
European Journal of Mechanics / B Fluids 73 (2019) 48–54

Contents lists available at ScienceDirect

European Journal of Mechanics / B Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Wave breaking in the KdV equation on a flow with constant vorticity
Amutha Senthilkumar, Henrik Kalisch *
Department of Mathematics, University of Bergen, Postbox 7800, 5020 Bergen, Norway

a r t i c l e i n f o

Article history:
Available online 21December 2017

a b s t r a c t

The paper describes the critical breakingwaveheight for long surfacewaterwaves on a flowwith constant
vorticity in the KdV approximation. Given a background linear shear flow, a KdV equation can be found
with coefficients depending on the strength of the shear flow. The derivation also shows that the velocity
field under the wave can be constructed approximately from the free surface excursion.

A convective breaking criterion is put forward and used to detect incipient wave breaking in periodic
traveling waves and solitary waves. It is shown that for both the solitary wave and the cnoidal waves,
there are limiting waveheights where the horizontal component of the particle velocity equals the phase
velocity of thewave. It is found that the strength of the vorticity has a considerable influence on the critical
waveheight.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Boussinesq-type models are widely used in coastal hydrody-
namics for predicting the transformation of free-surface waves
from deeper to shallower water. While there is a great variety of
models including dispersion-optimized models and higher-order
models which may be able to capture large-amplitude effects,
many models in use today do not take into account vorticity. Of
course, in nature, most coastal flows do feature vorticity, and there
have been efforts to incorporate various forms of vorticity into the
mathematical description of the flow, such as for example in [1,2],

One of the first works to include the effects of shear flows
into shallow-water theory was [3], which examined the range of
characteristic speeds for general shear profiles. In [4] the authors
suggested the configuration of a free surface over a constant stream
with prescribed vorticity as an approximate model for a larger
variety of flowswith backgroundvorticity.While linear shear flows
may not regularly occur in nature, it was argued in [4] that a linear
background stream can be used as a first approximation to more
general shear profiles in the case when the wavelength of the
waves is on a different scale than the variation of the shear profile.
In particular for long waves such as considered in the present
paper, there is a scale separation between the wavelength and the
typical variation of a shear flow, so that the mean vorticity has
much greater influence on the wave dynamics than the specific
distribution of vorticity.

Following the lead of [4], constant background shear has been
used by many authors in order to incorporate vorticity into
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their models (see for example [5–9] and the references therein).
Other examples of cases which have proved to be mathematically
tractable include compactly supported vorticity, such as point
vortices or vortex patches [10,11], and the creation of vorticity
through interactionwith bathymetry [12] or through singular flow
such as hydraulic jumps [13].

Themain purpose of the presentwork is to investigate the effect
of background vorticity on wave breaking at the free surface. For
the sake of simplicity, our studywill be conducted in the context of
the KdV equation to which the original Boussinesq system reduces
in the case of waves traveling in a single specific direction [14].
Wave breaking is understood in terms of stagnation at the free
surface, when the horizontal particle velocity at the wavecrest
reaches the same value as the phase velocity. In order to test such
a kinematic breaking criterion in the context of the KdV equation,
it is necessary to have an estimate for the horizontal component of
the velocity field in the KdV approximation.

Derivations of the KdV equation in the presence of background
velocity exist [15], but here the focus is on the reconstruction of
the velocity field, so we provide an independent derivation which
also yields an expression for the horizontal velocity in terms of the
principal unknown variable η(x, t) which describes the deflection
of the free surface at a time t and a spatial position x. Once
the horizontal velocity is known, it can be used to evaluate the
kinematic wave-breaking criterion which predicts wave breaking
when the horizontal component of the particle velocity at thewave
crest exceeds the crest speed [16].

Wave breaking is investigated for both solitary waves and pe-
riodic cnoidal waves, and it is found that if the shear is favorable,
i.e. in the direction of wave propagation, wave breaking is inhib-
ited. On the other hand, a shear flow in the direction opposite of
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Fig. 1. The background uniform shear flow U = zΓ . In the figure Γ is negative. In
the KdV equation, the waves which are superposed onto this background current
propagate to the right.

the wave velocity has the effect of facilitating the breaking of the
wave. This finding is in agreement with previous studies of wave
breaking through stagnation points using the full Euler equations.
In particular, the numerical approach used in [17] also shows the
same qualitative influence of the background vorticity on the onset
of wave breaking.

The accuracy of the kinematic breaking criterion has been dis-
cussed a great deal in the literature. In some investigations, it was
observed that the kinematic criterion can be useful in some prac-
tical situations, while there is also evidence that it may not always
be a reliable indicator of the onset of breaking. However, some
studies, such as [18] which focus on breaking in shallow water
conclude that the convective criterion does a fair job of predicting
wave breaking even for three-dimensional waves. Apparently, if
the kinematic criterion fails to predict the onset of wave breaking
accurately, the problem often lies with the difficulty of obtaining
accurate measurements for the phase velocity of the wave.

Wave steepness has also been used as an indicator for the
occurrence of wave breaking, primarily for waves in intermediate
and deep water, but recent findings cast doubt on the use of this
measure to predict wave breaking [19]. In the same paper, the
kinematic criterion is also called into question, and a criterion
based on the ratio of energy density and energy flux is proposed.
This idea actually leads to a tightened kinematic criterion, such as
found in [20] and used also in [21].

2. Formulation of the mathematical problem

Let us briefly recall the governing equations for two dimen-
sional water waves with constant vorticity. The starting point
for the mathematical formulation are the Euler equations in two
dimensions with no-penetration conditions at the bed and kine-
matic and dynamic boundary conditions at the free surface. Let
the spatial coordinates be (x, z) and the x-axis be oriented in the
horizontal direction and aligned with the undisturbed free surface
(see Fig. 1). Let η(x, t) denote the surface elevation, and assume
that themotion is uniform in the direction perpendicular to the xz-
plane (long-crestedwaves). As usual, the gravitational acceleration
g is directed in the negative z-direction.

A shear flow with constant vorticity is prescribed, and the
velocity field is given by u = (U,W ) = (u + zΓ , w) = ( ∂φ

∂x +

zΓ ,
∂φ

∂z ), where φ(x, z, t) is the velocity potential of the irrotational
disturbance, and Γ is fixed. The potential part of the velocity field
satisfies the problem

△φ = 0, − h0 < z < η,

φz = 0, z = −h0.

In addition, assuming atmospheric pressure is normalized to
zero, we have the dynamic and kinematic conditions

p = 0, z = η,

ηt + Uηx − φz = 0, z = η.

In the appendix, it is shown how to simplify this system in the
case of long waves of small amplitude. The resulting equation is a
KdV equation which differs from the usual KdV equation only in
terms of the coefficients. The KdV equation was found for more
general shear flows in [15], but we include the derivation in the
appendix in order provide an expression for the horizontal velocity
which is used in the detection of wave breaking. Denoting the
original variables with a hat ,̂ we define non-dimensional variables
by

x̂ = h0x, ẑ = h0z, η̂ = h0η, t̂ =
h0

√
gh0

t,

û =

√
gh0u and Γ̂ =

Γ
√
gh0

h0
.

The KdV equation derived in Appendix B is then written as

ηt + c+ηx +
c+(3 + Γ 2)
(1 + c2+)

ηηx +
c3
+

3(1 + c2+)
ηxxx = 0. (1)

Moreover, the horizontal velocity can be written as

u = c+η +
−1

2(2c+ + Γ )
η2

+
1 + 3c2

+

6(2c+ + Γ )
ηxx − c+

1
2
(1 + z)2ηxx.

The constant c+ is defined by c+ =
−Γ
2 +

√
Γ 2

4 + 1. The expression
for the horizontal velocity of a fluid particle in the presence of the
shear flow is given in non-dimensional variables as

U(x, z, t) = c+η +
−1

2(2c+ + Γ )
η2

+
1 + 3c2

+

6(2c+ + Γ )
ηxx

− c+
1
2
(1 + z)2ηxx + zΓ . (2)

Since the horizontal component of the particle velocity has been
found, it may be compared to the local phase velocity of the wave.
As we mentioned already, this leads to the kinematic breaking
criterion. Sections 3 and 4 are dedicated to the application of this
convective breaking criterion to the solitary and periodic traveling
waves, respectively.

3. Maximumwaveheight for solitary waves

Wenow evaluate the kinematic breaking criterion in the case of
the solitarywave solution of the KdV equation (1)with background
vorticity. The solitary-wave solution of the KdV equation (1) is
given by

η = H sech2
(√

(3 + Γ 2)H
4(1 − c+Γ )

(x − x0 − ct)
)
.

Denoting the argument by B(x, t) =

√
(3+Γ 2)H
4(1−c+Γ ) (x − x0 − ct), ηxx is

given by

ηxx = H2 (3 + Γ 2)
4(1 − c+Γ )

(−6 sech2(B) + 4) sech2(B),

where H is the waveheight, x0 is the initial location of the wave
crest, and c = c+ +

(3+Γ 2)H
3(Γ +2c+) is the phase velocity. Since the solitary

wave retains its shape for all time, the crest speed is equal to the
phase speed of the wave, and wemay evaluate at (x− x0 − ct) = 0
in which case we obtain η = H and ηxx =

−H2

2
(3+Γ 2)
(1−c+Γ ) . Substituting

these values into the horizontal component of the velocity field
in the KdV approximation (2) and evaluating at the free surface
transforms the breaking criterion into
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Table 1
Critical waveheight for solitary-wave solutions of the KdV-equation for various val-
ues of the vorticity parameter Γ .

Γ Hmax solitary

−0.4 0.8229
−0.3 0.7911
−0.2 0.7578
−0.1 0.7233
0 0.6879
0.1 0.6519
0.2 0.6157
0.3 0.5798
0.4 0.5444

c+H +
−H2

2(2c+ + Γ )
+

H2

2
(3 + Γ 2)
(1 − c+Γ )

×

{
−

1 + 3c2
+

6(2c+ + Γ )
+ c+

1
2
(1 + H)2

}
+ HΓ

≥ c+ +
(3 + Γ 2)H
3(Γ + 2c+)

.

(3)

To find the critical value of the waveheight, we require equality,
and then rearrange terms to obtain

P(H) =
H4

4
(3 + Γ 2)
(1 − c+Γ )

c+ +
H3

2
(3 + Γ 2)
(1 − c+Γ )

c+

+ H2
(

−1
2(2c+ + Γ )

−
3 + Γ 2

12(1 − Γ c+)
3c2

+
+ 1

2c+ + Γ
+

3 + Γ 2

1 − Γ c+
c+

)
+ H

(
c+ −

3 + Γ 2

3(2c+ + Γ )
+ Γ

)
− c+ = 0.

Contemplating the roots of the fourth-order polynomial in P(H),
we note that the derivative of P(H) is positive for H ≥ 0 and
P(0) < 0 while P(1) > 0. Therefore, P(H) can have only one
positive root in [0, 1]. For given values of the vorticity Γ , this root
can be found numerically to obtain the following values of the
maximum admissible waveheight for the solitary wave.

It can be clearly seen from Table 1 that the critical waveheights
for the solitary waves are increasing for larger favorable shear flow
(Γ < 0). It is noteworthy that even though the KdV equation
admits solutionswith anywaveheight, solitarywaveswith awave-
height larger than Hmax solitary do not describe actual surface waves
since these waves already feature incipient wave breaking.

4. Maximumwaveheight for cnoidal waves

The cnoidal wave solutions of the KdV equation (1) with back-
ground vorticity are given by

η = f2 + (f1 − f2)cn2(B), (4)

where the solution is defined by the three constants f1, f2 and
f3 which are arranged in the order f3 < f2 < f1, cn is one of
the Jacobian elliptic functions defined by the incomplete elliptic
integral of the first kind [22], and themodulus of cn is given bym =

(f1− f2)/(f1− f3). The argument is B =

√
(3+Γ 2)

4(1−c+Γ ) (f1− f3)1/2(x−ct).

Thephase speedof thewave is c = c++
(3+Γ 2)

3(2c++Γ ) (f1+f2+f3), and the

wavelength is given by λ = 4
√

(1−c+Γ )
(3+Γ 2)

K (m) 1√
f1−f3

, where K (m) is

the complete elliptic integral of the first kind.

Fig. 2. Plots of maximum admissible waveheight for solitary-wave solutions as a
function of Γ for breaking criterion (3).

As shown in [22], the parameters f1, f2 and f3 can be expressed
in terms of waveheight H = f1 − f2 and the elliptic parameterm as
follows:

f1 =
H
m

(
1 −

E(m)
K (m)

)
,

f2 =
H
m

(
1 − m −

E(m)
K (m)

)
,

f3 =
H
m

(
−

E(m)
K (m)

)
.

(5)

Therefore, fixing H and m is sufficient to specify any cnoidal wave
as long as the undisturbed water level is set to zero. We now test
the kinematic breaking criterion to determine whether a given
cnoidalwave is a reasonable description of awaterwave in the KdV
approximation in the presence of the shear flow. Differentiating (4)
twice with respect x yields ηxx in the form

ηxx = (f1 − f2)(f1 − f3)
(3 + Γ 2)

2c2+
×

(
sn2(B)dn2(B) − cn2(B)dn2(B) + msn2(B)cn2(B)

)
.

Evaluating at (x − ct) = 0 yields η = f1 and ηxx = −(f1 − f2)(f1 −

f3) (3+Γ 2)
2c2

+

and the breaking criterion can be written as

c+f1 −
f12

2(2c+ + Γ )

+ (f1 − f2)(f1 − f3)
(3 + Γ 2)

2c2+

×

{
−

1 + 3c2
+

6(2c+ + Γ )
+ c+

1
2
(1 + f1)2

}
+ f1Γ

≥ c+ +
(3 + Γ 2)(f1 + f2 + f3)

3(Γ + 2c+)
.

(6)

In the following, we use the constants

a =
1
m

(
1 −

E(m)
K (m)

)
,

b =
1
m

(
1 − m −

E(m)
K (m)

)
and c =

1
m

(
E(m)
K (m)

)
.

(7)
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Table 2
Critical waveheight for the cnoidal solution of the KdV equation, calculated for various values of the elliptic parameter
m and with Γ = 0.

m Hmax cnoidal Wavelength (λ) α β S Wave speed c

0.01 0.0196 2.591 0.0098 0.1489 0.0661 0.0201
0.1 0.1698 2.857 0.0849 0.1224 0.6933 0.1951
0.2 0.2909 3.178 0.1454 0.0990 1.4689 0.3516
0.3 0.3820 3.507 0.1910 0.0812 2.3499 0.4715
0.4 0.4548 3.849 0.2274 0.0674 3.3702 0.5669
0.5 0.5152 4.218 0.2575 0.0562 4.5834 0.6469
0.6 0.5667 4.632 0.2833 0.0465 6.0813 0.7176
0.7 0.6114 5.128 0.3056 0.0380 8.0399 0.7839
0.8 0.6504 5.781 0.3252 0.0299 10.869 0.8511
0.9 0.6841 6.829 0.3420 0.0214 15.952 0.9295

Table 3
Critical waveheight for the cnoidal solution of the KdV equation, calculated for var-
ious values of the elliptic parameter m and with Γ = −0.1.

m Hmax cnoidal λ α β S c

0.01 0.0207 2.6539 0.0103 0.1420 0.0728 0.0202
0.1 0.1791 2.9202 0.0896 0.1173 0.7637 0.2005
0.2 0.3070 3.2467 0.1535 0.0949 1.6180 0.3655
0.3 0.4031 3.5835 0.2016 0.0779 2.5883 0.4925
0.4 0.4796 3.9344 0.2398 0.0646 3.7121 0.5936
0.5 0.5431 4.3119 0.2715 0.0538 5.0485 0.6783
0.6 0.5971 4.4766 0.2986 0.0446 6.6983 0.7531
0.7 0.6440 5.2443 0.3220 0.0364 8.8557 0.8231
0.8 0.6849 5.9126 0.3425 0.0286 11.9720 0.8941
0.9 0.7201 6.9854 0.3601 0.0205 17.5701 0.9769

Table 4
Critical waveheight for the cnoidal solution of the KdV equation, calculated for var-
ious values of the elliptic parameter m and with Γ = 0.1.

m Hmax cnoidal λ α β S c

0.01 0.0187 2.5269 0.0093 0.1566 0.0596 0.0200
0.1 0.1604 2.7923 0.0802 0.1283 0.6253 0.1894
0.2 0.2746 3.1063 0.1373 0.1036 1.3248 0.3379
0.3 0.3609 3.4273 0.1804 0.0851 2.1193 0.4510
0.4 0.4298 3.7609 0.2149 0.0707 3.0395 0.5411
0.5 0.4870 4.1200 0.2435 0.0589 4.1337 0.6167
0.6 0.5359 4.5240 0.2680 0.0489 5.4845 0.6836
0.7 0.5784 5.0073 0.2892 0.0399 7.2510 0.7464
0.8 0.6155 5.6437 0.3078 0.0314 9.8027 0.8100
0.9 0.6475 6.6660 0.3238 0.0225 14.3864 0.8844

Substituting these definitions into Eq. (6) and setting the left and
right hand sides equal yields

Q(H) = H4(a4 + a3c − a3b − a2bc)
(3 + Γ 2)
(4c+)

+ H3(a3 + a2c − a2b − abc)
(3 + Γ 2)

2c+

+ H2
(

−a2

2(2c+ + Γ )
+

{
−

3 + Γ 2

12c2+

3c2
+

+ 1
2c+ + Γ

+
3 + Γ 2

4c+

}
× (a2 + ac − ab − bc)

)
+ H

(
c+a −

3 + Γ 2

3(2c+ + Γ )(a + b − c)
+ Γ a

)
− c+ = 0.

(8)

HereQ(H) is a fourth-order polynomial in H , and by fixing the val-
ues ofm andΓ (8) can be solvednumerically in the interval [0, 1] to
obtain the maximum admissible waveheight for the cnoidal wave,
Hmax cnoidal(m, Γ ).

Tables 2, 3 and 4 list the values of m and the corresponding
Hmax cnoidal for three different vorticity valuesΓ = 0, −0.1 and 0.1.
This is in agreement with the results of [23] in the absence of
shear flow. These tables also list the corresponding values of λ,

Fig. 3. Maximum allowable waveheight for the cnoidal solution as a function of the
elliptic parameterm for Γ = 0.1, 0, −0.1.

α, β and Stokes number S defined to be the ratio α/β . Fig. 3
shows a plot of maximum allowable waveheight of the cnoidal
wave as a function of elliptic parameter m for different vorticity
constants Γ = 0.1, 0 and − 0.1. It can be seen that Hmax cnoidal
approaches zero as m approaches zero, i.e. in the linear limit. The
maximum allowable waveheight of the cnoidal wave as a function
of wavelength (λ) for the values Γ = 0.1, 0 and − 0.1 are shown
in Fig. 4.

Fig. 5 shows a plot of maximum allowable waveheight of the
cnoidal wave as a function of Γ for different elliptic parameters
m = 0.1 and m = 0.8. It can be seen from Fig. 5 that for favorable
case of shear flow (Γ ≤ 0) the maximum allowable waveheight
for the cnoidal solution is increasing with larger values of vortic-
ity. Similar patterns can be found for other elliptic parameters m
between 0 and 1.

Fig. 6 shows the wavelength corresponding to the maximum
allowable waveheight for the critical cnoidal solution as a function
of Γ for elliptic parameters m = 0.1 and m = 0.8. This figure
shows that negative Γ leads to longer critical wavelength and
positive Γ leads to shorter critical wavelength.

5. Conclusion

In this article, a derivation of the KdV equation as a model
for surface water waves in the presence of a background shear
flow has been given. The derivation also led to expressions for
the velocity field in terms of the dependent variable η(x, t). Us-
ing the horizontal component of the velocity field, solitary and
cnoidal wave solutions were examined with respect to possible
incipient wave breaking. Concerning the solitary wave solutions,
the computations have been performed for various values of the
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vorticity constantΓ , and the critical waveheight for solitary waves
are tabulated in Table 1. It can be seen from Fig. 2 that the critical
waveheights are increasing with large favorable shear (Γ < 0),
and decreasing with large unfavorable shear (Γ < 0).

For cnoidal waves, the onset of breaking can occur at rather
small waveheights. Indeed, if the elliptic parameter m is small
enough, wave breaking may already occur at nondimensional
waveheights less than 0.2, and with Stokes number near 1 (see
Tables 2, 3 and 4. These results are similar for zero or small values
of background shear Γ , but the effect of the background shear is
similar to the case of the solitarywave in that it can either facilitate
or inhibitwave breaking depending on the sign ofΓ . If the vorticity
is defined as ω = Wx − Uz = −Γ , it can be seen that this finding
is in qualitative agreement with the numerical study [17] where
stagnation points of the full Euler equations were sought.

The results of Section 4 also suggest that in the limit as the
elliptic parameter m approaches 1 the wave breaking condition in
the cnoidal waves approaches the condition for the solitary wave.
On the other hand, for the linear case (m → 0), the cnoidal waves
have negligiblewaveheight, and the criticalwaveheight in this case
indeed tends to 0 for all values of the vorticity constants Γ .

The main finding of the paper is that the presence of a back-
ground shear current may lead to incipient wave breaking for

Fig. 4. Maximum allowable waveheight for the cnoidal solution as a function of
wavelength λ for Γ = 0.1, 0, −0.1.

smaller waveheights than in the irrotational case. It may be pos-
sible to incorporate vorticity into the description of surface waves

Fig. 5. The left panel shows the maximum allowable waveheight for the cnoidal solution as a function of Γ for m = 0.1. The right panel shows the maximum allowable
waveheight for the cnoidal solution as a function of Γ for m = 0.8.

Fig. 6. The left panel shows the wavelength corresponding to the maximum allowable waveheight for the cnoidal solution as a function of Γ for m = 0.1. The right panel
shows the wavelength corresponding to the maximum allowable waveheight for the cnoidal solution as a function of Γ for m = 0.8.
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by Boussinesq or full Euler models in such a way to as match the
tightened breaking criteria advocated in [19,20]. This will be the
subject of further work.
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Appendix A. Derivation of a Boussinesq system with constant
vorticity

In the free-surface wave problem laid out in Section 2, the total
velocity field satisfies the equation

ut +
1
2
▽|u|

2
− u × (▽ × u) + gez = 0, − h0 < z = η.

Defining the vorticity as usual by ω = ▽ × u, and using the fact
that the background flow is time-independent, the equation can
be written as

▽ϕt +
1
2
▽|u|

2
+ gez = u × ω, − h0 < z = η.

As the left-hand side is obviously a gradient, the term u × ωmust
also be the gradient of a function. Following [24] it becomes plain
that u × ω = ▽G, where the function G is given by

G = −Γ

∫ z

−h0

∂φ

∂x
dz −

Γ 2

2
z2.

In order to bring out the difference in scales, non-dimensional
variables are introduced as follows:

x̃ =
x
l
, z̃ =

z
h0

, t̃ =

√
gh0t
l

,

and Γ̃ =
Γ h0
√
gh0

η̃ =
η

a
, φ̃ =

h0

al
√
gh0

φ,

where tilde ˜ denotes non-dimensional variables and h0, l and a
denote a characteristic water depth, wavelength and wave am-
plitude, respectively. The parameter α = a/h0 represents an
amplitude to depth ratio, and the parameter β = h2

0/l
2 represents

a water depth to wavelength ratio. As a result of the scaling the
governing equations and boundary conditions for the irrotational
wave problem read

βφ̃x̃x̃ + φ̃z̃z̃ = 0 − 1 < z̃ < αη̃ (9a)

φ̃z̃ = 0 at z̃ = −1 (9b)

β

{
∂η̃

∂ t̃
+

[
αη̃Γ̃ + α

∂φ̃

∂ x̃

]
∂η̃

∂ x̃

}
= φ̃z̃ at z̃ = αη̃ (9c)

β(φ̃t̃ + η̃) +
αβ

2

[
φ̃x̃ +

Γ̃

α
(αη̃)

]2

+
α

2

[
∂φ̃

∂z

]2

+
β

ag
G = 0 at z̃ = αη̃ (9d)

Nowwe expand the velocity potential φ̃ as an asymptotic series in
the vertical coordinate. We choose the expansion

φ̃ =

∞∑
n=0

(1 + z̃)nφn. (10)

From Eqs. (9a), (9b) and (10), we have

φ̃ = φ0 −
β

2
(1 + z̃)2

∂2φ0

∂ x̃2
+

β2

24
(1 + z̃)4

∂4φ0

∂ x̃4
+ O(β3), (11)

which is a series solution with only one unknown function φ0. We
use the following procedure to find a Boussinesq system of two
evolution equations. We first substitute the asymptotic expression
for φ̃ in the boundary conditions Eqs. (9c) and (9d), and then collect
all terms of zeroth and first order in α and β . We then differentiate
the dynamic boundary condition with respect to x̃ and express the
boundary conditions in terms of the non-dimensional horizontal
velocity at the bottom ∂φ0

∂ x̃ = ṽ. Using these procedures results in
the system

η̃t̃ + ṽx̃ + αΓ̃ η̃η̃x̃ + α(η̃ṽ)x̃ −
β

6
∂3ṽ

∂ x̃3
= O(αβ, β2),

ṽt̃ + η̃x̃ + αṽṽx̃ − Γ̃ ṽx̃ −
β

2
∂3ṽ

∂ x̃2∂ t̃
+

β

6
Γ̃

∂3ṽ

∂ x̃3
= O(αβ, β2).

(12)

Disregarding term of O(αβ, β2) yields the Boussinesq system.

Appendix B. Derivation of the KdV equation with constant vor-
ticity

The Korteweg–de Vries equation is derived from the system
(12) by specializing to a wavemoving to the right. To lowest order,
neglecting the terms of order α and β , the system (12) is

η̃t̃ + ṽx̃ = 0, (13)

ṽt̃ + η̃x̃ − Γ̃ ṽx̃ = 0. (14)

The system can be diagonalized by introducing characteristic co-
ordinates. Indeed, we introduce the new variables r and s defined
by (r, s) = P−1(η̃, ṽ) where

P−1
=

1
1 + c̃2+

(
1 c̃+
c̃+ −1

)
. (15)

With c̃+ =
−Γ̃
2 +

√
Γ̃ 2

4 + 1, and c̃− =
−Γ̃
2 −

√
Γ̃ 2

4 + 1 as the
conjugate of c̃+, the solutions of system (13) are

ṽ(x, t) =
1

1 + c̃2+

[
c̃+η̃0(x − c̃+t) + c̃2

+
ṽ0(x − c̃+t)

− c̃+η̃0(x − c̃−t) + ṽ0(x − c̃−t)
]
,

η̃(x, t) =
1

1 + c̃2+

[
η̃0(x − c̃+t) + c̃+ṽ0(x − c̃+t)

+ c̃2
+
η̃0(x − c̃−t) − c̃+ṽ0(x − c̃−t)

]
.

(16)

The unidirectional KdV equation is derived from the system (12)
by specializing to a wave moving to the right with speed c̃+. We
look for a solution, correct to first order in α and β , in the form

ṽ = c̃+η̃ + αA + βB + O(αβ, β2),

where A and B are functions of η̃ and its x̃ derivatives. Then the
system (12) becomes

c̃+η̃t̃ + c̃2
+
η̃x̃ + α(c̃+Ax + 2c̃2

+
η̃η̃x̃ + Γ̃ c̃+η̃η̃x̃)

+ β(c̃+Bx̃ −
1
6
c̃2
+
η̃x̃x̃x̃) = O(αβ, β2),

c̃+η̃t̃ + c̃2
+
η̃x̃ + α(At̃ + c̃2

+
η̃η̃x̃ − Γ̃ Ax̃)

+ β(Bt̃ −
1
2
c̃+η̃x̃x̃t̃ +

Γ̃

6
c̃+η̃x̃x̃x̃) = O(αβ, β2).
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Since η̃t̃ = −c̃+η̃x̃, all derivatives in the first order terms may be
replaced by −c̃+ times the x derivatives. Then the two equations
are consistent if

A =
−1

2(2c̃+ + Γ̃ )
η̃2, B =

1 + 3c̃2
+

6(2c̃+ + Γ̃ )
η̃x̃x̃.

Hence we have the expression

ṽ = c̃+η̃ + α
−1

2(2c̃+ + Γ̃ )
η̃2

+ β
1 + 3c̃2

+

6(2c̃+ + Γ̃ )
η̃x̃x̃ + O(αβ, β2), (17)

and the equation

η̃t̃ + c̃+η̃x̃ + α
c̃+(3 + Γ̃ 2)
(1 + c̃2+)

η̃η̃x̃ + β
c̃3
+

3(1 + c̃2+)
η̃x̃x̃x̃ = O(αβ, β2).

From Eq. (11), the non-dimensional horizontal velocity becomes

ũ = ṽ −
β

2
(1 + z̃)2

∂2ṽ

∂ x̃2
+ O(β2). (18)

From Eqs. (17) and (18), we have

ũ = c̃+η̃ + α
−1

2(2c̃+ + Γ̃ )
η̃2

+ β
1 + 3c̃2

+

6(2c̃+ + Γ̃ )
η̃x̃x̃

− c̃+
β

2
(1 + z̃)2η̃x̃x̃ + O(αβ, β2).

(19)

After neglecting the second-order terms, the KdV equation and
the second-order expression for the horizontal component of the
velocity field appear.
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