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a b s t r a c t

The so-called Whitham equation arises in the modeling of free surface water waves, and combines a
generic nonlinear quadratic term with the exact linear dispersion relation for gravity waves on the free
surface of a fluid with finite depth.

In this work, the effect of incorporating capillarity into theWhitham equation is in focus. The capillary
Whitham equation is a nonlocal equation similar to the usual Whitham equation, but containing an
additional term with a coefficient depending on the Bond number which measures the relative strength
of capillary and gravity effects on the wave motion.

A spectral collocation scheme for computing approximations to periodic traveling waves for the
capillary Whitham equation is put forward. Numerical approximations of periodic traveling waves are
computed using a bifurcation approach, and a number of bifurcation curves are found. Our analysis
uncovers a rich structure of bifurcation patterns, including subharmonic bifurcations, as well as
connecting and crossing branches. Indeed, for some values of the Bond number, the bifurcation diagram
features distinct branches of solutionswhich intersect at a secondary bifurcation point. The samebranches
may also cross without connecting, and some bifurcation curves feature self-crossings without self-
connections.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The Korteweg–de Vries (KdV) equation

ηt + c0 ηx +
3
2
c0
h0

η ηx +
1
6
c0h2

0 ηxxx = 0 (1)

is a simplified model equation for waves at the surface of a fluid
contained in a rectangular channel. The equation includes the
competing effects of nonlinear steepening and frequency disper-
sion [1]. Balancing these two effects is the basicmechanism behind
the existence of both solitary-wave solutions and periodic travel-
ing waves. Eq. (1) is given in dimensional form, c0 =

√
gh0 is the

limiting long-wave speed, h0 denotes the undisturbedwater depth,
and g is the gravitational constant of acceleration. The function
η(x, t) describes the deflection of the fluid surface from the rest po-
sition at a point x at time t . The equation is a valid approximation
describing the evolution of surface water waves in the case when
the waves are long compared to the undisturbed depth h0 of the

∗ Corresponding author.
E-mail addresses: filippo.remonato@math.ntnu.no (F. Remonato),

henrik.kalisch@math.uib.no (H. Kalisch).

http://dx.doi.org/10.1016/j.physd.2016.11.003
0167-2789/© 2016 Elsevier B.V. All rights reserved.
fluid, the average amplitude of the waves is small when compared
to h0, transverse effects are assumed to beweak, and thewaves are
predominantly propagating in a single direction [2–6].

The linear phase speed of awave described by the KdV equation
is given by

c(ξ) = c0 −
1
6
c0h2

0ξ
2, (2)

where ξ =
2π
λ

is the wave number, and λ is the wavelength. This
is a second-order approximation to the wave speed

c(ξ) =
ω

ξ
=


g tanh ξh0

ξ
, (3)

of the linearized water-wave problem. The latter expression for
c(ξ) appears when the full water-wave problem is linearized
around the vanishing solution, and solutions of the form exp(ixξ −

iωt) are sought [5].
Comparing the expressions (2) and (3), it appears that the

linearized KdV equation does not give a faithful representation
of the full dispersion relation even for intermediate values of the
wave number ξ . Recognizing this problem of the KdV equation
as a model equation for water waves, Whitham introduced what
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is now called the Whitham equation [7]. The idea was to use
the exact form of the wave speed (3) instead of a second-order
approximation like (2). The equation proposed byWhithamhas the
form

ηt +
3
2
c0
h0

η ηx + Kh0 ∗ ηx = 0, (4)

where the convolution is in the x-variable. The equation is
written in dimensional variables, with η(x, t) representing the
deflection of the surface from rest, just as in the KdV equation. The
convolution kernel is defined via the Fourier transform F by

F Kh0 = c(ξ) =


g tanh h0ξ

ξ
. (5)

It should be mentioned that the Whitham equation has excited
some interest because it was conjectured to feature wave breaking
and peaking. Wave breaking in this context is defined as the
development of an infinite gradient in the solution. In a physical
context, this kind of breaking may not happen naturally for a
free equation such as (4), but may require some forcing either
by a sloping bottom, or an imposed discharge [8]. While the KdV
equation does not allow the formation of infinite gradients, it
features convective wave breaking which is related to spilling at
the wavecrest [9]. Wave peaking describes the situation where
a steady wave profile features a singular point, such as a peak
or a cusp, such as in the well known highest wave which was
conjectured to be peaked by Stokes, and proved to exist in [10,11].

Both the existence of peaked and breaking waves were
investigated to some degree already byWhitham [7,5], and studied
at length for a number of related equations by Naumkin and
Shishmarev in the monograph [12]. Recently, proofs of both
phenomena have become available. In particular, it was shown
in [13] that the Whitham equation features waves which develop
an infinite gradient, and the existence of a highest, peaked wave
was proved in [14].

In the present article, the Whitham equation is studied in the
case when surface tension is important. The motivation for this
pursuit lies partially in the analysis in [15]where it was shown that
theWhithamequation is a validmodel for surfacewaves of smaller
wavelengths than the KdV equation. As a result, it is possible to use
the Whitham equation for surface waves which are short enough
for capillary effects to play a role. On the other hand, there are
situations where capillarity is strong, such as in the presence of
a surface film or an interfacial hydrate layer [16–18]. In this case,
capillarity can be important even for longer waves.

In the general case where both capillary and gravity effects are
present, the relation between the wavenumber ξ and the radial
frequency ω in the linearized surface water wave problem is given
by

ω2
= gξ tanh(ξh0)


1 +

τ

ρg
ξ 2


, (6)

where ρ is the density of the fluid, and τ is the surface tension of
the free surface.

If restricted to waves propagating in a single direction, the
phase velocity can be written as

c(ξ) =


g tanh h0ξ

ξ


1 +

τ

ρg
ξ 2

.

Thus in the case of capillary–gravitywaves, this definition of c(ξ) is
used in the definition of the integral kernel in (5). If the undisturbed
depth h0 is taken as a unit of length, and h0/c0 is taken as unit of
time, then the Whitham equation with surface tension is

ut +
3
2
uux + KT ∗ ux = 0, (7)
where the integral kernel KT is given by its Fourier transform, viz.

F KT (x) =


(1 + Tξ 2) tanh(ξ)

ξ
, (8)

where T =
τ

ρgh20
is the inverse of the Bond numberwhichmeasures

the relative strength of gravity and capillary effects on the wave
motion. This equation has recently appeared in [19] where the
stability of progressive waves of small-amplitude was in focus.

Note that Eq. (7) is completely different in structure from the
capillary KdV equation

ut + c0 ux +
3
2
uux +

1
6
uxxx −

T
2
uxxx = 0. (9)

This latter equation reduces to the case of the KdV equation with
the sign of the dispersive term being positive or negative depend-
ing on the value of T . Since these two cases are equivalent via a
change of sign, they do not differ in a qualitative way [20]. The one
case of greater interest is when T is close to 1/3 as a fifth-order
term is then needed in order to get the correct order of approx-
imation. The resulting equation is known as the Kawahara equa-
tion, and it features competing third and fifth order derivatives. On
the other hand, Eq. (7) features two competing nonlocal terms for
any value of T , and as will be seen presently, this configuration has
repercussions on the possible solutions of the equation.

In the present work, steady solutions of (7) are under
consideration and we will look for solutions in the space of
continuous 2π/k-periodic functions, which will be denoted by
C2π/k. For convenience, we use a further rescaling to put (7) in the
tidy form

ut + 2u ux + KT ∗ ux = 0, (10)

and then use the assumption η(x, t) = u(x − µt) to search for
traveling wave solutions with propagation speed µ. The equation
can then be written in integrated form as

W (µ, u) = −µ u + u2
+ KT ∗ u = 0. (11)

As will be shown in the body of this article, with the definition
of KT in (8), Eq. (11) features a large variety of solutions. In
particular, there are branches which contain secondary bifurcation
points leading to connections with other branches. There are
also crossings of distinct branches without connections, and there
are self-crossing (but not intersecting) bifurcation branches. Such
patterns have been seen before in some cases, such as in the
case of tri-modal surface water waves [21], but the nature of
the connections appears to be different in the present case. The
existence of crossing and self-crossing branches leads to non-
uniqueness of solutions of the steady problem (11) which is an
interesting problem in itself.

The plan of the paper is as follows. In Section 2, analytic
bifurcation formulas are provided in order to guide the numerical
experiments. In Section 3, the numerical scheme is explained in
detail, and in Section 4, numerical experiments are shown.

2. Analytic expansions

We now want to provide an analytical expansion of the wave
profile and speed near the bifurcation point. We look for an
expansion in the form

uϵ = u1 ϵ + u2 ϵ2
+ u3 ϵ3

+ u4 ϵ4
+ · · · (12)

µϵ = µ0 + µ1 ϵ + µ2 ϵ2
+ µ3 ϵ3

+ · · · . (13)

In this pursuit, it is important to understand the behavior of the
dispersion relation in terms of different values of T .
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2.1. Bifurcation speed

Analyzing the linearized version of (11), it is intuitively clear
that given k ∈ N, the speed at which non-trivial 2π/k-periodic
solutions bifurcate from the trivial solution curve is given by

µ∗
= m(k) =


(1 + Tk2) tanh(k)

k
(14)

and the kernel of DuW at the bifurcation point is the span of
{cos(kx)}. A firm proof of this fact can be established in the same
way as it was shown for the purely gravitational case in [22].

It can be shown that for T = 0, Eq. (14) is monotonically
decreasing in k, while it has a global minimum for any value of
T > 0. In particular, minm(k) ∈ (0, 1) for 0 < T < 1

3 , while
for T > 1

3 the minimum is 1 and m(k) is monotonically increasing
in k. Some examples are shown in Fig. 1.

This means that given two wavenumbers k1, k2, we can always
find a T such that m(k1) = m(k2), and hence the two branches
bifurcate from the same point. Such T is given by

T (k1, k2) =
k1 tanh(k2) − k2 tanh(k1)

k1k2 (k1 tanh(k1) − k2 tanh(k2))
. (15)

Note that this implies that for T = T (k1, k2), the kernel of DuW
is two-dimensional at the bifurcation point, and in particular the
kernel is the span of {cos(k1x), cos(k2x)}. This fact, along with the
existence of local sheets of solutions, is outside of the scope of the
present paper, but will be rigorously proved in future work.

2.2. Expansion coefficients and multi-modal waves

In the case of a one-dimensional kernel, i.e. when T ≠ T (k1, k2),
the constants in formulas (12) and (13) are given below:

u1 = cos(kx),

u2 =
1

2 (m(k) − 1)
+

1
2 (m(k) − m(2k))

cos(2kx),

u3 =
1

2 (m(k) − m(3k)) (m(k) − m(2k))
cos(3kx),

u4 = A0 + A2k cos(2kx) + A4k cos(4kx).

The last function is defined in terms of the constants

A0 = −
1

4 (m(k) − 1)3
−

1
8 (m(k) − 1)2(m(k) − m(2k))

+
1

8 (m(k) − 1) (m(k) − m(2k))2
,

A2k = −
1

4 (m(k) − m(2k))3
+

1
4 (m(k) − m(2k))2(m(k) − m(3k))

,

A4k =
1

8 (m(k) − m(2k))2(m(k) − m(4k))
,

+
1

2 (m(k) − m(2k)) (m(k) − m(3k)) (m(k) − m(4k))
.

For the expansion of the wave speed µ, we have

µ0 = m(k),
µ1 = 0,

µ2 =
1

m(k) − 1
+

1
2(m(k) − m(2k))

,

µ3 = 0.

Note that these expansions coincide, up to the second order in
ϵ, with the bifurcation formulas given in [23].
Due to Formula (15) there exist some values of T for which the
above expansion is not valid, e.g. when T = T (k, 2k). In those
cases a more in-depth analysis is required. However, since all the
terms in the denominator are of the form (m(k) − m(ak)), a ∈

N0, the expansions (12) and (13) remain valid also when T =

T (k1, k2) provided k2 ≠ ak1. In the other cases, we can still select
T in order for (12) and (13) to hold while making the coefficients
in a component un arbitrarily large. This explains the existence
of multi-modal waves, which are associated with the property
that the bifurcation kernel can be two-dimensional. For instance,
in [21], tri-modal waves were found in the case of the full-water
wave problem with a background shear current. Several examples
are presented in Section 4.

2.3. Tangent and direction of nontrivial curves at the bifurcation point

Due to Eq. (14) it is natural to use the wave speed as a
bifurcation parameter, and we are interested in the shape of
curves of nontrivial solutions close to the bifurcation point. This
information is given by the expansion (13) for the wave speed
except in the cases of a two-dimensional kernel.

In the purely gravitational case we know that any nontrivial
branch has a vertical tangent at the bifurcation point. This is due
to the fact that µ1 = 0, and as we have just shown it is preserved
also in the capillary case.

Moreover, for gravity waves it was shown in [23, Theorem
4.6] that the main branch (k = 1) satisfies µ̈(0) = µ2 < 0,
which means that in a neighborhood of the bifurcation point the
main branch will go to the left, in the direction of decreasing
velocities. Due to the effect of T on m(k), we can see from the
above bifurcation formulas that there are values of T for which µ2
changes sign, and therefore the main branch can bifurcate going
to the right, in the direction of increasing velocities. The value of
sign(µ2) is plotted in Fig. 2 for the first four wavenumbers. Note
that the branches for k = 3, 4, among others, bifurcate going to
the right also in the purely gravitational case.

3. The numerical scheme

We employ a variation of the method presented in [23]. We
want to apply a Fourier-collocation method, which is convenient
given the definition of K . Also note that, thanks to symmetry, we
can perform all computations on the half-wavelength L = λ/2 =

π/k. Given k, let N be the total number of collocation points and
define the subspace of L2(0, π)

Sh = span{cos(nx) : 0 6 n 6 N − 1}

and the collocation points xi =
(2i−1) π

2Nk for i = 1, . . . ,N . We then
discretize Eq. (11) and search for a solution uh ∈ Sh, uh(xi) = ui
such that

− µ uh + u2
h + K uh = 0. (16)

To understand the term Kh uh, we need to see how K acts on
functions in Sh, therefore we expand uh in its discrete Fourier
(cosine) series:

uh(x) =

N−1
n=0

wn an cos(nx), an = wn

N
i=1

ui cos(kxi), (17)

where as usual

wn =


1/

√
N n = 0

2/
√
N n > 1.



54 F. Remonato, H. Kalisch / Physica D 343 (2017) 51–62
(a) T = 0. (b) T = 0.1.

(c) T = 0.2. (d) T = 0.333.

Fig. 1. The bifurcation speed µ∗ as a function of the wave number k for various values of T . The case T = 0 corresponds to the gravitational case of Eq. (11). Panels (b) and
(c) illustrate two cases where the dispersion curve is non-monotone. Panel (d) shows the case where T = 1/3. For T ≥ 1/3, the curve is monotone.
(a) k = 1. (b) k = 2.

(c) k = 3. (d) k = 4.

Fig. 2. Values of sign(µ2) for T ∈ (0, 1) and k = 1, . . . , 4. Positive values mean the branch goes to the right of µ∗ , negative values that it goes to the left.
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We then see that K acts on uh as follows:

K ∗ uh =


K(y) uh(x − y) dy

=


K(y)

N−1
n=0

wn an cos(nx − ny) dy

=


K(y)

N−1
n=0

wn an
ei(nx−ny)

+ e−i(nx−ny)

2
dy.

We now split the integral in the two parts, change variables y →

−y in the second integral, and exploit the fact that K is even, and
get that the above becomes

K ∗ uh =

N−1
n=0

wn an
einx − e−inx

2


K(y)e−iny dy

=

N−1
n=0

wn an cos(nx)


(1 + Tn2) tanh(n)

n
.

Expanding the definition of an and rearranging the sumswe finally
have

=

N
i=1

N−1
n=0

w2
n


(1 + Tn2) tanh(n)

n
cos(nxi) cos(nx) ui.

So if we define the matrix K as

K (i, j) =

N−1
n=0

w2
n


(1 + Tn2) tanh(n)

n
cos(nxi) cos(nxj),

we have that the above is transformed into the matrix–vector
multiplication K ∗ uh = Kuh, where uh is the vector [u1, . . . , uN ]

whose entries are the discrete solution evaluated at the collocation
points.We can therefore collocate Eq. (16) in the collocation points
xi, and obtain a system of N nonlinear equations

Wh(µ, uh) = −µ uh + u2
h + K uh = 0. (18)

3.1. Choice of parametrization

Problem (18) requires solving a nonlinear system of equations,
written in general fromas F(y) = 0. This canbedonewith standard
Newton iterations yn+1

= yn − (JF (yn))−1 F(yn), where JF is the
Jacobian of F . Choosing different F ’s allows to parametrize the
problem in different ways, depending on what is most convenient
at any given time. We present here two possible strategies to
parametrize and follow the bifurcation branch: One is based on
parameter-continuation, while the other is based on the pseudo-
arclength method.

3.1.1. Parameter-continuation approach
The idea of a parameter-continuation approach consists in

choosing a quantity p to be the parameter, it can be for example
the speed of the wave, and then in setting F so that a solution to
F(y) = 0 will satisfy (18) as well as a constraint linked to the
parameterwe have chosen. Once a solution is found, the parameter
is updated by a small step p ❀ p + h and a new solution is
computed. Looking at (18), the most natural choice seems to be

Fµ(u) = Wh(µ, uh), (19)

which corresponds to using the speed as a parametrization of the
branch. We can picture the branch as a curve plotted in the (µ, ζ )
plane, where ζ can be any other quantity used as vertical axis,
e.g. the wave height. Given a fixed speed µ̄ and a corresponding
solution u of (19), we modify the speed with a small step µ̄ + h
and use the previous solution u as an initial guess for Newton. The
algorithm will then ‘‘move’’ vertically from the point (µ̄ + h, u)
and converge to a new solution on the branch with speed equal to
µ̄+h. While this is very robust numerically, it clearly breaks down
when the curve has a turning point or a vertical tangent, as then
the implicit function theorem no longer applies.

Since we already know that nontrivial branches have a vertical
tangent at the bifurcation point, and that turning points may
happen, we want to include other types of parametrizations. Since
µ can no longer be used as a parameter, it needs to be treated
as an unknown, and consequently we must include an additional
equation in the system. One idea would be to use the waveheight
as a parameter, and we can identify the numerical wave height as
|uN − u1|. We will then choose F to be

Fwh(u, µ) =


Wh(µ, uh)

uN − u1 − wh


(20)

where wh ∈ R+.
While this is convenient in case of turning points or vertical

tangents in the branch, it is based on the assumption that |uN − u1|

really describes thewaveheight, i.e. thatuN andu1 are the crest and
the trough of the wave. As we have seen, however, there are cases
where the wave can be multimodal, and therefore crests may not
be positioned at uN . See for example Fig. 8(d). When this happens,
this parametrization will not give any control on the height of the
wave, and may make it difficult to accurately follow the branch.

A third option that can be used is to parametrize the curve with
the square of the L2-norm of the solution. This results in a choice
of F as

Fl2(u, µ) =


Wh(µ, uh)

1
N

(u2
1 + u2

2 + · · · u2
N) − l2


(21)

where as before l2 ∈ R+.
Our strategy in the parameter-continuation setting is to

perform the first few iterations along the branch using the discrete
L2-norm parametrization, then switch to (19). At every step we
control the conditioning of the Jacobian of the parametrization
in use, and when it exceeds a certain tolerance we switch to a
different parametrization.

3.1.2. Pseudo-arclength continuation
Another continuation method that can be used is the pseudo-

arclength, which is a predictor–corrector scheme based on the idea
that a natural parametrization for a curve is the arclength. Let
y = [µ, u1, u2, . . . , uN ]. Given a solution yn on the branch, we
compute the next solution yn+1 in three steps: First we compute
the tangent vector zn ∈ Rn+1 at yn solving
Dµ,uhWh(yn) · zn = 0
zn · zn−1 = α

(22)

where α > 0. The first of (22) is the tangency condition, while
the second is used to choose the tangent vector with the correct
orientation.

Then, given zn (properly normalized) we compute ypn+1,
predictor point to yn+1, simply by

ypn+1 = yn + h zn. (23)

Finally, the new point yn+1 is found by projecting ypn+1 onto the
branch in a direction perpendicular to zn. That is, we obtain yn+1 by
solving
Wh(yn+1) = 0
(yn+1 − ypn+1) · zn = 0 (24)

which is the corrector step of the method.
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(a) T = 0. (b) T = 0.1.

(c) T = 0.2. (d) T = 0.333.

Fig. 3. Branches of solutions for k = 1, . . . , 9 for different values of the capillarity parameter T . The value of k is indicated above the corresponding branch. In panel (b), it
can be seen that the branch k = 1 crosses both the branch k = 7 and the branch k = 8.
This method is surprisingly robust, and enables us to easily fol-
low the branch even in presence of turning points. It is clear, how-
ever, that it requires an initial guess for the first tangent vector z0.
The last N components of z0 can be chosen, according to what was
said in Section 2, as cos(kxi), i = 1, . . . ,N . For the first component
the optimal choice would be to use the information coming from
(13); however as we have noted that expansion is not always valid.
In order to circumvent this problem and obtain information on the
‘‘direction’’ for the speed, we decided to first use the parametriza-
tion (21), which returns some value µ̃1 as a solution, and then sim-
ply set the first component in z0 as sign(µ̃1 − µ∗).

4. Numerical results

We present in this section the numerical results we obtained
applying the scheme presented earlier. All results have been ob-
tained employing the pseudo-arclength parametrization described
in Section 3.1.2. For notational simplicity we will refer to the
branch obtained for k = 1 as the main branch even in the pres-
ence of multi-modal waves.

The computed profiles have been tested in a discrete time
integrator in order to ascertain their validity as numerical solutions
of the Whitham problem. To this end, a fully discrete time
dependent collocation scheme was developed which is similar
to the scheme used in [23]. While a detailed discussion of the
time integration scheme and corresponding results is beyond the
scope of this work, we note that well posedness of a class of
nonlocal equationswas proved in [24], and convergence of spectral
collocation projections of similar nonlocal equations was proved
in [25,26], so that this discussion is therefore omitted here.

4.1. General branches

Fig. 3 presents the plots of the branches for k = 1, . . . , 9, for the
same values of the capillarity parameter T as considered in Fig. 1.

Note that in the purely gravitational case T = 0, Fig. 3(a),
we took advantage of the known theoretical result stating that
u 6 µ/2. To the best of our knowledge no similar result is available
for the capillary case, hence in Fig. 3(b), (c), and (d) we are showing
the branches up to thewave height value of 0.2, in order to keep the
plots readable. It is important to note, however, that the code can
continue the branches also after those heights, and in particular
we are able to continue the branches well over heights of 1. In
several cases we tested the highest computed profiles in the time
integrator and let the profile evolve for several periods; all tested
waves resulted to be orbitally stable. However, these waves may
still feature modulational instability, such as discussed in [27,28]
for the purely gravitational Whitham equation and a more general
class of equations in [29].We also briefly note here thatwaves high
up on the branches may have very steep profiles, which in turn
makes the time evolution error very sensitive to the stepsize used.
We present one such example in Fig. 4.

To the naked eye the plot of the profile can appear so steep that
it seems to almost develop cusps of depression. From the theory
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(a). (b).

Fig. 4. Bifurcation branch for T = 0.1 and wave number k = 4. The bifurcation point is µ∗
≈ 0.806. Panel (b) displays a very steep wave of waveheight close to 1.
(a). (b).

(c). (d).

Fig. 5. Two bifurcation branches originating from the same bifurcation point µ∗
≈ 0.915. Here T is given by T (1, 7) according to formula (15). Panel (a) shows the two

bifurcation branches. Panels (b) and (c) show wave profiles on the upper (blue) bifurcation curve, and panel (d) shows a wave profile on the lower (red) bifurcation curve.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
it is clear that any solution of the Whitham problem has to be
smooth, in particular C∞, so cusps cannot really develop, but this
may be an indication of a possible blow-up in the derivative.

Going back to Fig. 3 we see that, as expected, the bifurcation
speed of the branches increases with T and for T > 1

3 , µ
∗(k) >
1∀k. We can also see that the branches bifurcate in the direction of
increasing or decreasing velocities in accordance with Section 2.3
(see also Fig. 2). Moreover, we note that turning points are present
also in the capillary case: See for example the branch for k = 2 in
Fig. 3(b).
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(a). (b).

Fig. 6. A pair of bifurcation branches originating from the bifurcation point µ∗
≈ 0.972. T is given by T (1, 2) according to formula (15). Panel (a) shows the two bifurcation

branches. Panel (b) shows a wave profile on the upper (blue) bifurcation curve. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
(a). (b).

Fig. 7. A pair of bifurcation branches originating from the bifurcation point µ∗
≈ 0.757. T is given by T (3, 4) according to formula (15). Panel (a) shows the two bifurcation

branches. Panel (b) shows a wave profile on the lower (blue) bifurcation curve. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Section 4.3 contains a more detailed discussion of the complex
interaction happening between the main branch and the branch
for k = 7 that can be seen in Fig. 3(b).

4.2. Two-dimensional bifurcation

This section is devoted to the cases where T is chosen as in
(15). For these values we know from Section 2 that the bifurcation
kernel is two-dimensional and the analytical expansions with the
coefficients given in Section 2.2may no longer be valid. Also, aswill
be proved in future work, the two-dimensional bifurcation kernel
leads to the existence of two-dimensional sheetsof small amplitude
solutions. Our code, however, is currently capable of following only
branches of solutions. In the case of a two-dimensional kernel, this
corresponds to following the intersection curve between the sheet
of solutions and the plane T = const.

Fig. 5 shows the plot for the branches for k1 = 1 and k2 = 7
when T = T (1, 7) ≈ 0.09918. Note that the profiles of the
waves at the points labeled (b), (c), and (d) are shown in the
corresponding subfigures. In this case the bifurcation kernel is
spanned by {cos(x), cos(7x)} and the branches bifurcate from the
same point as expected. As we can see the main branch contains
waves with mixed wavenumbers: At the beginning (Fig. 5(b))
waves have simple cosine-like profiles, but further up the branch
(Fig. 5(c)) the influence from the cos(7x) component becomes
more pronounced and they develop 7 crests. This change happens
somewhat rapidly in the lower part of the branch, while in the
higher part the profiles seem to stabilize to a mix of cos(x) and
cos(7x), and little change in shape is observed betweenwaves even
over great distances in the branch. The waves in the k2 branch,
on the other hand, maintain a pure cos(7x)-profile throughout the
branch.

Changing T with the help of (15) we can produce two-
dimensional kernels containing any k1 and k2: Fig. 6 shows a case
similar to the above for the wavenumbers k1 = 1 and k2 = 2.
Note that since now k2 = 2 k1, the expansion formulas with
the coefficients written in Section 2.2 are no longer valid, and
in particular we see that the k1-branch does not have a vertical
tangent at the bifurcation point. As in the previous case, the main
branch containsmixedwaves: In the lower part the principalmode
is cos(x), while as one follows the branch the contribution from
the cos(2x)mode becomes noticeable and the profile develops two
crests. The profile of waves in the k2 branch, instead, is not affected
by the lower k1-mode and remains of the form cos(2x). This fact
is clear from a functional–analytical point of view since C2π/2, the
space of continuous, 2π/2 periodic functions, is a subset of C2π .
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(a). (b).

(c). (d).

(e). (f).

Fig. 8. A pair of bifurcation branches originating from different but comparable bifurcation points in the case T = 0.1. Panel (a) shows the two bifurcation branches, and
panel (b) shows a close-up of the self-crossing branch. Panels (c) through (f) show various solution profiles on the self-crossing branch.
More generally, if k2 = a k1 for some a ∈ N, then C2π/k2 (
C2π/k1 and the k1-branch will contain solutions with components
mixing the wavenumbers k1 and k2. If instead k2 is not an integer
multiple of k1, C2π/k2 ⊈ C2π/k1 and therefore the k1 branch will
not contain any component with period 2π/k2: See for example
Fig. 7. The numerical tests show that it is still possible for the
k1-branch to include period-halving components, which will lead
to the formation of two new crests in place of the original ones.
Looking at the coefficients in Section 2.2 it is clear that the height
on the branch where this will happen is proportional to m(k1) −

m(2k1), but anyway there will not be components with pure k2
wavenumbers.

4.3. Connecting branches

In this section we explore in more detail the cases where the
k1 branch actually connects to the k2 one. A first example could
already be seen in Fig. 3(b), where themain branch connects to the
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(a). (b).

(c). (d).

Fig. 9. Panels (a) and (b) show close-ups of the intersection zone of the two bifurcation branches shown in Fig. 8. In panel (b), the secondary bifurcation point where the
two branches connect is the left one. Panel (c) shows a solution profile on the blue branch, and panel (d) shows a solution profile on the red branch. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
k = 7 branch.Wewill look at this case in detail, and briefly present
other cases later.

When k1 = 1, k2 = 7, and T = T (1, 7), we have seen
in the previous section that the two branches bifurcate from the
same point. We can therefore view the bifurcation point as a point
of connection between these two branches. Looking at Fig. 5 we
see that the main branch lies on the right and above the 2π/7-
branch; however we know from Formula (14) and Fig. 1 that
with an increase in T , µ∗(k2) will increase faster than µ∗(k1).
We therefore expect the representations of the two branches in
the wavespeed–waveheight plane to cross each other at a certain
point. The question now is: Canwemake the two branches connect,
i.e. can we make small variations in T such that there still exists
a point (which was originally at (0, µ∗)) where the two branches
share the same wave? The answer in general is yes, provided a
multiplicity condition on the wavenumbers is fulfilled.

Fig. 8 shows the plots for k1 = 1 and k2 = 7, with T = 0.1.
Recall from before that T (1, 7) ≈ 0.09918 so now we have T ≈

T (1, 7) + 0.00082. Closeup pictures of the connection point are
presented in Fig. 9.

As expected, the main branch now starts to the left and below
the k2 branch, and near the point labeled (c), they cross each other
without connecting since they do not share the same solution at
that point. Very similarly to what we have seen in Section 4.2, the
profile of the wave starts as cos(x) right after the bifurcation point,
then loses monotonicity (Fig. 8(c)) and rapidly develops seven
crests (Fig. 8(d)). The further we go up the branch themore evident
is the presence of a ‘‘carrier’’ signal like cos(x) and a high frequency
modulation given by the cos(7x) component: See Fig. 8(e). The
main branch then curves and connects to the 2π/7 one: Fig. 9
shows two close-ups of the connection point. While approaching
the 2π/7 branch, the main branch crosses itself twice but does
not self-intersect. After that it also crosses the 2π/7 branch, then
turns back and actually connects to it; the connection point being
the left one in Fig. 9(b). Near that point we see that the profiles
are essentially identical (Fig. 9(c) and (d)). After the connection
the main branch separates again and moves up, forming a loop
(Fig. 8(a) and closeup in Fig. 8(b)) before continuing in the direction
of increasing heights. Again, there is no self-intersection in the
loop, but only a crossing. After the connection point with the k2
branch, the profiles in the main branch are flipped vertically and
the contribution from the cos(7x) component diminishes until it
reaches a situation like the one presented in Fig. 8(f). The profiles
remain essentially unchanged in shape further up in the branch.

It is possible to replicate the above picture using any k1 provided
k2 is chosen as

k2 = (4 + a) k1, a ∈ N0. (25)

In particular, our numerical experiments show that if a is odd, and
hence k2 is an odd multiple of k1, then the lower-mode branch
connects with the higher one, but after the connection it continues
and is unbounded aswe can see in Fig. 8(a). If instead a is even, then
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(a) T = T (1, 4) + 0.0001. (b) T = T (1, 5) + 0.0001.

(c) T = T (2, 8) + 0.0001. (d) T = T (2, 10) + 0.0005.

Fig. 10. Various intersecting and self-crossing branches. Panels (b) and (d) feature secondary bifurcations.
the k1 branch terminates at the connection point and no further
solutions are found: See Fig. 10.
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