
S u′ðhÞ<  u″ðhÞ>  q″ðhÞ< 

S u′ðhÞ>  u″ðhÞ<  q″ðhÞ> 

Table : Jump properties on S and S.

Hugoniot locus S S

Increase/decrease in flow depth hL < hR hL > hR
Front speed σ <  or σ >  σ <  or σ > 

Relative mass flux m>  m< 

Velocity relation uR < uL uR < uL
Velocity relation uR > σ uR < σ
Velocity relation uL > σ uL < σ

Figure 3: Left moving bore with speed σ1, λi(L) and λi(R) for a S1

shock.

Figure 4: Right moving bore with speed σ2, λi(L) and λi(R) for a S2

shock.

Figure 2: Left panel: bore with flow depth
hL < hR which corresponds to the right state
being on the shock curve S1. Right panel:
bore with flow depth hR < hL corresponding
to the right state being on the shock curve
S2. In both cases the bore front may feature

positive (right-moving), zero, or negative (left-moving) propagation velocity.
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w1 � u − 2
���
gh
√

,  w2 � u + 2
���
gh
√

. (17)

Along a Riemann invariant, the solution must there-
fore satisfy

uL ± 2
���
ghL
√

� uR ± 2
���
ghR
√

. (18)

Hence, for a given left state we may write the rarefac-
tion wave solution as follows

R1(L) : u(h) � uL − 2
���
gh
√

+ 2
���
ghL
√

, (19)

R2(L) : u(h) � uL + 2
���
gh
√

− 2
���
ghL
√

. (20)

By comparison, one can also show that v̇ is the right
eigenvector r(v), and ξ is the corresponding eigenvalue λ(v)
belonging to the Jacobi matrix of the flux function. Having
λ � ξ would mean that the eigenvalues must be increasing

from left to right. This implies λi(L) < λi(R) and by equation
(15) that uL < uR whenever there is a rarefaction wave. Fig-
ures 5 and 6 depicts two rarefaction waves propagating left
and right in the (x,  t)−plane. Following the characteristics
one can see how the waves moves forward in time.

In fluid mechanics, some authors refer to these waves
as negative surges resulting from a decrease in flow depth
[9]. Interestingly, Peregrine was able to show that a nega-
tive surge together with a bore advancing in positive di-
rection originates from the collision of two fast shocks [21].
Therefore, we will discuss the development of the Riemann
problem from a collision of two S2 shocks in Section 6.

4 General solution of the Riemann
problem

Using the results from sections 3 and 4, the general solution
of the Riemann problem can be fond using the rarefaction
curves defined by (19) and (20)

R1(L) : u(h) � uL − 2
���
gh
√

+ 2
���
ghL
√

,  u > uL

R2(L) : u(h) � uL + 2
���
gh
√

− 2
���
ghL
√

,  u > uL

and the shock curves (7) and (8)

S1(L) : u(h) � uL − (h − hL)
����������
g
2
(1
h
+ 1
hL
)√
,  u < uL

S2(L) : u(h) � uL + (h − hL)
���������
g
2
(1
h
+ 1
hL
)√
,  u < uL

In the following, it will be convenient to plot the inte-
gral curves and shock curves for a particular left state
(hL,  uL) plotted in two different coordinate systems.
Figure 7 shows the integral curves in (h,  q)−coordinates,
where q � hu is the momentum, while Figure 8 shows the
integral curves in (h,  u)−coordinates. The benefit of the

Figure 5: Left moving rarefaction wave smoothly varying between
λ1(L) and λ1(R).

Figure 6: Right moving rarefaction wave providing a smooth
transition between λ2(L) and λ2(R). Figure 7: Phase-space in (h,  q)−coordinates.
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former representation lies in the fact that the shock speed
between q1 and q2 is given by

σ � q1 − q2
h1 − h2

,

which is simply the secant line joining the two states. For
example, any right state given on the S2(L) curve in
Figure 8 would give rise to a right- moving bore since the
slope of the secant line joining left and right states would
be positive, i. e., σR > 0. Of course, if the right state is not
given on any of the integral or shock curves, S1,  S2,  R1 and
R2 need to be combined to give a solution of the Riemann
problem. Indeed as explained in [12, 18], given a left state
we may consider all possible right states and then find the
solution depending on whether the right state is in region
I,  II,  III or IV . For instance, let us say we have a right state
somewhere in region four. Then in order to find an entropy
solution we must define a middle state at some point
(hM ,  uM) on the shock curve S1(L) such that it is connected
to a rarefaction curve R2(M). Similarly, the entropy solu-
tion for each region is found by two elementary waves
going through some middle state. For region I, we follow

R1(L) connecting the right state with R2(M) for a middle
state. In region II, we first go along R1(L) then S2(M).
Finally, in region III we connect S1(L)withS2(M) for some
middle state (see example in Figures 9 and 10). Concluding
this section we remark that the solution is in fact unique
since all of these solutions satisfy the admissibility condi-
tions, and it has been shown that there is only one middle
state M for each region.

5 Development of the Riemann
problem from a collision of S2

and S1 shocks

In this section, we will discuss the origin of the Riemann
problem from a collision of two bores. It is most convenient
to focus the discussion by assuming that a left state is
given. With this proviso, we will prove that the Riemann
problem associated to certain right states in region III
arises from the head-on collision of two counter-propa-
gating bores, while other right states are connected to anFigure 8: Phase-space in (h,  u)−coordinates.

Figure 9: Solution in region III using (h,  q)−coordinates.

Figure 10: Solution in region III using (h,  u)−coordinates.

Figure 11: Backwards problem in (h,  u)−coordinates.
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overtaking collision of co-propagating bores (see
Figure 11). Indeed, we will show that these two scenarios
cover all possible right states in region III. Finally,we show
that Riemannproblemswith right states in regions I,  II and
IV cannot develop from either head-on or overtaking col-
lisions of an S1 and an S2 shock.

In order to understand how a given Riemann problem
develops, we consider the backwards problem for t < 0. In
order to solve the backwards problem, the usual disposi-
tion of a slow shock on the left left and a fast shock on the
right has to be reversed. Indeed, to solve the backwards
problem, the left state is connected to a center state lying
on the locusS2(L). The center state is then connected to the
right state by ensuring that the right state lies on the locus
S1(C). This configuration then leads to the collision of the
two shocks at time t � 0. Note that we have chosen to use
the term center state for the backwards problem versus
middle state for the forward problem.

As indicated in Figure 12, the solution of the Riemann
problem for a right state in region III consists of a 1−shock
and a 2−shock connected by a middle state on S1(L). Note
that the flow depth of the middle state will always be
higher than for both the left and the right state. Specif-
ically we always have hM > hL and hM > hL in region III. In
fact, it can be observed that fluid particles from both sides
will move back towards the middle, thus contributing to
the raised flow depth of themiddle state. In that respect, it
seems natural that the Riemann problem should result

from two colliding bores. Figure 13 depicts the case of a
head-on collision of a left-moving shock and a right-
moving shock. Note that the backwards solution has the
two shocks connected by a center state (hC ,  uC), then
moving towards each other resulting in a Riemann prob-
lem at time t � 0.
Theorem 1. Suppose that a left state L � (hL,  uL) for the
Riemann problem is given. For any right state R � (hR,  uR) in
region III, there exists a center state C � (hC ,  uC) such that
for t < 0, there is an S2 − S1 connection between L and R via
C. The two shocks collide at t � 0, giving rise to a Riemann
problem. On the other hand, it is not possible for a Riemann
problem to develop from a S2 − S1 connection if the right
state is in region I, II or IV.

Proof. Step 1. Existence of a center state: We need to prove
there is a center state connecting two colliding shockwaves
satisfying the bore conditions. Guided by the discussion
above, and using an argument similar to one used in [16],
we seek a point (hC ,  uC) on S2(L) giving rise to a 1−shock,
S1(C) through (hR,  uR). The equation defining the locus
S2(L) is given by

S2(L) : u � uL + (h − hL)
����������
g
2
(1
h
+ 1
hL
)√
. (21)

As already indicated in Table 1, taking the derivative u′(h)
shows that u is strictly increasing on S2(L) for h ∈ (0,  hL]
and with range (−∞,  uL). On the other hand, any right
state (hR,  uR) ∈ III in the locus S1(C) will satisfy the
relation

S1(C) : uR � uC − (hR − hC)
�����������
g
2
( 1
hR

+ 1
hC
)√
. (22)

Keeping the right state fixed, and varying hC shows that uC
is is strictly decreasing as a function of hC with hC ∈ (0,  hL],
and uC ∈ [uR,  ∞). Since uR < uL, the two loci defined
above must necessarily intersect, thus defining the center
state (hC ,  uC).

Step 2. Head-on collision and overtaking bores: We now
analyze whether the center state found in Step 1 actually
leads to a collision of shocks. As will be shown presently,Figure 12: Forward problem in (h,  u)−coordinates.

Figure 13: The Riemann problem at t � 0
originates from two counter-propagating
shocks (t < 0). The solution is given for
t > 0.
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the center state will always give rise to a Riemann problem
originating from either a head-on collision or an overtaking
collision of two shocks. In order to prove this statement, we
first note that having (hC ,  uC) ∈ S2(L) implies that hC < hL
and uC < uL. From the bore properties in Section 2 we see
that the left shock is described by

σL � hLuL − hCuC
hL − hC

� uC + hL

�����������
g
2
( 1
hC

+ 1
hL
)√
, (23)

when substituting uL from equation (21). Keeping this in
mind, we now consider σR. Since the right state (hR,  uR) is
in the locus S1(C), we must have hC < hR and we may now
use an argument reminiscent of the derivation of the Lax
entropy condition (see [12], for example). The idea is to
show that σL > σR by considering the difference of these
two quantities, and then using the mean-value theorem.
Since q is continuous on [hC ,  hR] and differentiable on the
open interval (hC ,  hR), it follows from the mean-value
theorem that there exists h* ∈ (hC ,  hR) such that

σR � qR − qC
hR − hC

� dq
dh

∣∣∣∣∣∣∣
h*

.

In addition, differentiating q(h) twice shows that the mo-
mentum q is a strictly concave function of h on the locus
S1(C) (see Table 1). Therefore, an upper bound on the de-
rivative may be obtained by evaluating it at the leftmost
point, hC. Combining this observation with equation (23)
yields the estimate

σL − σR > σL −
dq
dh

∣∣∣∣∣∣∣hC
� hL

�����������
g
2
( 1
hC

+ 1
hL
)√
+
���
ghC
√

>0.

Henceweconclude thatσL > σR whenever the right state is in
region III. This relation ensures that the center state chosen
above gives rise to a Riemannproblem. If σL and σR have the
same sign, then the Riemann problem develops from an
overtaking shock collision. If σL and σR have opposite sign,
the Riemann problem develops from a head-on collision.

Step 3. Inadmissible connections: Regarding the last
statement of the theorem, wewill now argue that for a right
state in region I, II or IV there is no admissible connection.
If we first consider region I, we must choose uC such that
uC < uL in order to satisfy the entropy condition in Section 2.
Furthermore, in region Iwe have uR > uL, whichmeans that
uC < uR. This violates the entropy condition as a result of

the center state being to the left, relative to the right state.
In fact, the entropy condition ensures that the only ad-
missible connection using one 1−shock and one 2−shock is
a center state satisfying uL > uC > uR, and this can obvi-
ously only be true for a right state in region III.

Before proceeding, we will offer some clarifying re-
marks. For the shallow-water equation, given a left statewe
can always connect any right state with a middle state as
mentioned earlier. Once you know the right state it is then
possible go back through a center state. We find it
instructive to describe the solution for two particular states
in both phase-space and in (x,  t)−coordinates. Figure 15

Figure 14: Development of the Riemann problem in phase space.

Figure 15: Developmentof theRiemannproblem in(x,  t)−coordinates.
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depicts the special case from earlier in (x, t)−plane with
two counter-propagating bores colliding at t � 0. Also
observe that for t < 0, we need to consider the admissible
connection from the perspective of the right state. Then of
course, a S1(C) − S2(L) connection is entropy-satisfying,
and is shown in Figure 14. On the other hand, for the for-
ward problem, we connect S1(L) − S2(M) as discussed in
Section 4.

6 Development of the Riemann
problem from a collision of two
S2 shocks

Consideration will now be given to the Riemann problem
arising from a S2 − S2 connection. As it will turn out, the
resulting Riemann problemwill have a right state in region
II. As before, we consider the left state given. It is then
straightforward to see that the center state in the back-
wards problem must lie in the Rankine-Hugoniot locus
S2(L). Thus the center state is given by the formula

uC � uL + (hC − hL)
�����������
g
2
( 1
hC

+ 1
hL
)√
. (24)

On the other hand, if the center state is to be connected
to the right state by an S2 -shock, then the right state must
lie on the S2(C) shock curve and therefore satisfy the
relation

uR � uC + (hR − hC)
�����������
g
2
( 1
hR

+ 1
hC
)√
. (25)

Putting these two formulas together defines the region
of all possible right states as

Ω2 � ∪
hC∈(0,hL)

⎧⎨⎩(hR,  uR)|uR

� uL + (hC − hL)
�����������
g
2
( 1
hC

+ 1
hL
)√

+ (hR − hC)
�����������
g
2
( 1
hR

+ 1
hC
)√
,  0 < hR < hC

⎫⎬⎭.

We have the following theorem.

Theorem 2. Suppose that a left state L � (hL,  uL) for the
Riemann problem is given. The set of all possible right states
R � (hR,  uR) such that the Riemann problem originates from
the collision of two S2 shocks is given by Ω2. This set lies in
region II, and the shock speeds of the backwards problem
line up such that the two shocks meet at t � 0.

On the other hand, it is not possible for a Riemann
problem to develop from a S2 − S2 connection if the right
state is in the complement of the set Ω2.

Proof. First of all, the definition of the set Ω2 is straight-
forward from the relations for the Hugoniot loci S2(L) and
S2(C). Any state which does not lie in Ω2 can therefore not
be reached via a S2 − S2 connection.

To see that the state R � (hR,  uR) lies in region II,
consider the difference between uR given by (25) and (24)
and u in the locus S2(L) as defined by (8). Denoting this
difference by F(h) � u − uR, we obtain the formula

F(h) � uL + (h − hL)
����������
g
2
(1
h
+ 1
hL
)√
− uL

− (hC − hL)
�����������
g
2
( 1
hC

+ 1
hL
)√
− (h − hC)

����������
g
2
(1
h
+ 1
hC
)√
.

It needs to be shown that F(h) < 0 for h < hC. Note first the
F(hC) � 0. If it can be shown that F ′ (h) > 0 for h < hC then
we can conclude that F(h) is strictly monotone
increasing, and can therefore only cross the abscissa one
time, so that F(h) will have to be negative in the interval
in question.

Evaluating the first and second derivative of F(h)
yields

F ′ (h) �
����������
g
2
(1
h
+ 1
hL
)√
−

��
g
2

√
(h − hL)

2h2
�����
1
h
+ 1
hL

√ −

����������
g
2
(1
h
+ 1
hC
)√

+

��
g
2

√
(h − hC)

2h2
������
1
h
+ 1
hC

√
and

F ″ (h) � −

��
g
2

√
(5hL + 3h)

4h4(1
h
+ 1
hL
)3/2 +

��
g
2

√
(5hC + 3h)

4h4(1
h
+ 1
hC
)3/2.

By inspection, we see that F ″ (h) < 0 so that the derivative
is strictly monotone decreasing. Therefore, we have
F ′ (h) > F ′ (hC) for all h < hC, and if it can be shown that
F ′ (hC) > 0, then we are done.

Lemma 1. Given F(h) � u − uR, we have F ′ (hC) > 0.

Proof. Evaluating the derivative F ′ (h) given above
at h � hC and multiplying with

�
2
g

√
for the sake of clarity

yields
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��
2
g

√
F ′ (hC) �

������
1
hC

+ 1
hL

√
−

(hC − hL)
2h2C

������
1
hC

+ 1
hL

√ −

������
1
hC

+ 1
hC

√

�
������
1
hC

+ 1
hL

√
−

��
2
hC

√
−

hC

2h2C

������
1
hC

+ 1
hL

√ + hL

2h2C

������
1
hC

+ 1
hL

√ .

Next multiply with the positive number
�����
1
hC
+ 1

hL

√
to obtain��

2
g

√ ������
1
hC

+ 1
hL

√
F ′ (hC) � 1

hC
+ 1
hL

−

��
2
hC

√ ������
1
hC

+ 1
hL

√
−

hC
2h2C

+ hL
2h2C

� 1
2hC

+ 1
hL

−

��
2
hC

√ ������
1
hC

+ 1
hL

√
+ hL
2h2C

.

Letting hC � ϵhL for ϵ ∈ (0,  1), we find��
2
g

√ ������
1
hC

+ 1
hL

√
F ′ (hC) � 1

2ϵhL
+ 1
hL

−

���
2
ϵhL

√ �������
1
ϵhL

+ 1
hL

√
+ hL
2ϵ2h2L

.

Evidently, the proof will be achieved if it can be shown that
the function

f(ϵ) � ϵ + 1 + 2ϵ2 − 2
�
2

√
ϵ
����
ϵ + 1

√

is positive for all ϵ ∈ (0,  1). To this end, we take the first and
second derivatives:

f ′ (ϵ) � 4ϵ − 2
�
2

√ ����
ϵ + 1

√
−

�
2

√
ϵ����

ϵ + 1
√ + 1,

f ″ (ϵ) �
�
2

√
ϵ

2(ϵ + 1)3/2 −
2
�
2

√����
ϵ + 1

√ + 4.

Note that f ″ (ϵ) > 0 by inspection, and f is therefore strictly
convex on (0,  1). Thus by convexity we know that f ′ (ϵ) is
strictly increasing, so that f ′ (ϵ) < f ′ (1) for all ϵ ∈ (0,  1).
But evaluating f ′ (ϵ) at 1 yields f ′ (1) � 0. Hence,
f ′ (ϵ) < f ′ (1) � 0. So the function f is strictly decreasing on
(0,  1) meaning f(ϵ) > f(1) � 0.

Finally, denote the shock speeds of the backwards
problem by

σR � qR − qC
hR − hC

,

and

σL � qL − qC
hL − hC

.

Now recall that it was proved in Section 3 that the function
q(h) is convex, andnote that the convexity on theHugoniot
locus S2(C), including the admissible and the entropy-
violating part guarantees that σR > σL, as is required for the
two shocks to meet at t � 0.

A particular example of the backwards problem is rep-
resented in phase space for (h,  u) and (h,  q) coordinates.

In Figure 17, we observe that hR < hC < hL and
uR < uC < uL. Also note that in Figure 16 the line joining
each state has a positive slope, which implies that both
states moves in the positive direction. From this we may
hope to create a Riemann problem if the left state ismoving
faster than the right state, causing an overtaking (see
Figure 18). Though, this is clear due to the fact that s2 is
convex, i. e., the rate of change given by the shock speed σ
is increasing from left to right. We state the general
formulation in the next theorem.

Figure 16: Backwards problem in (h,  q)−coordinates.

Figure 17: Backwards problem in (h,  u)−coordinates.

Figure 18: Two colliding bores forming the Riemann Problem.
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7 Development of the Riemann
problem from a collision of two S1

shocks

The final case to be considered is when a Riemann problem
develops from the collision between two S1 shocks. The
situation is similar, and the arguments in the proofs are
virtually the same as in the previous section. Finding a
center center state turns out to only be possible for some
right states in region IV .

As before, we consider the left state given. It is then
straightforward to see that the center state in the back-
wards problem must lie in the Rankine-Hugoniot locus
S2(L). Thus the center state is given by the formula

uC � uL − (hC − hL)
�����������
g
2
( 1
hC

+ 1
hL
)√
.

On the other hand, if the center state is to be connected
to the right state by anS2 -shock, then the right statemust lie
on the S2(C) shock curve and therefore satisfy the relation

uR � uC − (hR − hC)
�����������
g
2
( 1
hR

+ 1
hC
)√
.

Putting these two formulas together defines the region
of all possible right states as

Ω4 � ∪
hC∈(0, hL)

⎧⎨⎩(hR,  uR)|uR

� uL − (hC − hL)
����������
g
2
( 1
hC

+ 1
hL
)√

− (hR − hC)
�����������
g
2
( 1
hR

+ 1
hC
)√
,  0 < hR < hC

⎫⎬⎭.

We have the following theorem.

Theorem 3. Suppose that a left state L � (hL,  uL) for the
Riemann problem is given. The set of all possible right states
R � (hR,  uR) such that the Riemann problem originates from
the collision of two S2 shocks is given by Ω4. This set lies in
region IV, and the shock speeds of the backwards problem
line up such that the two shocks meet at t � 0.

On the other hand, it is not possible for a Riemann
problem to develop from a S2 − S2 connection if the right
state is in the complement of the set Ω4.

The proof of theorem 3 is virtually the same as that of
Theorem 2, except for changing signs in the right places.
From Figure 19, we observe that both bores are moving to
the left due to a negative slope. However, the right state
moves faster than the left. This is also true in general since
S1 is strictly concave in momentum coordinates. Again, we
must also choose an admissible connection. Similar to the
case in Section 6, we follow S1(L) from left state to center
state, continuing along the S1(C) curve from the center
state to the right state (see Figure 20).

8 Conclusion

In this article, we have considered the Riemann problem
associated to the shallow-water equations. The study of the
Riemann problem is important when trying to understand
the behavior of solutions of a system of conservation laws.
For example the Riemann problem can used as a tool in the
front-tracking method where general initial data are
decomposed into piecewise constant functionswhich gives
rise to a series of Riemann problems [12]. This approach is
used in existence proofs and numerical schemes, but one
may face difficulties interpreting solutions of the Riemann
problem for the shallow-water equations in the case when
the solution includes a dry region (h � 0). In gas dynamics,Figure 19: Backwards problem in (h,  q)−coordinates.

Figure 20: Backwards problem in (h,  u)−coordinates.
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this situation is known as cavitation and is a well-defined
concept, but the creation of a dry zone between two
propagating waves does not seem reasonable from a
physical point of view in the case of shallow water theory.

In the present work, we have imposed the condition
that the Riemannproblem should arise from the collision of
two bores. With this condition in place, we were able to
show that solutions of the Riemann problem do not feature
cavitation. In summary, for a given left state, the collision
of an S1(L) and an S2(L) shock gives rise to a Riemann
problem in Region III (Theorem 1). The collision of two
S2(L) shocks gives rise to a Riemann problem in Region II
(Theorem 2), and the collision of two S1(L) shocks gives
rise to a Riemann problem in Region IV (Theorem 3). It is
clear that a right state in region I is not permitted if these
admissibility conditions are used. In particular, we avoid a
right state in the shaded region of Figure 1 which is the
region where the resolution of the Riemann problem fea-
tures a dry state.
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