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A long-wave model for the evolution of long waves at the interface of a deep and a shallow 
fluid is put forward. The model allows for a uniform stream in one of the layers, and the 
existence of interfacial capillarity. The model can be used to study the dynamics of the 
interface between liquid CO2 and seawater in the deep ocean, including the evolution of 
the hydrate layer.
If restricted to unidirectional waves the model has the form of a Benjamin-type equation 
found by Benjamin [2]. Steady periodic solutions of the Benjamin equation are found 
using a numerical bifurcation code based on a pseudo-spectral projection. The bifurcation 
patterns are complex, with some branches featuring turning points and secondary 
bifurcations.

© 2019 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the motion of a free interface between two inviscid fluid layers in the presence of interfacial 
tension in the case when one of the fluids features a uniform flow parallel to the interface. The motivation for this problem 
comes from recent suggestions that it might be possible to capture CO2 from combustion processes, and sequester the CO2
in the form of an underwater lake in the deep ocean [10,18]. Given predominant oceanic temperatures, CO2 condenses to 
the liquid phase at a pressure of about 4100 kPa, corresponding to a depth of about 400 m [5,15]. CO2 in liquid form is still 
slightly compressible, and if it is located at depths larger than about 3000 m in the ocean, its density will be greater than 
that of seawater, and there is a possibility for stable storage in a large underwater depression (see Fig. 1).

On the other hand, since the density differential between CO2 and seawater is not great even at very large depths, the 
stability of the interface between the two liquids is a critical issue for secure storage. Otherwise, large-scale perturbations of 
the interface might lead to bubbling up of CO2 and over decades to eventual depletion of the underwater storage site. As it 
turns out, CO2 combines with H2O to form an icelike solid known as hydrate, and the hydrate layer at the interface actually 
contributes to the stability of the interface. While it is sometimes modeled by including capillarity at the interface, recent 
experiments have shown that this approach to modeling the hydrate layer may not be appropriate as the hydrate layer is 
often broken into several pieces by strong wave motion. Nevertheless, significant efforts have been expended to evaluate the 
interfacial tension due to the hydrate layer. For example [21] reports on laboratory experiments under high pressure while 
[5] reports on wavetank experiments at 4000 m depth designed to uncover the nature of the hydrate layer at large depth, 
and [11] investigates the strength of the capillarity in the deep-sea experiments.
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Fig. 1. A lake of liquid CO2 in a depression on the sea floor.

In the current work, we put forward a simple model equation which describes the wave motion at an interface between 
a shallow and a deep fluid. For the sake of being explicit, it is assumed that the upper layer is infinite, and features a 
background current.

We study the case of interfacial waves which are long when compared to the depth of the lower fluid. In this case, 
the problem is readily reduced to relatively simple model equations of Boussinesq type. The equations feature a non-local 
term which arises due to the large depth of the upper fluid. This dispersive term is in competition with the third-order 
term which originates from the inclusion of capillarity. In addition, there is a term which is due to the nonzero background 
stream of the upper fluid which is motivated by the modeling of bottom currents in the ocean.

Since the uniform stream in the upper layer drives waves predominantly in a single direction, it is natural to restrict the 
system to a unidirectional model. If this is done, a single model equation appears. The equation has the form

ηt + ηx + 3

2
ηηx − β Hηxx − γ ηxxx = 0,

for certain values of β and γ which will be obtained in the body of the paper. As it turns out, this equation is similar 
to an equation found by Benjamin [2,12], but the presence of the uniform flow in the upper fluid features prominently in 
one of the coefficients. In order to solve this equation, we resort to a recently published open-source Python solver called
SpecTraVVave [14]. In particular, we analyze the bifurcation diagram for steady solutions of the equation, and show that 
it features a number of interesting features such as turning points, secondary bifurcations and interconnected branches.

2. Problem formulation

The object of study in this work is wave motion in a two-fluid system, separated by a sharp density interface located 
in the undisturbed state at z = 0 in a two-dimensional Cartesian xz-coordinate system. The fluids are assumed to have 
constant but possibly different densities, and the flow to be inviscid and irrotational in each layer. Furthermore, the velocity 
of the basic flow1 is assumed to be zero in the lower layer, while horizontal and uniform in the upper layer. See Fig. 2 for 
a depiction along with a further description of the variables involved.

From the incompressible continuity equation and the assumption of irrotational flow, one finds that the velocity potential 
for each layer must satisfy Laplace’s equation. That is,

�ψ = 0 in η < z < ∞,

�φ = 0 in − h0 < z < η,

together with the requirements that

ψz → 0 if z → ∞, (1)

φz = 0 at z = −h0, (2)

1 We adopt the terminology from [8]. The term basic flow refers to the background flow that is present independent of interface deflection. The term 
disturbed flow then describes the flow that arise due to interface deflection. These two flows are superposed to give a total flow field. The potentials ψ and 
φ that appear represent the unknown disturbed flow field.
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Fig. 2. A schematic of the two-fluid interface problem. In the upper layer, with density ρ2, there is an imposed horizontal shear velocity U . The upper 
layer is assumed to be infinitely deep while the lower layer, with density ρ1, has finite, constant depth h0. The function z = η(x, t) represents the interface 
deflection at position x and time t . For visual clarity the wave amplitude is greatly exaggerated.

for the problem at hand. Condition (1) states that the flow field should remain uniform far from the interface, while eq. 
(2) is the no-penetration boundary condition at the rigid bed. We assume that the variation in the transverse y-direction is 
negligible.

At the fluid interface, the following kinematic and dynamic boundary conditions are imposed:

(a) ηt + (ψx + U )ηx = ψz,

(b) ηt + φxηx = φz,

(c) p1 − p2 = −τηxx,

⎫⎪⎬⎪⎭ at z = η, (3)

where p1 and p2 are the pressures in the fluid layers, measured close to the interface. The variable τ is the interfacial 
tension parameter. The dynamic boundary condition (3c) may be rewritten with the help of a Bernoulli equation as

ρ1

(
gη + φt + 1

2 φ2
x + 1

2 φ2
z

)
− ρ2

(
gη + ψt + 1

2 ψ2
x + Uψx + 1

2 ψ2
z

)
= τ ηxx. (4)

The existence of the interfacial hydrate layer is one of the defining properties of the configuration of a lower layer of 
compressed liquid CO2 and an upper layer of seawater. In a number of works, the existence of the hydrate layer has been 
described mathematically by altering the value of interfacial tension. It will be shown in the next section how this parameter 
can be found approximately using deep-water experiments with a wave flume containing liquid CO2 and a thruster above 
the flume which creates a background current in the ambient seawater.

3. Dispersion relation

To find the linear dispersion relation, we solve the Laplace problems in the upper and lower domains with the boundary 
conditions (1) and (2). In the derivation of the dispersion relation, we take a slightly more general view than above, subject 
use the interface conditions (3a), (3b), (3c), with a background stream U2 instead of U in the upper layer, and a background 
stream U1 in the lower layer. We apply the method of normal modes [16, pp. 469–470] and assume a sinusoidal waveform 
in each layer when the interface is disturbed:

φ(x, z, t) = A1(z)eik(x−ct), ψ(x, z, t) = A2(z)eik(x−ct).

Substitution into the Laplace equations and dividing out the exponential factor results in the two ODEs

d2 A1

dz2
− k2 A1 = 0,

d2 A2

dz2
− k2 A2 = 0,

whose general solutions are found to be

A1(z) = a1e|k|z + b1e−|k|z, A2(z) = a2e|k|z + b2e−|k|z.

With the conditions given in (1) and (2), we require that a2 = 0 and b1 = a1e−2|k|h0 . Now apply the linearized kinematic 
conditions (3a) and (3b) to determine a1 and b2. We assume an interfacial shape of the form η(x, t) = η0eik(x−ct) , and 
thereby obtain

−U1ikη0eik(x−ct) + a1|k|(e|k|z − e−|k|z−2|k|h0)eik(x−ct) = −η0ikceik(x−ct)

= −U2ikη0eik(x−ct) − b2|k|eik(x−ct)−|k|z,

or
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−U1ikη0 + a1|k|(e|k|z − e−|k|z−2|k|h0) = −ikcη0 = −U2ikη0 − b2|k|e−|k|z,

which, at z = 0, simplifies to

−U1ikη0 + a1|k|(1 − e−2|k|h0) = −ikcη0 = −U2ikη0 − b2|k|.
Hence

a1 = i η0
U1 − c

1 − e−2kh0
sgn(k), b2 = i η0(c − U2)sgn(k).

Now substitute the expressions for φ, ψ and η into the linearized dynamic condition (3c) to obtain, after some algebraic 
manipulations, a quadratic equation in the wave speed c:

{ρ1k coth(kh0) + ρ2|k|} c2 − {2ρ1kU1 coth(kh0) + 2ρ2U2|k|} c (5)

+
{
ρ1U 2

1k coth(kh0) + ρ2U 2
2|k| + (ρ2 − ρ1)g − τk2

}
= 0.

Solving this equation for c, we extract the following linear dispersion relation:

c(k) = ρ1U1kθ + ρ2U2|k|
ρ1kθ + ρ2|k| ± 1

ρ1kθ + ρ2|k| (6)

·
{
τk2(ρ1kθ + ρ2|k|) − ρ1ρ2(U1 − U2)

2k|k|θ + (ρ1 − ρ2)(ρ1kθ + ρ2|k|)g
}1/2

,

where θ = coth(kh0).

3.1. Long-wave and short-wave approximations

One can obtain a long-wave or shallow water approximation of the above dispersion relation (5). In this case, k will be 
small,2 and from the expansion of the hyperbolic function in its argument, we find that

(kh0) coth(kh0) = 1 + (kh0)
2

3
+O

(
(kh0)

3
)

≈ 1, (7)

where the approximate equality holds for small kh0. So the long-wave approximation to the dispersion relation (5) is

{ρ1 + ρ2h0|k|} c2 − {2ρ1U1 + 2ρ2h0U2|k|} c +
{
ρ1U 2

1 + ρ2h0U 2
2|k| + (ρ2 − ρ1)h0 g − h0τk2

}
= 0. (8)

For the opposite scenario, the short-wave or deep water approximation, the wave number k is large. In a similar argu-
ment to that given in (7), the hyperbolic function coth(kh0) may be replaced by unity to give

{ρ1k + ρ2|k|} c2 − {2ρ1U1k + 2ρ2U2|k|} c +
{
ρ1U 2

1k + ρ2U 2
2|k| + (ρ2 − ρ1)g − τk2

}
= 0, (9)

which is the short-wave approximation to (5). The corresponding wave speed solutions for the two cases can be extracted 
from (6) by applying the appropriate approximations just described.

3.2. Evaluation of the surface tension parameter

A quantification of the surface tension parameter τ will now be given using deep ocean experiments with liquid CO2
conducted at about 4000 m depth. In these experiments, which were described in detail in [5], a wave flume was lowered 
to the ocean bottom at about 4000 m depth and filled with liquid CO2. A thruster just above the wave flume was run at 
various speeds, simulating the occurrence of ocean shear currents of varying strength. Alternatively, waves were created 
with a wavemaker at one end of the tank. The experiments were investigated at length in [11]. In particular the authors 
aimed at obtaining estimates for the surface tension parameter using the results from runs with the wavemaker, but the 
analysis was somewhat inconclusive. Here, we use the response of the CO2-seawater interface to different thruster settings 
in order to estimate the surface tension parameter.

The thruster experiments described in [5] and [11] can be summarized as follows. If the current in the seawater had a 
small enough velocity, then the flow appeared laminar, while high thruster settings led to a completely turbulent flow. The 
critical shear velocity was found to be Uc = 17.6 cm/s. It is reasonable to assume that the turbulence developed from small 
disturbances via Kelvin–Helmholtz instabilities at the interface and the hydrate layer. Thus, using the critical velocity as a 

2 In shallow water, h0 is small. Throughout this study, we are assuming that the undisturbed lower layer depth h0 is fixed.
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given parameter, one may inspect the dispersion relation (6), and find the corresponding value of the τ which makes the 
velocity Uc = 17.6 cm/s critical.

To get an initial approximation, we assume that instabilities are mainly due to short waves. Moreover, we assume that 
the dominant instability can be captured using a two-dimensional analysis. This assumption depends on the particular 
situation, but will certainly be valid if the transverse variation in the background stream is weak, such as in the wave flume 
experiment under study.

From (9), if the lower layer is quiescent, and the background flow in the upper layer is given by U2 = U , the short wave 
approximation of the dispersion relation is

c = ρ2U

ρ1 + ρ2
± 1

(ρ1 + ρ2)k

{
(ρ1 + ρ2)τk3 − ρ1ρ2U 2k2 + (ρ2

1 − ρ2
2 )gk

} 1
2

(10)

Recalling that the interface Fourier modes are assumed to be of the form η = η0ei(kx−ωt) = η0eik(x−ct) , it is clear that 
imaginary values of c yield solutions with exponential growth. To avoid this, we require that the discriminant from the 
approximate expression (10) satisfy

Dapprox(k) := (ρ1 + ρ2)τk2 − ρ1ρ2U 2k + (ρ2
1 − ρ2

2 )g > 0. (11)

Differentiating Dapprox(k) with respect to k, we find that (11) holds true if

τ = ρ2
1ρ2

2 U 4

4(ρ1 + ρ2)(ρ
2
1 − ρ2

2 )g
. (12)

Using the critical velocity U = Uc , in addition to the values from Table 2, we find from eq. (12) that τ ≈ 0.21. This ap-
proximate value for τ may be used further in the full dispersion relation to obtain a more accurate approximation to the 
interfacial surface tension. This time, instead of differentiating the discriminant in the dispersion relation, denoted by D(k), 
we wrote a Python program to find a value for τ that makes mink D(k) positive and close to zero. Our finding is that

τ ≈ 0.22003 N/m.

Thus this value should be used if the hydrate layer at the interface of seawater and liquid CO2 is to be modeled by interfacial 
capillarity in the conditions of the experiments described in [5] and [11].

4. Derivation of the model equations

We now desire to derive a model system describing long-crested waves on fairly shallow water, and further restrict our 
attention to waves propagating in one direction on the interface between two immiscible fluids. The subsequent derivation 
of the nonlinear equations is similar to the treatment given in [12] and [20, pp. 464–466].

4.1. Nondimensionalization

In order to make the assumptions on the geometry of the domain and the waves visible, and be able to deduce the 
relative order and importance of terms, we perform the following scaling on the variables:

z′ = λZ in η′ < z′ < ∞,

z′ = h0z in −h0 < z′ < η′,

where original variables appear primed. Notice the different scaling used in the two fluid layers. Furthermore, we let

x′ = λx, t′ = λ

c0 v0
t, (13)

and

η′ = aη, φ′ = agλv0

c0
φ, ψ ′ = agλv0

c0
ψ, (14)

where c0 =√gh0 is the limiting shallow water wave speed, and v2
0 = 1 − ρ2

ρ1
. We also introduce the parameters

ε = h0

λ
, σ = a

h0
, μ = τ

(ρ1 − ρ2)gλ2
,

where ε, σ , μ are assumed to be small and of the same order. The parameter μ is similar to that of a reciprocal Bond 
number, and displays the relative importance of capillary effects versus gravity effects.
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In normalized variables, the two kinematic boundary conditions (3a), (3b) are converted to

ηt +
(
σψx + U

c0 v0

)
ηx = 1

ε
ψZ , (15)

ηt + σφxηx = 1

ε2
φz. (16)

The dynamic condition (4), after collecting terms and dividing out common factors, becomes

η + φt + 1

2
σφ2

x + 1

2

σ

ε2
φ2

z − ρ2

ρ1

{
ψt + 1

2
σψ2

x + 1

2
σψ2

Z + U

c0 v0
ψx

}
− μηxx = 0. (17)

4.2. Nonlinear system of equations

Subtracting eq. (16) from eq. (15) and rearranging, we get

ψZ = 1

ε
φz + ε

U

c0 v0
ηx +O(εσ ), Z = εση. (18)

In conjunction with the developments given in [20, pp. 460–466], we now desire to write a formal expansion for φ in 
powers of the vertical coordinate z, in our case about z = −1:

φ =
∞∑

n=0

(z + 1)n fn(x, t).

Substitution into the normalized Laplace equation ε2φxx +φzz = 0 and the boundary condition φz(z = −1) = 0 at the bottom 
of the lower layer give3

φ =
∞∑

n=0

(−1)n ε2n

(2n)! (z + 1)2n ∂2n

∂x2n
f (x, t) = f − 1

2
ε2(z + 1)2 fxx +O(ε4),

where f0 is now labeled f . This expression for φ gives

φz = −ε2(z + 1) fxx +O(ε4). (19)

Hence, from (18) we get

ψZ = −ε(1 + ση) fxx + ε
U

c0 v0
ηx +O(ε2, εσ ), Z = εση. (20)

We are then left with the Laplace equation for ψ . With the condition (20), the following elliptic problem appears{
�ψ = 0, Z > εση,

ψZ = −ε(1 + ση) fxx + ε U
c0 v0

ηx +O(ε2, εσ ), Z = εση.
(21)

Expanding the boundary condition function ψZ in a Taylor series about Z = 0 allows the problem (21) to be shifted to the 
more tractable half-plane problem{

�ψ = 0, Z > 0,

ψZ = −ε fxx + ε U
c0 v0

ηx +O(ε2, εσ ), Z = 0.
(22)

The solution of this upper half-plane Neumann problem is given by

ψ = −εH
(

∂−1
x P (Z)

[
fxx − U

c0 v0
ηx

])
+O(ε2, εσ ),

where H is the Hilbert transform, which is defined by

H[ f ](x) = p.v.
1

π

∞∫
−∞

f (x − y)

y
dy,

3 All the terms of odd power vanish by virtue of the bottom layer boundary condition.
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with p.v. denoting the Cauchy principal value. Throughout this paper, the Hilbert transform is taken in the spatial variable 
x ∈R. The notation P (·) signifies a Poisson integral operator for the upper half-plane. Furthermore, we obtain

ψ(Z = 0) = −εH
(

fx − U

c0 v0
η

)
+O(ε2, εσ ),

and

ψx(Z = 0) = −εH
(

fxx − U

c0 v0
ηx

)
+O(ε2, εσ ).

To briefly summarize, we have that, at the interface

φt = ft +O(ε2), φx = fx +O(ε2), φz = −ε2(1 + ση) fxx,

ψt = −εH
(

fxt − U

c0 v0
ηt

)
+O(ε2, εσ ),ψx = −εH

(
fxx − U

c0 v0
ηx

)
+O(ε2, εσ ), ψZ = O(ε).

Substitution of these expressions into the normalized dynamic condition (17) gives

η + ft + 1

2
σ f 2

x + ε
ρ2

ρ1
H
(

fxt − U

c0 v0
ηt + U

c0 v0
fxx − U 2

c2
0 v2

0

ηx

)
− μηxx = O(ε2, εσ ,σ 2, ...).

Differentiating with respect to x and writing w = fx yields

ηx + wt + σ w wx + ε
ρ2

ρ1
H
(

wxt − U

c0 v0
ηxt + U

c0 v0
wxx − U 2

c2
0 v2

0

ηxx

)
− μηxxx = O(ε2, εσ ,σ 2, ...). (23)

From this, it is evident that ηx + wt =O(ε, μ, σ). Assuming that differentiation and the application of H does not alter this 
order relation (cf. [12, p. 172]), we have

Hwxt = −Hηxx +O(ε,μ,σ ). (24)

Also, from the kinematic condition (16),

ηt + σ(w +O(ε2))ηx + (1 + ση)wx +O(ε2) = 0.

This gives ηt + wx =O(ε2, σ) and, under the same assumptions leading to (24),

Hηxt = −Hwxx +O(ε2,σ ). (25)

Substitution of (24) and (25) into (23) results in

ηx + wt + σ w wx + ε
ρ2

ρ1
H
(

2
U

c0 v0
wxx − ηxx − U 2

c2
0 v2

0

ηxx

)
− μηxxx = O(ε2, εσ ,σ 2, ...)

Neglecting terms of quadratic and higher order in ε, σ and μ, we obtain the system⎧⎨⎩ηx + wt + σ w wx + ε ρ2
ρ1

(
2U

c0 v0
Hwxx −Hηxx − U 2

c2
0 v2

0
Hηxx

)
− μηxxx = 0,

ηt + wx + σ(ηw)x = 0.

(26)

Changing back to dimensional variables, the model system (26) becomes{
gv2

0ηx + wt + w wx + ρ2
ρ1

(
2Uh0Hwxx − c2

0 v2
0Hηxx − U 2Hηxx

)− τ
ρ1

ηxxx = 0,

ηt + h0 wx + (ηw)x = 0.
(27)

It can be seen that the dispersion relation of the linearized system is the same as the expression (8) obtained for the 
linearized full problem.
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4.3. Unidirectional wave propagation

As already mentioned, our intention is to derive a simple model equation for waves propagating in a single direction, so 
let us restrict our attention to waves propagating to the right. The nondimensional system (26) will serve as the outset for 
our development. To find solutions to first order in ε, σ and μ we propose the ansatz (cf. [12, p. 173])

w = η + εA + σ B + μC

where A, B and C are functions of η and its derivatives. Substituting this expression into the nondimensional system (26)
and disregarding higher order terms, we get⎧⎨⎩ηt + ηx + ε

[
At − ρ2

ρ1

(
U

c0 v0
− 1
)2

Hηxx

]
+ σ (Bt + ηηx) + μ(Ct − ηxxx) = 0,

ηt + ηx + εAx + σ (Bx + 2ηηx) + μCx = 0.

(28)

Because A = A(η, ηt , ηx....), we may replace At by −Ax to quadratic order in ε, and similarly for B and C . Doing so, the 
system (28) becomes⎧⎨⎩ηt + ηx + ε

[
−Ax − ρ2

ρ1

(
U

c0 v0
− 1
)2

Hηxx

]
+ σ (−Bx + ηηx) + μ(−Cx − ηxxx) = 0,

ηt + ηx + εAx + σ (Bx + 2ηηx) + μCx = 0,

(29)

after higher order terms have been neglected. For consistency between the equations in (29), we require

Ax = −Ax − ρ2

ρ1

(
U

c0 v0
− 1

)2

Hηxx,

Bx + 2ηηx = −Bx + ηηx,

Cx = −Cx − ηxxx,

which after rearrangement and integration gives

A = −1

2

ρ2

ρ1

(
U

c0 v0
− 1

)2

Hηx, B = −1

4
η2, C = −1

2
ηxx.

Consequently,

w = η − ε
1

2

ρ2

ρ1

(
U

c0 v0
− 1

)2

Hηx − 1

4
ση2 − 1

2
μηxx.

Substituting this expression for w into the second equation in (26) and dropping quadratic terms, we obtain the model 
equation

ηt + ηx + σ
3

2
ηηx − ε

1

2

ρ2

ρ1

(
U

c0 v0
− 1

)2

Hηxx − μ
1

2
ηxxx = 0. (30)

In equation (30), the quantities ε, σ and μ are unknown (they contain the unknown wave parameters a and λ). To circum-
vent this issue for the purpose of studying the equation numerically, we will subsequently return to dimensional variables 
and from there apply a second normalization. The model equation (30) in dimensional variables takes the form

1

c0 v0
ηt + ηx + 1

h0

3

2
ηηx − h0

1

2

ρ2

ρ1

(
U

c0 v0
− 1

)2

Hηxx − 1

2

τ

(ρ1 − ρ2)g
ηxxx = 0. (31)

We now apply a normalization similar to that given in [4]. As before, original variables appear with a prime.

x′ = h0x, z′ = h0z, η′ = h0η, t′ = h0

c0 v0
t.

Substituting these expressions into (31) and applying the chain rule of differentiation, we finally arrive at the model equa-
tion

ηt + ηx + 3

2
ηηx − β Hηxx − γ ηxxx = 0, (32)

where
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β = 1

2

ρ2

ρ1

(
U

c0 v0
− 1

)2

, γ = 1

2

τ

(ρ1 − ρ2)gh2
0

. (33)

Equation (32) is actually the so-called Benjamin equation which was found in [2], and treated subsequently in [6,7,12–14]. 
The main difference is the dependence of the coefficient for the nonlocal term on the velocity of the background flow. As 
it turns out, this dependence has major implications, as it can completely change the nature of the equation, if for example 
the coefficient vanishes. Note that if γ vanishes, the Benjamin–Ono equation appears. This equation was introduced in [1].

5. Numerical method

In this section, the numerical procedure for approximating traveling wave solutions of eq. (32) is presented. The scheme 
is a spectral collocation method combined with a numerical continuation procedure for solving the nonlinear algebraic 
system that arise, and is implemented in a Python-based solver called SpecTraVVave. We will here elucidate the main 
features of the numerical method used in the package, briefly repeating what is presented in [14] to make the current 
discussion comprehensive. More details on workflow and class descriptions can be found in the source just cited and in the 
online repository [17].

5.1. Preamble

The package SpecTraVVave is written to tackle nonlinear dispersive equations of the general form

ut + [ f (u)]x +L[ux] = 0, (34)

where L is a linear, self-adjoint operator, and f : R → R satisfies f (0) = f ′(0) = 0, in addition to some growth conditions 
[14, p. 3]. Furthermore, we regard L as a Fourier multiplier operator. That is,

L̂[u](ξ) = α(ξ )̂u(ξ). (35)

Our model equation (32) falls into this category, with

f (u) = 3

4
u2, L = 1 − β H ∂x − γ ∂2

x , (36)

where β and γ are as defined in (33). The so-called flux function f and the multiplier function (or symbol) α are needed 
to run the solver. Using that ∂̂xu(ξ) = iξ û(ξ), and Ĥu(ξ) = −i sgn(ξ )̂u(ξ) (cf. [14, p. 2]), it is not difficult to derive that

α(ξ) = 1 − β|ξ | + γ ξ2 (37)

for the model equation (32).

5.2. Spectral collocation

The material presented here is analogous to that found in [14] and in [9]. As mentioned in the latter citation, since L is 
a Fourier multiplier operator, it is ideal to use a Fourier basis in the spectral method. The cited literature cover models like 
the Whitham equation, the Benjamin–Ono equation and the Benjamin equation. Our model equation is a type of Benjamin 
equation [2].

We are interested in computing traveling wave solutions of (34), i.e. solutions in the form

u(x, t) = φ(w), w = x − ct. (38)

Substitution into (34) and applying the chain rule gives

−c
dφ

dw
+ d

dw
[ f (φ)] +L

dφ

dw
= 0. (39)

Integrating once with respect to w yields

−cφ + f (φ) +Lφ = B, (40)

where B is a constant of integration.
We will further restrict our attention to even periodic solutions of (34). As pointed out in [14, p. 3] this allows us to use 

a cosine collocation instead of a collocation founded on a more general Fourier basis. Also, because our solutions are even, 
the method will only need to compute half a solution profile, with the other half constructed by virtue of symmetry.

To be specific regarding the spectral projection, we desire to find approximate solutions in the space

SN = spanR

{
cos(κlx): κl = 2π

L l, 0 < l < N − 1
}

⊂ L2(0, L). (41)
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The domain is discretized with the collocation points

xn = L

2

2n − 1

2N
, 1 ≤ n ≤ N. (42)

We then look for a function φN ∈ SN satisfying the equation

−c φN(xn) + f (φN)(xn) +LN [φN ](xn) = 0 (43)

at each collocation point xn , yielding a nonlinear algebraic system of N equations in N unknowns,

F (φN , c) = 0, F : RN+1 →RN , (44)

which can be solved using Newton’s method. As φN is a linear combination of cosines, i.e.

φN(x) =
N−1∑
l=0

ζl cos(κlx), (45)

its coefficients ζl can be computed using the discrete cosine transform (DCT), yielding

ζ0 = 1

N
C0, ζl = 2

N
Cl, l = 1, ..., N − 1, (46)

where the DCT {Cl}N−1
l=0 consists of

Cl :=
N−1∑
n=0

φN(xn+1) cos
( π

2N
(2n + 1)l

)
=

N∑
n=1

φN(xn) cos(κlxn), l = 0, ..., N − 1.

In (43), LN is a discrete version of the operator L. Because L is linear, and because eq. (43) is enforced at the N collocation 
points, we can evaluate the terms LN [φN ](xn) using matrix multiplication. More specifically, we have that

LN [φN ](xi) =
N∑

j=1

LN(i, j)φN(x j), (47)

where LN(i, j) is the matrix defined by

LN(i, j) = 1

N
α(0) + 2

N

N−1∑
l=1

α(κl) cos(κlxi) cos(κlx j). (48)

In (48), α(·) is the Fourier multiplier function of the operator L, as defined in eq. (35).

5.3. Numerical continuation and bifurcation branch navigation

SpecTraVVave employs a continuation procedure to compute the next solutions of the system (50) and navigate the 
bifurcation branches. To deal with turning points on the bifurcation curve, both the phase speed and the wave amplitude 
are assumed to be depending on some parameter, say

a = a(θ), c = c(θ). (49)

The parameter θ is unknown and is to be computed from the extended nonlinear system

F

⎛⎜⎜⎜⎜⎜⎜⎜⎝

φN(x1)

φN(x2)
...

φN(xN)

B
θ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−c φN(x1) + f (φN)(x1) +LN [φN ](x1) − B
−c φN(x2) + f (φN)(x2) +LN [φN ](x2) − B

...

−c φN(xN) + f (φN)(xN) +LN [φN ](xN ) − B
�(φN ,a, c, B)

φN(x1) − φN(xN ) − a

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(50)

In the system (50), �(φN , a, c, B) is the boundary condition, and the SpecTraVVave package offers several choices that 
can be employed. For our study, we will employ the so-called Mean() boundary condition. That is, the condition that the 
mean of a solution be zero over the region of interest. This choice has roots in the physics of the problem: The mean of a 
solution profile over, say, a wavelength will have to be zero due to mass conservation (no fluid leaving the lower region, and 
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Table 1
Physical parameters and their values.

Parameter Value Units Description

g 9.81 m/s2 acceleration of gravity
h0 0.11 m lower layer depth (cf. [11])
ρ1 1077.0 kg/m3 lower layer density (cf. [11])
ρ2 1045.7 kg/m3 upper layer density (cf. [5])
Uc 0.176 m/s critical shear velocity (cf. [11])

Fig. 3. Multiple connecting bifurcation curves for shear velocity U = 2c0 v0 and parameter values from Table 1, with wave profile at each point of connection. 
Upper left panel: The branches connect at the points A = (0.2918, 1.271), B = (0.6102, 2.126) and C = (0.8471, 2.795). Upper right panel: Wave profiles 
at the connection point A for wave numbers k3 = 1.85 (dashed) and k∗

3 = 14.8 (solid). Lower left panel: Wave profiles at the connection point B , for wave 
numbers k2 = 1.30 (dashed) and k∗

2 = 15.6 (solid). This plot is zoomed in, to give an enhanced view of the overlapping profiles. Lower right panel: Wave 
profiles at the connection point C , for wave numbers k1 = 0.95 (dashed) and k∗

1 = 16.15 (solid).

interface is initially at rest). The numerical continuation works in a predictor–corrector fashion. From two successive points 
on the bifurcation curve,

P1 = (c1,a1), P2 = (c2,a2),

i.e. two solutions of (50), we compute the direction vector

d = (c2 − c1,a2 − a1) = (dc,da). (51)

We proceed to an initial guess P3 for the next solution by moving a small increment s from P2 in the direction d:

P3 = P2 + s · d = (c2 + s · dc,a2 + s · da). (52)

This is the prediction step. Further, we require the solution P∗ to lay on the line orthogonal to the one spanned by d:

P∗ = P3 + θ · d⊥ = (c3 + θ · dc⊥,a3 + θ · da⊥
)
, dc⊥ = −da, da⊥ = dc . (53)

Note that the collocation algorithm described above is not optimal from the point of view of computational complexity. 
Indeed, one may use a pseudo-spectral algorithm in order to speed up the computations. A number of examples pertaining 
to similar equations and also more complex situations may be found in [22].
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Table 2
Errors for the KdV equation.

Grid size log10(||uexact − u||)L2 log10(||uexact − u||)L∞ Ratio of successive L2 errors

32 −2.30473 −1.55271
64 −3.39842 −2.50547 12.407
128 −6.98265 −6.06670 3839.085

Fig. 4. Bifurcation branches and selected solution profiles for the case U = c0 v0 +0.1, with wave numbers running from 0.05 to 1.00. Upper left panel shows 
a variety of branches. Upper right panel shows a close-up on one of the turning branches. Point A on the branch has approximate coordinates (0.963, 0.250), 
and B has approximate coordinates (0.957, 0.227). The lower left panel shows the solution profile at the point A. The lower right panel shows the solution 
profile at the point B.

6. Numerical results

In the special case when U = c0 v0, our derived model equation (32) reduces to the KdV-type equation

ut + ux + 3

2
uux − γ uxxx = 0, (54)

which is well-known for being an exactly integrable equation, with solitary wave solutions

u(x, t) = 2(c − 1) sech2

(
1

2

√
1 − c

γ
(x − ct − x0)

)
. (55)

Having an exact solution at our disposal, it is desirable to test the accuracy and implementation of the numerical routine. 
Table 1 summarizes our findings.

It can be seen the convergence is rather quick, in fact exponential, with increasing grid size. This is to be expected since 
exponential convergence of spectral schemes is a hallmark of solutions which have a domain of analyticity bounded away 
from the real axis [3]. In the case of nonzero capillarity, exact solutions are not available, and in our computations we aimed 
for a residual of equation (43) on the order of 10−8, though smaller tolerances would also be possible.

We then did multiple runs to find steady solutions of equation (32) with different values of the shear velocity U , and 
with a wide range of admissible wavelengths L (corresponding for the most part to positive speed c). A plot like that in 
Fig. 3(a) was a typical result, showing three terminating and connecting bifurcation branches, and the wave profiles at 
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Fig. 5. Bifurcation branches and solution profiles for the KdV-type equation. No turning or terminating curves are present. The left panel shows typical 
bifurcation branch plots for the KdV case U = c0 v0, with wave numbers ranging from 0.05 to 1.00. The right panel shows a numerical KdV solution at the 
end of the branch corresponding to k = 0.5.

the points of connection. Note that the bifurcation points are obtained from the usual linear phase speed c = α(ξ), where 
ξ = 2π/L is the wave number, and α(ξ) is given by (37). As can be seen in Fig. 3, for pairs of wavenumbers k and k∗ which 
are multiples of one another, the bifurcation branches first cross without connecting, and then connect giving evidence to 
secondary bifurcations. The branches emanating from the wavenumbers k are gravity branches, which do not show signs of 
termination, though it should be noted that large-amplitude solutions are not physical. In contrast, the branches emanating 
from k∗ are capillary-gravity branches, which show completely different behavior. These branches feature multiple turning 
points and eventually terminate by connecting to a pure gravity branch of the requisite wavenumber. Similar bifurcation 
patterns were found in [19]. Note that manual intervention was necessary if the bifurcation was to be continued beyond 
such a secondary bifurcation. The KdV case U = c0 v0 did not display such behavior, but values close to the critical value of 
c0 v0 did show terminating branches and secondary bifurcations.

It was then natural to pose the question of whether this is unique behavior for the KdV-type equation, i.e. that the 
non-termination of branches is a closed condition to the KdV case. Investigating this issue further, our numerical findings 
point to a conclusion of a closed condition, as secondary bifurcations appear as soon as the nonlocal operator has a non-zero 
coefficient. For example, Fig. 4 shows the case U = c0 v0 + 0.1, and it is clear that secondary bifurcations occur. The lower 
right panel of Fig. 4 shows the solution profile at point B, which clearly connects to a branch of smaller fundamental 
wavelength.

While the secondary bifurcations always happen for large-amplitude solutions, this phenomenon is probably connected 
with the fact that for all values of U except U = c0 v0, the dispersion curve is non-monotone. However, the precise manner 
in which this property of the linearized equation manifests itself far up in the strongly nonlinear regime in the bifurcation 
branch is not yet fully understood. (See Fig. 5.)

Another open problem is whether or not these bifurcation curves have an impact on the dynamic stability of these 
profiles. This issue is of major importance to the original question of whether large underwater lakes can stabilized by the 
hydrate layer, and at what depth one may consider underwater storage of CO2 safe. The stability of the profiles obtained 
here will be the subject of future investigations.
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