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Consider wave motion at the surface of an inviscid incompressible fluid of unit density in the
absence of capillarity. Suppose the depth of the fluid in the undisturbed state is given by h0, and
gravity is denoted by g. For waves which respect an approximate relationship α ∼ β between the
nondimensional amplitude α = a/h0 and the long-wave parameter β = h2

0
/λ2, there are a variety

of Boussinesq-type equations which may be used to describe the wave motion for waves which
have sufficiently long wavelength λ when compared to the undisturbed depth h0.

The derivation of such systems is well understood [14], and there exist a large number of
systems with various requisite properties. For instance, the systems may be optimized with respect
to the description of shorter waves, or with respect to smoothing properties, or amenability to
numerical study. An overview is given in [11]. Here we focus on a class of models derived and
studied in [4, 5]. Denote the limiting long-wave speed by c0 =

√
gh0, and define non-dimensional

variables by

x̃ =
x

λ
, z̃ =

z + h0
h0

, η̃ =
η

a
, t̃ =

c0t

λ
, φ̃ =

c0φ

gaλ
.

Assuming irrotaional fluid motion, expanding the velocity potential φ in an asymptotic series,
and substituting into the governing Euler equations and free-surface boundary conditions yields

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ − 1

2

(

θ2 − 1

3

)

βη̃x̃x̃t̃ = O(αβ, β2), (1)

w̃t̃ + η̃x̃ + αw̃w̃x̃ − 1

2

(

1− θ2
)

βw̃x̃x̃t̃ = O(αβ, β2). (2)

From these relations it appears that if α and β are sufficiently small, terms of order O(αβ, β2)
can be disregarded, and one may use the following system as approximate equations of motion:

ηt + h0wx + (ηw)x − bηxxt = 0,

wt + gηx + wwx − dwxxt = 0.
(3)

Here η(x, t) represents the excursion of the free surface at a spatial point x and at time t, while
w(x, t) represents the horizontal velocity at a given height h0θ in the fluid column. The parameters
b and d are given in terms of 0 ≤ θ ≤ 1 by

b = 1

2

(

θ2 − 1

3

)

h20, d = 1

2

(

1− θ2
)

h20.

This point of view can also be made rigorous by proving that solutions of the free-surface problem
based on the Euler equations converge to solutions of (3) in an appropriate sense on a certain
time scale [6, 11].

Since the system (3) was obtained by a procedure which is not based on the conservation of
mass and momentum (such as the derivation of the shallow-water system for example), one may
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ask whether the system (3) allows the conservation of mass, momentum, or indeed conservation
of energy. As it happens, if θ2 = 2

3
, the system takes the form

ηt + h0wx + (ηw)x − h2

0

6
ηxxt = 0,

wt + gηx +wwx − h2

0

6
wxxt = 0,

(4)

and in this case, the system is Hamiltonian with Hamiltonian function

H =

∫

∞

−∞

{

g
2
η2 + h0

2
w2 + 1

2
ηw2

}

dx.

However, since the derivation of (4) was not based on preserving the Hamiltonian structure, it
remains to be shown that this functional represents the total mechanical energy due to the wave
motion. Moreover, the question also arises how to express the energy of the wave motion in the
more general system (3).

While in the study of system of this type, the prevailing point of view is to consider conservation
of functionals usually interpreted as total excess mass, momentum and energy1 a different way to
proceed is to focus on approximate local conservation. As explained in [2], this approach entails
substituting the expansion for the velocity potential into the conservation equations based on the
Euler description of the flow, and requiring the approximate balance law

∂

∂t̃
Ẽ(η̃, w̃) +

∂

∂x̃
q̃E(η̃, w̃) = O(α2, αβ, β2),

which defines the energy density E and energy flux qE.
In the case of (3), the dimensional versions of the energy density and energy flux are obtained

in the form

Eθ =
g
2
η2 + h0

2
w2 + 1

2
w2η +

h3

0

2

(

θ2 − 1

3

)

wwxx +
h3

0

6
w2

x (5)

and

qEθ
= h0

2
w3 + c20ηw +

c2
0
h2

0

2

(

θ2 − 1

3

)

ηwxx − h3

0

3
wwxt +

c2
0

h0
wη2. (6)

In particular, qEθ
(x, t) gives the energy flux and work done by the pressure force due to the wave

motion at a point x and a time t. Integrating Eθ(x, t) over an interval [x1, x2] yields the energy
due to the wave motion in the control interval shown in Figure 1 at a time t, and to the same
order of approximation as the system (3) is valid.

If the surface disturbance is localized, so that η and w decay to zero at infinity, and the
integration of E is taken over the entire real line, then the Hamiltonian of (4) is recovered in the
case when θ2 = 2/3: H =

∫

∞

−∞
Eθ dx.

Similar approximate balance laws can be sought for the mass density and flux, and for the
momentum density and flux. Since it was already decided that the system (3) is the governing
system in the current description, these balance laws will generally not hold exactly, but only up
to some order in β and α.

One application of the analysis detailed above has been used to understand the energy budget
in an undular bore as approximated by different model equations [1, 9].

1The general system (3) features conservation of total excess mass through the conserved integral
∫

∞

−∞
η dx.

Moreover, for the system (4) the integral
∫

∞

−∞
ηw + bηxwx dx is also formally conserved. However, it is not clear if

this last integral has any physical significance.
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Figure 1: Geometric setup of the problem. The undisturbed water depth is h0, and the x-axis is aligned
with the free surface at rest. The free surface is described by a function η(x, t). The figure shows a control
interval delimited by x1 and x2 on the abscissa.

Similar considerations can be applied to the KdV equation

ηt + c0ηx +
3

2

c0
h0
ηηx +

c0h
2

0

6
ηxxx = 0, (7)

which is a unidirectional model for surface waves. In this case, it was found in [3] that the energy
density and flux are given by

E = c20

(

1

h0
η2 + 1

4h2

0

η3 + h0

6
ηηxx +

h0

6
η2x

)

,

and
qE = c30

(

1

h0
η2 + 5

4h2

0

η3 + h0

2
ηηxx

)

. (8)

One interesting application where these quantities can be put to use concerns the the shoaling of
periodic wavetrains and solitary waves. Consider a wave which experiences a decrease in depth
over a gentle slope with no variation in the transverse direction. From a practical point of view,
the waveheight of the shoaling waves is of particular interest, and one may use the conservation
of energy flux in an adiabatic setting to obtain a first approximation for the waveheight. The
linear theory is well known [7], and there have also been many studies making use of cnoidal wave
solutions of (7) for periodic shoaling.

However, there is a deep-water limit beyond which cnoidal solutions of the the KdV equation
cannot be used to describe periodic wave trains. Because of this limitation, it is necessary in the
shoaling problem to compute the initial transition from deep water to intermediate depths by
linear wave theory [12].

However, one problem which the authors of [12] faced was that at the point where linear and
cnoidal theory were to be matched, a discontinuity in waveheight appeared in the shoaling curve.
This problem was overcome later in [13] by imposing continuity in waveheight directly, but at the
cost of incurring a discontinuity in the energy flux. Using the nonlinearly defined energy flux qE
in the shoaling equation

∫ T

0

qEA
dt =

∫ T

0

qE dt, (9)

eliminates the problem of discontinuities in waveheight or energy flux at the matching point
between linear and cnoidal theory [10].

A comparison between the shoaling computations based on (9) and the numerical results for
the full water-wave problem [8] is shown in Figure 2 for a wave of initial wavelength L0 and
waveheight H0. It can be seen that the waveheight increases initially more slowly than predicted
by Green’s law, but the shoaling curve then turns up, and reaches a slope similar to Boussinesq’s
law. The curve based on (9) matches the curve obtained in [8] rather well. One aspect in which
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Figure 2: Left panel: definition sketch for h0, h, H0 and H . Center panel: incident wave profile with
L0

h0

= 14.5, H0

h0

= 0.4. Right panel: b: shoaling curve after Grilli et al., black solid curve: shoaling curve

based on (8) and (9), G: Green’s law and B: Boussinesq’s law.

the comparison is not favorable is the termination of the shoaling curve based on (9) before the
breaking point. This issue has not been investigated further so far.
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