
Water Waves (2022) 4:65–90
https://doi.org/10.1007/s42286-021-00053-1

ORIG INAL ART ICLE

A Nonlinear Formulation of Radiation Stress and
Applications to Cnoidal Shoaling

Martin O. Paulsen1 · Henrik Kalisch1

Received: 22 January 2021 / Accepted: 27 August 2021 / Published online: 25 October 2021
© The Author(s) 2021

Abstract
In this article, we provide formulations of energy flux and radiation stress consistent
with the scaling regimeof theKorteweg–deVries (KdV) equation. These quantities can
be used to describe the shoaling of cnoidal waves approaching a gently sloping beach.
The transformation of these waves along the slope can be described using the shoaling
equations, a set of three nonlinear equations in three unknowns: the wave height H ,
the set-down η̄ and the elliptic parameter m. We define a numerical algorithm for the
efficient solution of the shoaling equations, and we verify our shoaling formulation by
comparing with experimental data from two sets of experiments as well as shoaling
curves obtained in previous works.

Keywords Surface waves · KdV equation · Conservation laws · Radiation stress ·
Set-down

1 Introduction

In this article, the development of surface waves across a gently sloping bottom is in
view. Our main goal is the prediction of the wave height and the set-down of a periodic
wave as it enters an area of shallower depth. This problem is known as the shoaling
problem and has a long history, with contributions from a large number of authors
going back as far as Green and Boussinesq.

The shoaling problem itself may be studied from a number of angles, and there is
an abundant literature reporting on field and laboratory studies as well as numerical
simulations. One of the earliest studies was the experimental investigation of the
transformation of a solitarywave on sloping bed [19]. This configuration has attracted a
lot of attention, and is still studied from various points of view (see, for example, [5,16,
35]). Shoaling of periodic waves was considered experimentally in [10,48], and many
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other classic works on shoaling waves and associated phenomena are summarized in
[28,46].

One important issue in operational wave modeling is the prediction of local
nearshore wave conditions from offshore data. In general, the description of waves in
the nearshore zone is a difficult task involving a multitude of bathymetric effects such
as for example changes in wave height and wavelength due to shoaling, changes in
propagation direction due to refraction and diffraction, as well as bottom friction and
percolation. On the other hand, since offshore conditions provided by buoy measure-
ments or simulations from spectral wave models are generally sparse, the introduction
of some simplifying assumptionswill most likely not compromise the overall accuracy
of the forecast. Moreover, since from a practical point of view, the main interest has
traditionally been in forecasting the waveheight of the shoaling waves, we follow the
classical approach of reducing the problem to the most essential factors of the wave
transformation.

An idealized form of the shoaling problem is obtained bymaking three key assump-
tions. First, the bottom slope is small enough to allow the waves to continuously adjust
to the changing depth without altering their basic shape or breaking up. Second, reflec-
tions are assumed to be negligible so that the energy flux of a wave is conserved as
it transforms on the slope. Third, the period T of a wave is assumed to be constant
as it progresses. This last point is sometimes termed the conservation of waves as the
number of waves in a group will remain constant during the shoaling process.

Rather than following a wave in space and time as it propagates over the slope, we
estimate wave properties as functions of the depth using conservation of period T and
energy flux, and a prescribed change in momentum due to the effect of the radiation
stress. These conservation equations are due to the assumptions stated above, and
they form the basis for the description of the shoaling process as first envisioned by
Rayleigh [44], and subsequently used by a number of authors. The crucial factor which
guarantees that the shoaling assumptions are valid is that the relative change in water
depth over a wavelength is smaller than the wave steepness. This point is explained in
more detail in [42,54].

In the context of linear wave theory, the process outlined above is the classical
approach to wave shoaling and can be found in textbooks on coastal engineering such
as [15,51]. This approach depends on the assumption that the waves can be described
by a sinusoidal function of the form H

2 cos(kx −ωt), where H is the wave height, k is
the wavenumber, ω is the circular frequency, t is the time and x is a spatial coordinate
along which the bottom is sloping. Recall that the wavelength is λ = 2π

k and the wave
period is T = 2π

ω
, and these are related by the dispersion relationω2 = gk tanh (kh) at

local depth h. In the linear shoaling theory, the conservation of energy flux is central.
The energy flux is generally formulated as the average over one period of the energy
density E times the group speed Cg . The energy density is given in terms of the fluid
density ρ, the gravitational acceleration g and the wave height H as E = 1

8ρgH
2,

and the group speed is given by Cg = dω
dk .

As mentioned above, if the bathymetry is sloping only gently upwards, then it may
be assumed that the waves adjust adiabatically to the changing conditions, and that
reflections and distortions are negligible. Thewave-height transformation of a shoaling
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wave is obtained by imposing conservation of the energy flux ECg across the shoaling
region. If a wave measurement H0, T0 at some point offshore is given, then the wave
height at a point closer to shore may be computed from the conservation of energy
flux given in the form

HCg = H0Cg0, (1)

where the group speed Cg at local depth h can be found from the conservation of the
wave period T . Similar considerations using the linear definition of the radiation stress
yield a formula for the set-down [37].

The procedure outlined above is computationally extremely efficient since only one
nonlinear equation has to be solved numerically. As a result, it would be a natural to use
this method in conjunction withMonte Carlo simulations to bridge the divide between
offshore conditions which are usually given statistically as sea states, and the require-
ment of phase-resolved data such as would be required to determine expected run-up
for example [45]. However, the linear theory is not valid for waves with moderate or
larger waveheight, and nonlinear effects should be included for waves approaching
the surf zone.

The authors of [55] used cnoidal functions in connectionwith the linear formulation
of the energy flux defined above to obtain a hybrid theory of shoaling. Unfortunately,
this approach led to a discontinuity in wave height at the matching point between the
linear shoaling equation (1) and the nonlinear theory based on the cnoidal functions.
The problem was remedied to some degree in [56] by requiring continuity in wave
height effected through the use of conversion tables. This approach led to good agree-
ment with the experimental data, but was cumbersome to implement, and as already
noted in [56], the continuity of the wave height at the matching point in the shoaling
curve led to a discontinuity in energy flux.

The problem can be resolved by defining a shoaling equation based on the full
water-wave problem using the streamfunction method [15], for example. Such an
approach has been documented in [57]. While accurate, the streamfunction approach
depends on discretizing the steady Euler equations leading to large systems of equa-
tions which need to be solved numerically. If the approach is to be used in connection
with ocean-wave statistics, the approach based on the steady Euler equations might
be too computationally demanding. Moreover, the agreement of the combined linear-
cnoidal approach of [56] already gave good agreement with experiments while being
much less expensive.

In present work, we will show that the discrepancy between conservation of wave
height and conservation of energy flux can be resolved in the context of the KdV
theory using a definition of the energy flux consistent with the KdV equation [4,21],
and without using the fully nonlinear approach of [57]. Recall that the KdV equation
is given in the form

ηt + c0ηx + 3

2

c0
h0

ηηx + c0h20
6

ηxxx = 0, (2)
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where η(x, t) is the deflection of the free surface from rest at a point x and a time t ,
g is the gravitational acceleration, h0 is the local water depth, and c0 = √

gh0 is the
long-wave speed.

Shoaling in the context of steady solutions of the KdV equation is then described
as follows. Given a steady wavetrain of wave height H , wavelength λ and period T ,
the variation of the wave as it propagates from depth hA to hB is obtained by imposing
conservation of T , conservation of the energy flux qE , and balance of forces using the
bottom forcing by the pressure force, and the radiation stress.

To execute this plan, one needs to have in hand formulations for the energy flux qE
and the radiation stress Sxx in the context of the KdV equation. These expressions can
be developed using ideas first put forward in [3,4]. Using the methods in these papers,
it can be seen that we have

qE = c30

( 1

h0
η2 + 5

4h20
+ h0

2
ηηxx

)

and

Sxx = ρg
(
η + 3

2
η2 + h30

3
ηxx

)
,

where the overbar indicates that an average is taken over one wave period. Note that
the energy flux is defined in a pointwise sense while the radiation stress is defined in
an average sense. However, for the shoaling problem qE will also be averaged over
one wave period.

Before we continue, it should be mentioned that another viable approach to solving
the shoaling problemwould be to define amodel equation with a realistic non-constant
bathymetry, and simulate space and time-dependent solutions. In fact, due to the ready
availability of computational resources, shoaling is nowadays usually computed by
utilizing nearshore wave models which are used to forecast wave conditions in the
coastal zone. These models are generally known as Boussinesq models, and probably
the first such model was developed by Peregrine [43]. Some of the models currently
in use are described in [11,39,45]. It is also possible to derive simpler KdV-type
equations with variable bathymetry, such as shown in [17,20,40,58]. While some
concerns with this approach were raised recently in [24], the authors of [40] found
fair agreement of their hybrid spectral KdV-type model with shoaling experiments. A
more recent approach is the inclusion of bathymetry in higher order, fully nonlinear
or fully dispersive models, such as, for example, found in [13,14,59].

The plan of the paper is as follows. In the next section, the formulation of momen-
tum and energy balance in the context of the KdV equation will be recalled, leading
to the expression for flow force qI and energy flux qE . In Sect. 3, a formulation of the
radiation stress consistent with the KdV equation will be found. Section 4 contains
the formulation of the nonlinear shoaling equations, details on the numerical imple-
mentation and a comparison with wave tank experiments with particular focus on
the set-down. Section 6 details the comparison with other nonlinear shoaling theories
without set-down, and in particular with the shoaling curves obtained by Svendsen and
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Fig. 1 A periodic wave of wave height H and wavelength λ propagating at the free surface of a fluid of
undisturbed depth h0. The free surface is given by z = η(x, t)

Buhr Hansen [56]. In Sect. 7, we provide a comparison with the experimental results
of [56]. In the Conclusion we put our work into context and mention possibilities for
further work.

2 Momentum and Energy Balance in the KdV Approximation

We start this section with a brief description of the water-wave problem of an inviscid,
incompressible and homogeneous fluid with a free surface. Due to the assumption
that the relative change in water depth over one wavelength is less than the wave
steepness, the problem can be locally formulated with a constant undisturbed depth
h0 (see Fig. 1).

If the flow is assumed to be irrotational, the problem can be formulated in terms of
a velocity potential φ(x, z, t) in addition to the surface deflection η(x, t). The velocity
field (u(x, z, t), v(x, z, t)) is then given as the gradient of φ, and the pressure P can
be found using the Bernoulli equation. In terms of φ and η, the problem is described
by the Laplace equation

φxx + φzz = 0 for − h0 < z < η(x, t) (3)

in the fluid domain, and the boundary conditions

ηt + φxηx − φz = 0 on z = η(x, t),

φt + 1

2
(φ2

x + φ2
z ) + gη = 0 on z = η(x, t),

φz = 0 on z = −h0.

It is well known that this problem is difficult to treat both mathematically and
numerically. While it is known that solutions of the equations above exist on time
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scales relevant for coastal applications [30], numerical discretization of the full prob-
lem on the field scale remains completely out of reach. Thus in practical situations, an
asymptotic approximation of the Euler equations is usually required. The traditional
asymptotic theories are the linearized (Airy) theory and the hyperbolic (Saint-Venant)
shallow-water theory such as outlined in [53]. The work of Boussinesq [9] and
Korteweg and de Vries [25] led to another asymptotic regime, the so-called Boussi-
nesq scaling which can be used for long waves of small to moderate amplitude. In
the present work, we consider waves in the Boussinesq regime, and since we con-
sider waves propagating in the shoreward direction only, we restrict attention to the
Korteweg–de Vries (KdV) equation. Indeed, the KdV equation describes unidirec-
tional waves in the presence of weakly nonlinear and dispersive effects in the case
when these corrections are approximately balanced. To make this statement precise,
it is useful to define the relative amplitude α = a/h0 and the shallowness parameter
β = h20/λ

2, where a = H/2 denotes a representative amplitude and λ a representa-
tive wavelength of the wavefield to be studied. Using an asymptotic expansion and a
dimensional argument it can be shown that the KdV equation is a good model for long
waves of small amplitude if terms of order O(α2, αβ, β2) are neglected [61].

To derive the KdV equation, one defines the non-dimensional variables x = λx̃ ,
z = h0(z̃ − 1), t = λ

c0
t̃ , and φ = gaλ

c0
φ̃, then assumes that the velocity potential takes

the form

φ̃ = f̃ − β
z̃2

2
f̃ x̃ x̃ + O(β2), (4)

where f̃ is the velocity potential evaluated at the bed. Following the description in
[61], the free-surface boundary conditions can then be used to obtain theKdV equation
(2). In the process, it comes to light that the horizontal velocity at the bottom for a
right-moving wave is given by

ũ = η̃ − 1

4
αη̃2 + 1

3
βη̃x̃ x̃ + O(α2 + β2). (5)

Moreover, as noted for example in [4], combining (5) and the derivative of (4) with
respect to x one finds that the horizontal component of the velocity field is given by

φ̃x̃ (x̃, z̃, t̃) = η̃ − 1

4
αη̃2 + β

(1
3

− z̃2

2

)
η̃x̃ x̃ + O(α2, αβ, β2) (6)

in the KdV approximation. This relation will be needed later in the derivation of the
the momentum and energy balance, and the formulation of the radiation stress. In
addition, we need the vertical component of the velocity field and the pressure. The
vertical velocity is given by

φ̃z̃(x̃, z̃, t̃) = −β z̃η̃x̃ + O(αβ, β2).



A Nonlinear Formulation of Radiation Stress and Applications... 71

To express the pressure in terms of the surface excursion η, assuming unit density for
the moment, one first defines the dynamic pressure in the usual way:

P ′ = P − Patm + gz, P ′ = ag P̃ ′.

Then using the Bernoulli equation and following the computations outlined in [4]
leads to the non-dimensional perturbation pressure in the KdV approximation:

P̃ ′ = η̃ − 1

2
β(z̃2 − 1)η̃x̃ x̃ + O(αβ, β2). (7)

Approximations of the momentum and energy balance laws in the KdV scaling regime
will now be derived. In the context of the full Euler equations with surface boundary
conditions, the momentum balance is expressed by

∂

∂t

∫ η

−h0
φxdz + ∂

∂x

∫ η

−h0
{φ2

x + P}dz = 0. (8)

Using the previously defined scaling, the momentum balance is

α
∂

∂ t̃

∫ 1+αη̃

0
φ̃x̃ h0dz̃ + ∂

∂ x̃

∫ 1+αη̃

0

{
α2φ̃2

x̃ + α P̃ ′ + (1 − z̃)
}
h0dz̃ = 0.

Substituting the two expressions φ̃x , P̃ ′ and evaluating the integral one finds

(
αη̃ + 3

4
α2η̃2 + 1

6
αβη̃x̃ x̃

)
t̃
+

(1
2

+ αη̃ + 3

2
αη̃2 + 1

3
βη̃x̃ x̃

)
x̃

= O(α2, αβ, β2).

From this relation, we identify the non-dimensional momentum density

Ĩ = αη̃ + 3

4
α2η̃2 + 1

6
αβη̃x̃ x̃ ,

and the non-dimensional momentum flux

q̃I = 1

2
+ αη̃ + 3

2
αη̃2 + 1

3
βη̃x̃ x̃ .

Returning the expression to its dimensional forms through the scaling I = c0h0 Ĩ and
qI = c20h0q̃I yields

I = c0
(
η + 3

4h0
η2 + h20

6
ηxx

)
,

and

qI = c20

(h0
2

+ η + 3

2h0
η2 + h20

3
ηxx

)
. (9)
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Note that the expression for qI combines the momentum flux and the pressure force.
Following Benjamin and Lighthill [7], we will use the term flow force for this quantity.
Similarly, we can give the energy balance in the full Euler equations as

∂

∂t

∫ η

−h0

{1
2
|∇φ|2 + g(z + h0)

}
dz + ∂

∂x

∫ η

−h0

{1
2
|∇φ|2 + g(z + h0) + P

}
φxdz = 0,

and following the same procedure as above will lead to the expressions

E = c20

( 1

h0
η2 + 1

4h20
η3 + h0

6
ηηxx + h0

6
η2x

)
,

and

qE = c30

( 1

h0
η2 + 5

4h20
η3 + h0

2
ηηxx

)
, (10)

for the energy density and energy flux respectively.
Note that qE is of second order, while the energy flux in the linear approximation is

of first order. Indeed, it will be instructive to compare (10) to thewell known expression
for the energy flux in the linear theory. Denoting the amplitude of a linear wave by
a = H/2 and the group velocity byCg as before, it can shown (see, for example, [29])
that the energy flux averaged over one period is

q linearE = gη2Cg = 1

2
ga2Cg.

On the other hand, for cnoidalwaves of very largewavelength and very small amplitude
(10) can be approximated by

qE ∼ c30
1

h0
η2 = c0gη

2.

Averaging over one period and using the fact that the cnoidal wave is similar to a
sinusoidal function for very small amplitudes, we obtain

qE ∼ 1

2
ga2c0.

Finally, the two expressions are seen to be approximately equal if it is recognized that
c0 is the group velocity for long linear waves in shallow water.

Note that in previous works on cnoidal shoaling such as [55,56], the linear formu-
lation of the energy flux was used. In addition to being obviously inconsistent, this
approach also had practical drawbacks. Indeed as already mentioned, the method put
forward in these works led to a discontinuity in the wave height at the matching point
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between linear and nonlinear theory. As will be shown momentarily, keeping the non-
linear terms in the expression for qE resolves this problem, and indeed is essential to
obtain the correct shoaling behavior for larger wave amplitudes.

In the next section, we will use the definition of the flow force qI , and ideas outlined
above to derive an expression for the radiation stress in the context of theKdVequation.
Incorporating the radiation stress into the shoaling equations will then enable us to
identify the set-down in addition to the wave height of a shoaling wave.

3 Radiation Stress in the KdV Approximation

In linear water-wave theory, the radiation stress is well understood as a second-order
response to a periodic wave train which is akin to the energy flux. Wave radiation
stress is an important ingredient in the study of wave-current interactions, and also
plays a major role in the understanding of wave setup in the context of breaking waves.
The reader may consult [36] for the mathematical development of an expression for
the radiation stress in the context of linear waves. A discussion of the radiation stress
based on a more heuristic physical understanding is given by Longuet–Higgins and
Stewart [37]. In the present work, we aim to expand the definition of the radiation
stress to the nonlinear case, in particular in the context of the KdV equation. Using the
momentum balance equation derived in the previous section, a nonlinear version of the
radiation stress will be formulated. With this expression in hand, some consequences
of the radiation stress on wave shoaling will be investigated.

Analyzing the definition given in [37], one can simply think of radiation stress as the
total flow force of a progressive wave averaged over one period minus the hydrostatic
pressure force at rest.As previously discussedwe consider awave propagating solely in
the x−direction, and neglect all transverse effects. Then the definition of the principal
component of the radiation stress is given by

Sxx =
∫ η

−h0
(ρu2 + P)dz +

∫ 0

−h0
ρgzdz.

The first term expresses the total flux of momentum across a plane integrated from
the bottom to the free surface and with unit width, and as usual, the overbar denotes
that the average over one wave period with respect to time is taken. The second term
expresses the flow force in the absence of any wave motion.

In the context of the KdV equation, the flow force is given by equation (9) when
rescaled for a fluid with unit density. Consequently, the x−component of the radiation
stress is obtained in the KdV theory as

Sxx = qI +
∫ 0

−h0
ρgzdz,

= ρgh0
(h0
2

+ h0η + 3

2h0
η2 + h20

3
ηxx

)
− 1

2
ρgh20,



74 M. O. Paulsen, H. Kalisch

Fig. 2 Schematic of the forces acting on a control volume given by a differential interval of length dx and
reaching through the whole fluid column

= ρg
(
h0η + 3

2
η2 + h30

3
ηxx

)
. (11)

This formulation represents an improvement over the formulation given in [54]
which only recorded the middle term ρg 3

2η
2 in the final expression for the radiation

stress. The middle term represents nonlinear effects on the radiation stress, but if
shoaling is to be studied in the context of the KdV equation, both nonlinear and
dispersive effects should be included in the radiation stress if it is to be consistent with
the level of approximation. The last term in the expression above represents dispersive
effects, and the first term appears due to a different in the normalization of the vertical
axis as compared to [54]. A preliminary version of (11) was also presented in [26].

To apply the radiation stress to the formulation of the shoaling problem, let us
consider a wave encountering a gently sloping beach. As indicated in Figure 2, the
momentum flux is reduced in the onshore direction due to an opposing horizontal
force exerted by the bed, and opposing the fluid pressure.

When accounting for the set-down of the mean surface level, the flow force on the
offshore side of the boundary of the control volume is given in terms of radiation stress
by

qI = Sxx +
∫ η

−h
ρg(η − z)dz = Sxx + 1

2
ρg(η + h)2.

This relation can be found for example in [15,37]. As already mentioned above, the
momentum flux is reduced by the reaction force exerted by the sea bed on the fluid due
to the weight of the fluid. This force is equal in magnitude to the horizontal component
of the pressure force at the bottom ρg(h+η)dz, where dz denotes the vertical variation
in the sea bed over the horizontal distance dx . Thus, the horizontal component of the
pressure force exerted on the bottom can be written as

ρg(h + η)dz = ρg(h + η)hxdx . (12)

As indicated in Figure 2, the difference in flow force between the shoreward face and
the offshore face of the control volume is given by

d

dx

[
Sxx + 1

2
ρg(h + η)2

]
dx . (13)
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Evidently, momentum balance requires (12) and (13) to be equal, and simplifying
yields the relation

dSxx
dx

+ ρg(η + h)
dη

dx
= 0. (14)

To develop the shoaling equation, we integrate over the control interval [x, x + dx] to
get

∫ x+dx

x

dSxx
dx

+
∫ x+dx

x
ρgη

dη

dx
+

∫ x+dx

x
ρgh

dη

dx
= 0.

The first two integrals are straightforward to compute. The third integral is evaluated
using integration by parts and then approximated using the trapezoidal rule. Defining
the difference of any quantity F as �F = F |x+dx − F |x , we get the relation

�Sxx = −ρg

2
�η2 − ρg

2
(2h + hxdx)�η. (15)

Recall that we are interested in the averaged behavior of the wave height for a wave-
train approaching the beach. We therefore find it useful to define the changes in
radiation stress averaged over a period by

�Sxx = − 1

T

∫ T

0

{ρg

2
�η2 + ρg

2
(h0 + h)�η

}
dt, (16)

where Sxx is defined by (11). With this identity in hand, it will be possible to include
the development of the set-down η in the shoaling problem. The formulation of the
complete shoaling equation will be the subject of the next section.

4 The Nonlinear Shoaling Equations

An explicit set of equations describing the shoaling of long waves on a gently sloping
beach will now be given. The idea is to use the well known cnoidal wave solution
for periodic waves in the KdV equation together with the assumption that the bottom
slope is gentle enough so that reflections can be neglected, and the waves are able to
adjust adiabatically to the new local depth. The wave profile η will distort, but the
underlying cnoidal shape and periodicity are preserved.

A solution of the KdV equation for periodic waves of constant form was first
discovered byKorteweg and deVries in 1895 [25].Assuming a traveling-wave solution
of constant shape, one may make the ansatz η(x, t) = f (x − ct), and reduce the KdV
equation to an ordinary differential equation of the form

− h20
3

( f ′)2 = F( f ) = 1

4

c0
h0

f 3 +
(c − c0

2

)
f 2 + A f + B, (17)
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Fig. 3 Graph of the function −F( f ). The roots are labelled by f3 < f2 < f1. The red lines denote the
values of f such that −F ≥ 0

with A and B being constants of integration. This differential equation has a number
of solutions, but for practical applications only periodic real-valued and bounded
solutions correspond to realistic wave profiles. Since F( f ) is a third-order polynomial
it has three roots. Periodic solutions occur only in the case where the roots are distinct,
so that they can be labeled f3 < f2 < f1, and this convention allows us to write

F( f ) = ( f − f1)( f − f2)( f − f3).

Requiring the solution to be real, it can be seen from (17) that−F( f )must be positive.
Examining the phase plane plot in Figure 3, it is clear that periodic solutions will
oscillate between f2 and f1. Since f2 < f1 by assumption, f1 will denote thewavecrest
while f2 will be the trough. Consequently, the wave height H is given by the difference
H = f1 − f2. As is well known, the periodic solutions of (17) are given in terms of
the Jacobian elliptic function cn. The solution of the KdV equation is then

η(x, t) = f2 − ( f2 − f1)cn
2
(
2K (m)

( t
T − x

λ

)
,m

)
, (18)

where m is the elliptic modulus defined by m = f1− f2
f1− f3

, and K (m) is the complete
elliptic integral of first kind [32]. The wavespeed c and the wavelength λ are then
given by

c = c0
(
1 + f1 + f2 + f3

2h0

)
, λ = K (m)

√
16h30

3( f1 − f3)
. (19)

To use these formulas in practice, it is convenient to take the wave height H , the mean
surface level η and the elliptic parameter m as given parameters. The roots of F can
then by computed explicitly and are given as follows.

⎧
⎪⎨
⎪⎩

f3 = η − HE(m)
mK (m)

,

f1 = f3 + H
m ,

f2 = f1 − H .

(20)
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The shoaling problem can be formulated as follows. Suppose we know that a periodic
wave train of wave height H , wavelength λ and mean-surface level η is given at a
local depth hA. Assuming that the waves can be approximately described by the the
KdV equation, a unique cnoidal wave solution can be found, and the frequency ν,
the energy flux qE and the radiation stress Sxx be found. The shoaling problem now
consists of finding an appropriate cnoidal solution at a smaller depth hB . Relying on
the conservation of frequency and energy flux, and a prescribed change in the radiation
stress, the shoaling equations can be written as

νB( f1, f2, f3, h
B) = νA = cA

λA
, (21)

qB
E ( f1, f2, f3, h

B) = q A
E = 1

T

∫ T

0

{ 1

hA
η2 + 5

4(hA)2
η3 + hA

2
ηηxx

}
dt, (22)

S
B
xx ( f1, f2, f3, h

B) = S
A
xx − 1

T

∫ T

0

{ρg

2
�η2 + ρg

2
(hB + hA)�η

}
dt . (23)

The first equation is conservation of frequency ν, while the second equation expresses
conservation of energy flux integrated over a period T [4]. Finally, the third equation
is (16), and is indeed a formulation of conservation of momentum expressed in terms
of radiation stress. In previous work [27], a similar system was found, and then solved
for the parameters f1, f2 and f3. However, the method used in [27] had several
drawbacks. First, due to a lack of a definition of radiation stress, the equation for
momentum conservation was replaced by conservation of the mean fluid level. This
approach was therefore not able to predict the wave set-down. Moreover, solving for
the parameters f1, f2 and f3 was not optimal from a numerical point of view, and
the algorithm terminated long before the highest wave was reached. In the present
work, we use the explicit form of the parameters to solve directly for H ,m and η. This
approach is more expedient from a numerical point of view, and allows us to go much
higher up on the shoaling curve. In terms of the wave height H , the conservation of
frequency (21) turns into the following cubic equation for H :

−3g( 3E(m)
mK (m)

− 2
m + 1)2

64K (m)2h4m
H3 + 3g( 3η2h + 1)( 3E(m)

mK (m)
− 2

m + 1)

16K (m)2h3m
H2 + − 3g( 3η2h + 1)2

16K (m)2h2m

×H + 1

T 2 = 0. (24)

Similarly, we can manipulate the equation describing the changes in radiation stress
to find an expression for the set-down. Indeed, (23) reduces to the quadratic equation

−η2 + Aη + B = 0, (25)

with

A =
(
3H − 3hB

2
+ hA

2
− 3Hcn2(m) − 3H

m
+ 3HE(m)

mK (m)

)
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and

B = S
A
xx (m) − η2

A
(m)

2
− 3

2
H2cn4(m) − (hB)3ηxx

B(m)

3
+ 3

2
hAηA(m) − 1

2
hBηA(m)

−3

2
(H − H

m
+ HE(m)

mK (m)
)2 + 3Hcn2(m)(H − H

m
+ HE(m

mK (m)
).

Note that we had to integrate various powers and derivatives of cn2(ξ ;m). These
formulas are based on calculations that can be found in [32] and [1], and are given in
explicit form in the appendix. Having this representation in hand, we can in principle
solve (24) using the well-known formula for the solution of a cubic polynomial. The
result is written as H = F(m, η). Similarly, (25) can be solved using the quadratic
formula. This is written as η = G(m, H). These two equations can be written in
explicit form as two coupled equations. To solve these two equations simultaneously,
we may iterate between them at current local depth hB as follows; first, initialize the
procedure with an initial guess η0(m) which is generally taken as the value of the
set-down at the previous depth on the shoaling curve and then find H using the exact
solution of the cubic equation given by

H(m)i+1 = F(m, ηi (m)).

This can in turn be used to update the set-down using the solution of the quadratic,
viz.

η(m)i+1 = G(m, Hi+1(m)).

Repeating this process, we continue to approximate H and η until a stopping crite-
rion has been reached. Using this reduction allows us to solve the nonlinear system
(21),(22),(23), by the following procedure. From the value ofm at depth hA, we incre-
ment up, at each step iterating the above equations for H and η, and then checking
whether (22) is satisfied to a specified tolerance. If that is the case, we consider the
system solved at depth hB , andmove on to the next stepwith depth hC , therebymoving
up the slope.

5 Implementation of the Shoaling Equations

Having explained the nonlinear shoaling equations, and the strategy for finding approx-
imate solutions, we will now implement the equations and produce shoaling curves
for various deep-water data. The method used here proceeds in three stages, such as
originally developed in [55,56]. Suppose an incoming wave of wavelength λ0 is given
at a starting depth h0. While this depth may not be deep water, it is assumed that
h0 > 0.28λ0, so that we label this starting value the deep-water wavelength. First, the
linear shoaling equation is used up to the point h/λ0 = 0.1. At this point the cnoidal
theory is valid [50], and we propose a matching technique to obtain the fundamental
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parameters of the nonlinear wave. Lastly, we use the nonlinear KdV theory to follow
the shoaling curve into the nonlinear region.
Stage 1. Linear theory: The essential ingredient in this step is the linear dispersion
relation

ω2 − gk tanh (kh) = 0, (26)

and the conservation of energy as stated in (1).
Since the circular frequency ω is conserved, the nonlinear equation ω2 −

gkB tanh (kBhB) = 0 needs to be solved numerically for the wave number kB using
a Newton solver. The wave height is then found from the conservation of energy as

HB = H A

√
CA
g

CB
g

, (27)

where Cg = dω
dk is the group velocity depending on the wave number and depth. The

derivation of equation (27) is described in detail by for example in [15]. The set-down
can be solved similarly using the procedure outlined in [37] using the radiation stress.

Stage 2. Matching linear and nonlinear theory: Due to increasing waveheight, the
nonlinear algorithm must be utilized on the final stretch of the shoaling curve. The
transition must be made in a region where both theories are valid, and some general
conditions on the transition depth are given in [56]. To initialize the nonlinear solver
at the transition depth, three parameters need to be specified. We choose to match
the wave height H and the set-down η with the linear theory. In addition one of the
parameters λ, c, ν, qE can be bematched. To do this we choose one of these parameters
and then keeping H and η constant, we find an elliptic modulusm ∈ (0, 1)which leads
to equality in the chosen parameter. In principle we can only match one parameter,
and it is not clear which one will be the most convenient. To investigate this issue, we
define the root problems

λlin − λnonlin(m) = 0, clin − cnonlin(m) = 0,

νlin − νnonlin(m) = 0, qlinE − qnonlinE (m) = 0.

Here the linear parameter is a fixed constant while the nonlinear quantity is a function
of m given that H and η are given. Plotting the root problems we observe that the
wavelength is most sensitive to varying m, and therefore is the best candidate for
a matching parameter. Figure 4 shows a particular example. In practice, m is always
found so that the red curve in thefigure isminimized,whichmeans that the difference in
thewavelength between the last linear step and thefirst nonlinear step in thewavelength
is negligible. As Figure 4 indicates the difference in frequency and wavespeed are then
also minimal. The difference in the energy flux is always near machine precision since
the nonlinear energy flux is chosen in the correct asymptotic form.

Stage 3. Cnoidal shoaling: The final step in the shoaling procedure is solving for
wave height and set-down using the scheme defined in Section 6. First, define H and
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Fig. 4 Root problems defined by the parameters λ, c, ν, qE as functions of m

η as functions of m as given by formula (24) and (25). Then use a nonlinear solver to
find m from equation (22). With m in hand, one can determine the wave height H(m)

at the current local depth. Repeating this procedure will then determine changes of
wave height and set-down at consecutive points, allowing us to move up the slope.

Having defined the shoaling equations and the numerical approach, we may plot
the development of the wave height and set-down for a practical shoaling problem.
A comparison of our numerical results with the wave tank data obtained by Bowen
et al. [10] and the classical linear theory is shown in Figure 5. In this figure, the red
circles represent the wave height of the shoaling wave according to the experimental
data of [10], and the red asterisks represent the experimentally determined set-down
and set-up, i.e. the deviation of the mean depth from the still water line (S.W.L.). The
dashed blue curves show the prediction of the linear theory as already presented in
[10]. Finally, the solid curves represent the shoaling model put forward in the present
article. The waves under consideration had an initial wave length of λ0 = 202cm and
an initial wave height H0 = 6.45cm before they reached the toe of the slope. The
beach had a slope of 1 : 12.

The linear shoaling model agrees well with the experimental data up to moderate
wave heights. On the other hand, the benefit of the nonlinear formulation can be
clearly seen. Indeed, the nonlinear theory clearly yields a better fit of both wave
height and set-down close to the breaking point of the wave. One interesting detail
in the lower panel of Figure 5 is that the mean depth appears to rise in the nonlinear
theory while it continues on downwards in the linear theory. This nonlinear mid-
elevation rise was acknowledged in [33] has been found previously with higher-order
methods. For example, a combination of third-order hyperbolic waves near the shore
and Stokes waves further offshore was used in [23], and Cokelet’s extension of Stokes’
approximation of periodic waves was used in [52]. In both works, a similar rise of
the nonlinear set-down was observed. In the present work, the computed set-down
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Fig. 5 Profile of the mean water level η and the wave height H as functions of the depth, compared to data
points taken from [10]. In this case, we have wave period T = 1.14s incident wave height H0 = 6.45cm
and breaking wave height Hb = 8.55cm. In the experiment, the beach slope is tan(θ) = 0.082. The shaded
area on the left represents the sloping fluid bed. The lower panel depicts a zoom-in around the still water
line (S.W.L.) to show the set-down more closely

matches the experimental data even well beyond the breaking point, but we have to
acknowledge that the KdV model ceases to be valid for breaking waves.

6 ShoalingWithout Set-Down

It was argued in [54] that the wave set-down is negligible in many practical cases.With
this assumption, the shoaling problem can be simplified since only two equations need
to be solved. This approach has been taken in many works on wave shoaling.

The particular aim of this section is to improve the method put forward in [55].
As already mentioned, the use of a first-order approximation of the energy flux [55]
gave rise to a discontinuity in wave height at the matching point between the linear
and their nonlinear theory due to the inconsistency of the approximation of the energy
flux. A partial fix was presented in [56] where a continuous shoaling curve is obtained
by the use of conversion tables but at the cost of not conserving the energy flux. More
recently, the shoaling theory was extended in [27] using the nonlinear definition of
the energy flux developed in [3,4]. However, due to the specific way the problem
was formulated, it was not possible to reach all the way up the shoaling curve due to
numerical instabilities.
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Fig. 6 Shoaling curves based on present theory in blue compared to the theory presented by Svendsen
and Brink-Kjær [55] in red. Deep water values H0/λ0 = {0.001, 0.002, 0.004, 0.006, 0.01} (Color figure
online)

In the present section, it will be shown that with the definition of the shoaling
equation from Sect. 4, and the implementation explained in Sect. 5, we can find a
continuous shoaling curve that reaches all the way up to the highest wave and agrees
well with the more accurate methods of [47] using Cokelet’s theory and that of [57]
using the fully nonlinear steady Euler equations.

The algorithm is the same as in Sect. 5, except that in equation (25) we set η = 0 at
each step. We then use the same three stages as explained in Sect. 5 to determine the
development of the wave height in the shoaling region. First formulate H = H(m)

according to formula (24) given in Sect. 6. Then use the assumption of zero set-down
to find the roots given by (20). Having the roots as functions of m we may use energy
conservation to define a nonlinear equation as done in equation (22). Solving for m
we are free to determine the wave height at a specified depth h.

We note that the present implementation is able to determine thewave height further
into the shoaling region as compared to the curves presented by [27]. This is due to the
simplicity of the implementation, solving two nonlinear equations rather than three.
We also see in Figure 6 that our theory is in fairly good agreement with the shoaling
curves presented in [55] which are in reasonable agreement with higher-order theories.
Moreover, it is clearly visible in Fig. 6 that our curves do not feature a discontinuity
in wave height.

Finally, comparisons of shoaling curves computed using the method at hand with
data provided by wave tank experiments are presented. The experimental data are
taken from [56] where considerable pains were taken to stay within the correct scaling
regime. The waves were generated with a piston-type wavemaker, then propagated
over a flat bottom with still water depth of 36 cm before shoaling on a 1 : 35 beach.

We initialize the code with wave height and wavelength at depth h = 36cm at the
toe of the slope. The code then computes wave height H with the linear model up to
h/λ0 > 0.1 at which time the code switches to the cnoidal theory.

We observe in Figs. 7 and 8 that there is very good agreement between the numerical
model (shown in blue) and the experimental data (indicated by red crosses). The only
exception is the experiment with deep water steepness H0/λ0 = 0.064, shown in
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Fig. 7 Comparisons of shoaling curves computed using the present theory with shoaling experiments on a
1 : 35 beach conducted in [56]. The three cases shown here have larger to moderate wave steepness. The
numerical values are shown in blue and the experimental data are indicated by red crosses. The horizontal
dashed lines represent the extent of the respective theory, i.e. red for linear, and blue for nonlinear theory
(Color figure online)

the uppermost panel in Fig. 7. This is a rather steep wave and it can be observed
that even the linear theory fails to get good agreement. This error is then propagated
and compounded by the nonlinear theory. On the other hand, as long as the deep-
water steepness is moderate enough, the linear theory does an adequate job, and we
observe fairly good agreement in the plots between experimental data and numerical
simulations for both linear and nonlinear regimes. One should note that the higher
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Fig. 8 Comparisons of shoaling curves computed using the present theory with shoaling experiments on
a 1 : 35 beach conducted in [56]. The three cases shown here have lower wave steepness. The numerical
values are shown in blue and the experimental data are indicated by red crosses. The horizontal dashed lines
represent the extent of the respective theory, i.e. red for linear, and blue for nonlinear theory (Color figure
online)

order theory by Cokelet was used numerically for the same data set in [47], but no
better agreement was found than with the present theory. We have also done some
preliminary computations with a full Boussinesq model [45], and similar agreement
with the wavetank data was found after some experimentation with grid size and
friction coefficients.
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7 Conclusion

In this paper,we have shownhow to derive expressions for the energyflux and radiation
stress of a wavetrain in the context of the well-known KdV equation. The derivations
are based on a general approach developed in [3,4], and yield approximations of
the same order as the KdV equation itself. Compared to previous definitions of such
quantities as, for example, in [54,55], these expressions feature additional terms which
are required by the theoretical underpinnings of the method used here.

The energy flux and radiation stress are used to develop shoaling equations for
long waves of small to moderate amplitude, and since such waves can be described by
cnoidal functions, the shoaling equations can be posed as a 3× 3 system of equations
for the three parameters of the cnoidal functions. The shoaling equations are then
formulated in a numerically convenient way, and it is shown that they can be solved to
yield shoaling curves up to the breaking point. In particular, our formulation resolves a
problem encountered in earlier work [27]where the curves terminated prematurely due
to numerical instability. The curves are compared with experimental data and higher
order theories, and are found to be quite accurate. In addition, since the shoaling
equations are defined using approximations of energy flux and radiation stress which
are consistent with the approximations made in the KdV equation itself, the shoaling
curves are continuous, and no ad hoc fixes such as advocated for in [56] are necessary
to get a continuous development of the wave height.

Finally, since the radiation stress is included in the formulation of the shoaling
equations, it is possible to compute the set-down as part of the shoaling problem.
Comparisons with experimental data from [10] show that the set-down can be com-
puted accurately. The nonlinear set-down defined here may also potentially be useful
in the study of waves interacting with currents [54].

As alreadymentioned in Introduction,wave shoaling is nowadays usually computed
by with nearshore Boussinesq models. These models have become fairly sophisticated
in recent years, being able to treat even fairly short waves due to extending the disper-
sion properties using ideas of Nwogu [41] andWitting [62]. In particular, as shown for
example in [38], shoaling can be computed accurately with such models. Following
ideas of [49], some models have been extended to be able to treat larger-amplitude
waves, and it is now possible to simulate waves with fully nonlinear and highly disper-
sive models [31,60] or with the full Euler equations [16]. Nevertheless, for practical
purposes, these models need to be initialized with data which are generally given by
stochastic wave models, and in general the transition between stochastic and deter-
ministic models is still poorly understood. The method of computing wave height and
set-down put forward here may have some potential if coupled with stochastic input
data (see [18]) since the computational complexity of our method is by far smaller than
for any phase-resolving nearshore model and no tuning is necessary with the current
model.
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A Integrals of Cnoidal Functions

To define the two shoaling models we need to handle integrals of various powers
of derivatives of η. In particular, we need to determine η, η2, η3, ηxx and ηηxx to
evaluate (25) in terms of m and the current depth h. First note that we can write the
time-averaged η given by (18) in the more convenient form

η = 1

T

∫ T

0
η
(
2K (m)(

t

T
− x

λ
)
)
dt = f2 + H

∫ 1

0
cn2(2K (m)ξ ;m)dξ,

(for more details see [54]). Similarly, considerations apply to the powers of η which
involve integrals of the form

∫ 1

0
cn2(2K ξ ;m)dξ = 1

4mK

(
E − (1 − m)K

)
,

∫ 1

0
cn4(2K ξ ;m)dξ = 1

3m2

(
3m2 − 5m + 2(4m − 2)

E

K

)
,

∫ 1

0
cn6(2K ξ ;m)dξ = 1

5m2

(
4(2m2 − 1)

∫ 1

0
cn4(2K ξ ;m)dξ + 3(1 − m2)

×
∫ 1

0
cn2(2K ξ ;m)dξ

)
.

These expressions can be found in [32]. The terms ηxx and ηηxx also include such
terms due to the identity

ηxx (2K ξ ;m) = 4K 2H(2 − 2m + (8m − 4)cn2(2K ξ ;m) − 6mcn4(2K ξ ;m)),

http://creativecommons.org/licenses/by/4.0/
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and similar relations which can be found in [1]. Combining the results above, we
deduce that

η = f2 + H
∫ 1

0
cn2(2K ξ ;m)dξ,

η2 = f 22 + 2H f2

∫ 1

0
cn2(2K ξ ;m)dξ + H2

∫ 1

0
cn4(2K ξ ;m)dξ,

η3 = H3
∫ 1

0
cn6(2K ξ ;m)dξ + 3H2 f2

∫ 1

0
cn4(2K ξ ;m)dξ + 3H f 22

×
∫ 1

0
cn2(2K ξ ;m)dξ + f 32 ,

ηxx = 3H2

2m
(−3m2

∫ 1

0
cn4(2K ξ ;m)dξ + 4m2

∫ 1

0
cn2(2K ξ ;m)dξ

− 2
∫ 1

0
cn2(2K ξ ;m)dξ − m2 + 1),

ηηxx = 3H2 f3

∫ 1

0
cn4(2K ξ ;m)dξ − 3H2 f1

∫ 1

0
cn4(2K ξ ;m)dξ + 3

2
H f1 f2

− 3

2
H f2 f3 + 3

2
H2 f1

∫ 1

0
cn2(2K ξ ;m)dξ − 3

2
H2 f3

∫ 1

0
cn2(2K ξ ;m)dξ

+ 6H2 f1m
2
∫ 1

0
cn4(2K ξ ;m)dξ − 6H2 f3m

2
∫ 1

0
cn4(2K ξ ;m)dξ

− 3

2
H f1 f2m

2 + 3

2
3H f2 f3m

2 − 3

2
H2 f1m

2
∫ 1

0
cn2(2K ξ ;m)dξ

+ 3

2
H2 f3m

2
∫ 1

0
cn2(2K ξ ;m)dξ − 3H f1 f2

∫ 1

0
cn2(2K ξ ;m)dξ + 3H f2 f3

×
∫ 1

0
cn2(2K ξ ;m)dξ − 9

2
H2 f1m

2
∫ 1

0
cn6(2K ξ ;m)dξ + 9

2
H2 f3m

2

×
∫ 1

0
cn6(2K ξ ;m)dξ + 6H f1 f2m

2
∫ 1

0
cn2(2K ξ ;m)dξ − 6H f2 f3m

2

×
∫ 1

0
cn2(2K ξ ;m)dξ − 9

2
H f1 f2m

2
∫ 1

0
cn4(2K ξ ;m)dξ + 9

2
H f2 f3m

2

×
∫ 1

0
cn4(2K ξ ;m)dξ.
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