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The Whitham equation was proposed as an alternate model equation for the simplified description of
unidirectional wave motion at the surface of an inviscid fluid. An advantage of the Whitham equation
over the KdV equation is that it provides a more faithful description of short waves of small amplitude.
Recently, Ehrnström and Kalisch [19] established that the Whitham equation admits periodic traveling-
wave solutions. The focus of this work is the stability of these solutions. The numerical results presented
here suggest that all large-amplitude solutions are unstable, while small-amplitude solutions with large
enough wavelength L are stable. Additionally, periodic solutions with wavelength smaller than a certain
cut-off period always exhibit modulational instability. The cut-off wavelength is characterized by kh0 =
1.145, where k = 2π/L is the wave number and h0 is the mean fluid depth.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The water-wave problem concerns the flow of an incompress-
ible inviscid fluid on a horizontal impenetrable bed. The flow is
described by the Euler equations and the dynamics of the free sur-
face are of particular interest [26]. There are a number of models
which allow the approximate description of the evolution of the
free surface without having to provide a complete solution of the
fluid flow below the surface. One of the best known of such mod-
els is the Korteweg–de Vries (KdV) equation. If the undisturbed
depth of the fluid h0 is taken as the unit of length and the ratio√

h0/g is taken as the unit of time, then the KdV equation is given
in non-dimensional form by

ηt + ηx + 3

2
ηηx + 1

6
ηxxx = 0. (1)

It is well known that solutions of this equation provide a fair ap-
proximation to the free surface in the long-wave/shallow-water
asymptotic limit [25,31]. For waves of amplitude a and wave-
length L, this asymptotic limit is characterized by balancing the
two small parameters h2

0/L2 and a/h0. Unlike the full water-wave
problem, the KdV equation can be solved exactly for a wide range
of initial conditions using the inverse scattering transform [1]. One
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conspicuous difference between the water-wave problem for the
full Euler equations and the KdV equation is the velocity of small
disturbances of the form cos k(x − ct) in their respective lineariza-
tions about the zero solution. These linear phase speeds are given
by

cK = 1 − 1

6
k2, (2)

for the KdV equation, and

(cE)2 = tanh(k)

k
(3)

for the dimensionless Euler equations. The parameter k is the
wavenumber and the wavelength is given by L = 2π/k.

The linear phase speed in the KdV equation can be obtained
from (3) by taking the first two terms in the Taylor expansion
around k = 0. A comparison of these phase speeds is provided in
Fig. 1. It appears immediately that the linear phase speed for the
KdV equation approximates the Euler phase speed well for waves
of small wavenumber (i.e. long waves), but does a poor job for
waves of larger wavenumber (i.e. short waves).

Recognizing this shortcoming of the KdV equation as a wa-
ter wave model, Whitham [30] proposed an alternative evolution
equation featuring the same nonlinearity as the KdV equation, but
one branch of the linear phase speed of the Euler equations in the
linear part. The equation has the form
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Fig. 1. Phase speed, c, plotted versus wave number, k, for the KdV, Euler, and
Whitham equations. The curve for the Whitham phase speed is the same as the
curve for the positive part of the Euler phase speed.

ηt + 3

2
ηηx + 1

2π

∞∫
−∞

ik

√
tanh (k)

k
η̂(k, t)eikx dk = 0. (4)

The linear phase speed of the Whitham equation is given by

cW =
√

tanh(k)

k
. (5)

Thus, except for the restriction to one-way propagation, the phase
speed of the Whitham equation matches the phase speed of the
Euler equations. The linear part of the equation is defined with
the help of the Fourier transform,

η̂(k, t) = F
{
η(x, t)

} =
∞∫

−∞
η(y, t)e−iky dy, (6a)

and the inverse Fourier transform,

η(x, t) = F−1{η̂(k, t)
} = 1

2π

∞∫
−∞

η̂(k, t)eikx dk. (6b)

In the case where η(·, t) is not absolutely integrable, such as if
η(·, t) is a spatially periodic function, the Fourier transform and
the convolution integral in (4) have to be interpreted in the context
of tempered distributions [19,28]. It is convenient to define the
integral kernel K by

K̂ (k) =
√

tanh(k)

k
, (7)

so that the Whitham equation can be written in the tidy form

ηt + 3

2
ηηx + K ∗ ηx = 0. (8)

Even though Eq. (8) has been known for a few decades, it has
not been studied as much as the KdV equation. This is partially due
to a lack of evidence (beyond the reasoning that led to its deriva-
tion) that the Whitham equation actually is a reasonable model for
surface water waves. However, there are some recent studies that
suggest that the Whitham equation models the evolution of certain
waves more accurately than does the KdV equation. In particular,
Carter and George [12] study the properties of the Whitham equa-
tion as an evolutionary equation and compare its solutions with
data from physical experiments, while Borluk et al. [6] investigate
the modeling properties in the context of steady waves.

The Whitham equation admits the following conserved quanti-
ties
Q1 =
∞∫

−∞
η dx, (9a)

Q2 =
∞∫

−∞
η2 dx, (9b)

Q3 =
∞∫

−∞

(
ηK ∗ η − η3)dx. (9c)

These conservation laws are useful in the study of the equation
from mathematical point of view [27] and can also be used to test
numerical algorithms for the time-dependent problem. Moreover,
if the Whitham equation is posed on the real line, then the ex-
istence of solitary waves has been recently proven [18] and this
result depends strongly on the third conserved quantity (9) which
is taken as a mathematical energy in the proof of existence. If pe-
riodic solutions are studied, then the domain of integration in the
above integrals needs to be replaced by the fundamental periodic
domain, such as [0, L] if the solutions are periodic with spatial pe-
riod L.

In the current work, the focus is on the stability of periodic
waves in the Whitham equation and it will be shown numeri-
cally that waves of large enough amplitude are always unstable
to sideband perturbations. To put this study into context, recall
that periodic wavetrains in the full surface water-wave problem
may be unstable with respect to modulation by waves of similar
but not equal wavelength. In the case of instability, the amplitudes
of the so-called sideband modes continue to grow, and a periodic
wavetrain literally disintegrates into what seems to be a haphazard
combination of waves of various wavelengths. This instability is to-
day known as modulational instability, and appears not only in wa-
ter waves, but also in a range of other dispersive systems. For in-
stance, the instability was first found in nonlinear electromagnetic
waves propagating through a liquid [4]. For a historical account of
the modulational instability, the reader may consult the recent re-
view by Zakharov and Ostrovsky [32]. In the context of waves on
the surface of a body of fluid, Benjamin and Feir [3] established
that small but finite-amplitude periodic wavetrains are unstable
with respect to a modulational instability. Benjamin [2] found the
cut-off separating stable and unstable, small-amplitude wavetrains
occurs precisely when the ratio 2πh0/L exceeds the value 1.363.
For large and intermediate depths, the nonlinear Schrödinger equa-
tion and similar models can be used for describing the evolution
of wavetrains in the so-called narrow-banded spectrum approxi-
mation, and it turns out that the nonlinear Schrödinger equation
and most related models feature modulational instability of peri-
odic wavetrains [13,29].

For shallow water waves in the long-wave/shallow-water
asymptotic limit mentioned earlier, the generic model equation
is the KdV equation, and this equation does not exhibit modula-
tional instability of periodic wavetrains [7]. However, other similar
model equations may feature modulational instability, and there
have been a number of recent investigations into the modulational
stability of periodic solutions of model equations which use math-
ematical analysis to give definite proofs of stability or instability.
See for instance the analyses given in [5,9,23,24]. For a review of
asymptotic results on modulational stability, such as the Whitham
perturbation method the reader may consult [14].

As explained above, the Whitham equation belongs to a class
of equations in which the dispersion relation has been improved
(such as the models studied in [21]), but is similar to the KdV
equation in the sense that it contains a quadratic nonlinearity.
However, since the equation was specifically designed to bet-
ter approximate short waves, the question arises whether steady
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Fig. 2. Bifurcation diagrams for three wavelengths. Wave amplitude is plotted
against wave speed. The leftmost curve represents waves with wavelength π , and
the bifurcation point is V † = 0.6943. The center curve represents waves with wave-
length 5/4π , and the bifurcation point is V † = 0.7590. The rightmost curve rep-
resents waves with wavelength 2π , and the bifurcation point is V † = 0.8727. The
labels (a), (b), (c) and (d) indicate the points on the bifurcation curve corresponding
to the wave profiles shown in Fig. 3.

solutions of the Whitham equation experience modulational in-
stability. The present article contains a numerical study of the
stability of steady solutions of the Whitham equation and the re-
sults indicate that periodic wave solutions are stable or unstable
depending on the wavelength and amplitude. In particular, the de-
pendence of stability on the wavelength is similar to the criterion
found by Benjamin for the stability of periodic solutions of the lin-
ear water-wave problem. In addition, the numerical results indicate
that waves of large amplitude are always unstable.

The KdV equation admits a four-parameter family of periodic
traveling-wave solutions which are given in terms of cnoidal func-
tions as

η = a0 + 4k2κ2

3
cn2(κ(x − x0 − V t),k

)
. (10)

Here cn(· ,k) is a Jacobi elliptic function with elliptic modulus
k [10] and a0, m, κ , and x0 are free parameters. The velocity of
this solution is V = 1

6 (6 + 9a0 − 4κ2 + 8k2κ2) and the spatial pe-
riod is L = 2K(k)/κ where K(k) is the complete elliptic integral of
the first kind.

For the study of steady solutions of the Whitham equation, it is
convenient to make the transformation η �→ 3

4 η, so that the equa-
tion becomes

ηt + 2ηηx + K ∗ ηx = 0. (11)

Traveling-wave solutions of the Whitham equation of the form
η(x, t) = φ(x − V t) can be sought for certain V , and these are so-
lutions of the equation

−V φ + φ2 + K ∗ φ = 0. (12)

In contrast to the KdV equation, there are no known exact so-
lutions of the Whitham equation. However, in the case of peri-
odic boundary conditions, Ehrnström and Kalisch proved the exis-
tence of a branch of 2π -periodic traveling-wave solutions to the
Whitham equation [19,20]. They also computed numerical approx-
imations of solutions along this branch using a branch-following
method. A summary of this method is included in Appendix A.
Fig. 2 contains a plot of the maximum of the steady solution ver-
sus wave speed for some branches of Whitham solutions. Note that
for the purposes of this paper, we refer to the maximum value of
the solution as the “amplitude”. Fig. 3 contains plots of four rep-
resentative solutions on the branch of 2π -periodic solutions. If the
amplitude of a Whitham solution is small, then it is qualitatively
similar to a KdV solution of the form given in Eq. (10). However, as
the amplitude of a Whitham solution increases, it becomes much
steeper than any KdV solution.

2. Stability analysis

Most mathematical results concerning stability of periodic
waves fall into either of two classes. Either, nonlinear stability
with respect to perturbations of the same wavelengths is proved,
or linear stability or instability with respect to uniformly bounded
perturbations is shown. In the context of the current article, works
that deal with perturbations of arbitrary spatial period are most
relevant. For instance, Bottman and Deconinck [7] proved that all
KdV solutions of the form given in (10) are linearly stable regard-
less of the parameter values. Deconinck and Kapitula [15], establish
that cnoidal waves are (nonlinearly) orbitally stable with respect
to perturbations that are periodic with period any integer multiple
of the cnoidal-wave period. Carter and Cienfuegos [11] numeri-
cally established that solutions of the Serre (Green–Naghdi) system
with sufficiently small steepness are stable while those with large
steepness are unstable. This result is somewhat similar to the re-
sults presented below for the Whitham equation. On the other
hand, Bridges and Mielke [8] proved that periodic solutions of
the full Euler equations are linearly unstable for certain parame-
ter regimes. Very recently, Hur and Johnson [22] proved that small
but finite amplitude periodic solutions of the Whitham equation
are stable or unstable depending on the wavelength.

Of importance for the current spectral analysis is the recent
work of Johnson [23], where modulational stability for a fractional
evolution equation of KdV type is considered. In particular, Propo-
sition 3.1 in [23] provides a tool which allows for the use of the
Floquet theory in model equations featuring nonlocal operators of
fractional type. While the analysis featured in [23] does not ex-
plicitly encompass operators such as K , the relevant results for the
determination of spectral stability can be extended to apply also
to such non-fractional operators. Thus relying on estimates simi-
lar to the results of Johnson [23] in the present work, the stability
of the periodic Whitham solutions is investigated numerically. In
particular, our numerical experiments suggest that the stability of
small-amplitude solutions depends on the wavelength of the solu-
tions, while large-amplitude solutions always exhibit modulational
instability, regardless of the wavelength. In order to study the sta-
bility of solutions to the Whitham equation, we rely on spectral
stability analysis and the Fourier–Floquet–Hill method [16]. This
method has also been used to study instabilities in other equa-
tions, such as in the work of Deconinck and Oliveras [17] who
established numerically that a family of stationary, periodic solu-
tions of the one-dimensional Euler equations are unstable.

2.1. Spectral stability analysis

Let η(x, t) = φ(x − V t) represent a traveling-wave solution of
the Whitham equation with speed V . Apply the change of vari-
ables y = x − V t and τ = t in order to enter a frame moving
with the speed of the solution. This change of variables causes the
traveling-wave solution to become a stationary solution, η(x, t) →
η(y), and the Whitham equation to appear as

ητ − V ηy + 2ηηy + K ∗ ηy = 0. (13)

We consider small perturbations of the stationary solution by as-
suming
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Fig. 3. Four representative 2π -periodic solutions of the Whitham equation. The wave speeds of these solutions are (a) V = 0.8415, (b) V = 0.8002, (c) V = 0.7689, and
(d) V = 0.7665.
η(y, τ ) = η(y) + εw(y, τ ) +O
(
ε2). (14)

Here w(y, τ ) is a real-valued function which will be simply called
the perturbation and ε is a small positive constant. Substituting
(14) into (13), linearizing, and simplifying gives

wτ + (2η − V )w y + 2wη′ + K ∗ w y = 0 (15)

This equation is linear and autonomous in τ , so that no generality
is lost by assuming that w can be written in the form

w(y, τ ) = W (y)eλτ + c.c., (16)

where W is a complex-valued function, λ is a complex constant,
and c.c. denotes complex conjugate. Substituting (16) into Eq. (15)
gives

−2η′W + (V − 2η)W ′ − K ∗ W ′ = λW . (17)

For both physical and mathematical reasons, we only consider
bounded W . This boundedness condition combined with Eq. (17)
forms an integro-differential spectral problem for W and λ. If a
certain eigenvalue λ solving (17) has positive real part, then there
exists at least one perturbation that grows exponentially in time. In
turn, this means that the Whitham solution η is spectrally unsta-
ble. If all eigenvalues are purely imaginary, then all perturbations
oscillate in time and the corresponding solution is spectrally sta-
ble.

Since all of the coefficient functions in Eq. (17) are periodic, we
use the Fourier–Floquet–Hill method (also known as Bloch theory
or Hill’s method) [16] in order to numerically solve this prob-
lem. First, expand the coefficient functions, −2η′ and (V − 2η),
in Fourier series

−2η′ = f0(y) =
∞∑

m=−∞
f̂0,m eimy, (18a)

(V − 2η) = f1(y) =
∞∑

m=−∞
f̂1,m eimy . (18b)

Second, use Floquet’s theorem, which states that the eigenfunc-
tions can be written as
W (y) = eiμy
∞∑

l=−∞
Ŵl eily, (19)

where μ ∈ (− 1
2 , 1

2 ] is known as the Floquet parameter and the Ŵl
are the to-be-determined Fourier coefficients of the eigenfunction.
Note that the standard form of Floquet’s theorem applies only to
linear ordinary differential equations. By using Proposition 3.2 of
[25], one can prove that all bounded eigenfunctions of the system
given in Eq. (17) are of the form given in Eq. (19). Substituting (18)
and (19) into (17) and separating by Fourier modes leads to

L̂Ŵ = λŴ (20)

where λ is the eigenvalue, Ŵ is the eigenvector Ŵ = (..., Ŵ−2,

Ŵ−1, Ŵ0, Ŵ1, Ŵ2, ...)
T and L̂ is the bi-infinite matrix defined by

L̂nm =
{

f̂0,n−m + i(μ + m) f̂1,n−m if m �= n,

f̂0,0 + i(μ + n) f̂1,0 + i(μ + n)

√
tanh(μ+n)

μ+n if m = n.

(21)

2.2. Numerical results

In this section we present results from numerical computations
of solutions to Eq. (20) for a range of parameter values. As will
come to light, a periodic solution of the Whitham equation is gen-
erally spectrally stable if it is located on the lower part of the
bifurcation branch, that is if it has small enough amplitude. On the
other hand, solutions which are higher up on the branch will gen-
erally experience modulational instabilities. While the numerical
experiments described here are mostly for steady solutions with
wavelength 2π , extensive numerical experiments have also been
performed for solutions with different wavelengths. It appears that
these are similar in the sense that the instability always appears
for large enough amplitudes.

2.2.1. Spectra
The spectra corresponding to the 2π -periodic traveling-wave

solutions of the Whitham equation shown in Fig. 3 are depicted
in Fig. 4. The spectrum in (a) is confined to the imaginary axis,
indicating spectral stability of the corresponding solution. The
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Fig. 4. Spectra corresponding to the solutions shown in Fig. 3.

Fig. 5. (a) Maximum growth rate versus solution wave speed for solutions with period 2π . (b) Maximum growth rate versus amplitude for solutions with period 2π .
spectra shown in panels (b)–(d) include positive real parts which
are indicative of instability. Together, these four spectra suggest
that when the period of the Whitham solution is 2π , small-
amplitude solutions are stable while large-amplitude solutions are
unstable. Phrased in terms of the wave speed, this means that
steady 2π -periodic solutions of the Whitham solution with a large
enough speed are spectrally stable while solutions with smaller
speeds are unstable. The eigenvalues with the largest real part in
Fig. 4(b)–(d) are 0.0003200 ± 0.007502i, 0.02788 ± 0.05078i, and
0.06735 ± 0.03530i respectively. These eigenvalues are achieved
with μ = ±0.0406, μ = ±0.410, and μ = ±0.378 respectively.

As the wave amplitude of the Whitham solution is increased
(i.e. as the wave speed is decreased) the spectra undergo a bi-
furcation where the solutions go from stable to unstable. This
bifurcation occurs at an amplitude, A∗ , approximately equal to
0.142, which corresponds to a phase speed, V ∗ , approximately
equal to 0.8002. The bifurcation point is characterized by the gene-
sis of a figure eight of eigenvalues, and it is well known that such a
figure eight is typically associated with the modulational instabil-
ity [32]. Fig. 5(a) and (b) contain plots of the maximum instability
growth rate, max(	(λ)), versus wave speed and wave amplitude
respectively.
Fig. 6 contains plots of 	(λ) versus μ for the solutions shown
in Fig. 3. As the stability/instability threshold is crossed, a narrow
range of μ values around 0, but not including 0, leads to insta-
bilities. As the amplitude of the solution increases, the maximum
growth rate increases and the range of μ values which leads to in-
stabilities increases until all nonzero μ values lead to instability.
The periodicity of μ can be seen in Figs. 6(c) and 6(d) where the
figure eights can be seen to overlap. One interesting result of our
analysis is that μ = 0 never has an eigenvalue with nonzero real
part. This means that there are no unstable perturbations having
the same spatial period as the Whitham solution.

Fig. 7(a) contains a plot of a Whitham solution close to the
limiting case (i.e. it is nearly a cusped wave). Fig. 7(b) contains
a plot of the corresponding spectrum and Fig. 7(c) contains a plot
of 	(λ) versus μ. The results are somewhat similar to those ob-
tained for less steep solutions. The maximum growth rate is 0.115.
Although the simple “figure-eight” structure becomes more com-
plicated, there are no unstable perturbations with the same period
as the solution. An additional difference is that there exists non-
oscillatory instabilities, i.e. ones that correspond to real, positive
eigenvalues, when the Whitham solution is steep enough.
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Fig. 6. Plots of 	(λ) versus μ corresponding to Whitham solutions shown in Fig. 3.

Fig. 7. A nearly cusped wave solution of the Whitham equation (a), the corresponding spectrum (b), and the corresponding plot of 	(λ) versus μ (c).
2.2.2. Eigenfunctions
Fig. 8 contains a plot of w(y,0) corresponding to the solution

in Fig. 3(c) with λ = 0.01162±0.01552i and μ = 1/8. This function
is periodic on y ∈ [−4L,4L]. Note that we are plotting w(y,0), not
W (y), because w(y,0) is a real-valued function and represents
a physical perturbation. See Eq. (16) for the relationship between
these two functions. Fig. 9 contains a plot of w(y,0) corresponding
to the solution in Fig. 3(c) with λ = 0.02784 ± 0.04953i and μ =
2/5. This function is periodic on y ∈ [− 5

2 L, 5
2 L]. A plot of the most

unstable perturbation is not included due to its large period.
As an independent test on these stability results, we used the
function

η(x,0) = η(x) + 10−10 w(y,0), (22)

where η(x) was the solution given in Fig. 3(c) and w(y,0) was
the perturbation given in Fig. 9 as an initial condition in numerical
simulations of Eq. (11), the full Whitham equation. The Whitham
equation was solved numerically on the interval x ∈ [− 5

2 π, 5
2 π ]

using operator splitting so that the linear portion of the PDE could
be solved “exactly” in Fourier space. Fig. 10 contains a plot of the
logarithm of the amplitude of the perturbation versus t . The slope
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Fig. 8. w(y,0) corresponding to the solution in Fig. 3(c) with λ = 0.01162 ±
0.01552i and μ = 1/8.

Fig. 9. w(y,0) corresponding to the solution in Fig. 3(c) with λ = 0.02784 ±
0.04953i and μ = 2/5.

Fig. 10. A plot of the logarithm of the amplitude of the perturbation versus t from
the full Whitham equation.

of the line, i.e. the growth rate of the perturbation, is approxi-
mately 0.0278 which is very close to the growth rate predicted
by the stability analysis. As expected, the exponential growth of
the perturbation does not continue indefinitely due to nonlinear
effects. In this simulation, nonlinear effects begin to play a role
around t = 78 (not shown).

2.2.3. Growth rates for varying wavelengths
As explained in the introduction, if the wavelength of periodic

solutions of the linearized water-wave problem is reduced to the
point where kh0 exceeds the value 1.363, the waves become un-
stable. Recently, Hur and Johnson [22] established that a similar
mathematical result holds for small-amplitude periodic solutions
of the Whitham equation and the critical wavenumber for the
Whitham equation is given by kh0 = 1.145. While the main focus
of the current work has been on stability and instability of steady
wave solutions of finite amplitude, it is also interesting to check if
the results of [22] can be corroborated numerically.

Several runs with h0 = 1 fixed, and varying wavenumber k were
performed. These experiments confirm the findings of Hur and
Johnson that small-amplitude Whitham solutions with kh0 < 1.145
are stable while solutions with kh0 > 1.145 are unstable. However,
if the amplitude of the solution is large enough, then the solution
is unstable regardless of the value of k.

3. Conclusion

The stability of periodic traveling-wave solutions of the
Whitham equation (4) has been studied. It has been found that the
stability depends on the amplitude, velocity, and wavelength of the
traveling wave. As a representative case, the stability of solutions
of the Whitham equation with wavelength 2π and undisturbed
depth normalized to h0 = 1 has been illustrated in detail. In this
case, solutions with velocity less than V ∗ ≈ 0.8002 are unstable,
while solutions with larger wave speeds are stable. The critical
speed corresponds to an amplitude of A∗ ≈ 0.142, so that solutions
with wavelength 2π and amplitude greater than A∗ are unstable,
while smaller amplitude 2π -periodic solutions are stable. The pic-
ture changes if the wavelength of the traveling wave is smaller
than 1.75π . In this case, even small amplitude waves are unstable.

This finding is in accordance with a recent study of stability of
periodic solutions of the Whitham equation [22] which found that
small-amplitude solutions with kh0 > 1.145 are always unstable,
while those with kh0 < 1.145 are stable. The difference between
the corresponding stability criterion for periodic solutions of the
water-wave problem which features a critical value of kh0 = 1.363
may be accredited to features which remain unresolved in the
Whitham approximation.

It should also be noted that the results are qualitatively differ-
ent from the picture concerning the stability of periodic solutions
of the KdV equation, where all traveling-wave solutions are stable.
The qualitative difference in the behavior of the KdV and Whitham
equations suggests that dispersion likely plays a key role in the
instabilities of the full Euler equations.
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Appendix A. Numerical bifurcation method

Solutions of (12) are approximated using a spectral cosine col-
location method. To define the cosine-collocation projection, first
define the subspace

SN = spanR

{
cos(lx)

∣∣ 0 ≤ l ≤ N − 1
}

of L2(0,π), and the collocation points xn = π 2n−1
2N for n = 1, ..., N .

The discretization is defined by seeking φN in SN satisfying the
equation

−V φN + φ2
N + K NφN = 0, (A.1)
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where the operator K N is the discrete form of K . The discrete co-
sine representation of φN given by

φN(x) =
N−1∑
l=0

w(l)ΦN (l) cos(lx),

where

w(l) =
{ √

1/N, l = 0,√
2/N, l ≥ 1,

is a normalization constant, and ΦN (l) are the discrete cosine co-
efficients given by

ΦN(l) = w(l)
N∑

n=1

φN(xn) cos(lxn), for l = 0, ..., N − 1.

Now if Eq. (A.1) is enforced at the collocation points xn , the term
K NφN may be practically evaluated with the help of the matrix
[K N ](m,n) by

[
K N]

φN(xm) =
N∑

n=1

[
K N]

(m,n)φN(xn),

where the matrix [K N ](m,n) is defined by

[
K N]

(m,n) =
N−1∑
l=0

w2(l)

√
1

l
tanh l cos(lxn) cos(lxm).

Thus, Eq. (A.1) enforced at the collocation points xn yields a system
of N nonlinear equations, which can be efficiently solved using a
Newton method. The cosine expansion effectively removes the sin-
gularities of the Jacobian matrix due to translational invariance and
symmetry of the solutions. The non-dimensional speed V is used
as the bifurcation parameter. The computation can be started for
V close to but smaller than the critical speed V ∗ , and with an ini-
tial guess for the first computation given by a corresponding cos
function. In order to compute solutions which are periodic with a
wavelength L, we define a scaling φ(x) → φ(ax), where a = L

2π .
Then the equation for φ transforms into

−V φ + φ2 + √
aK1/a ∗ φ = 0,

where K1/a is defined by K̂1/a(k) =
√

tanh(k/a)
k .
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