Research Project for the Toppforsk-programme:
Coincidence Analysis

Coincidence Analysis is a member of the family of configurational comparative methods (CCMs) of causal data analysis—also known as set-theoretic or Boolean methods. Since the late 1980ies CCMs have gradually been added to the methodological toolkit in disciplines as diverse as political science, sociology, business administration, management, environmental science, evaluation science, and public health. The most prominent CCM is Qualitative Comparative Analysis (QCA) (Ragin 2008). QCA, however, is unsuited to analyze causal structures with more than one endogenous variable, e.g. structures with common causes or causal chains. To overcome that restriction, Coincidence Analysis (CNA) has been first introduced in Baumgartner (2009a, 2009b). It has meanwhile been generalized in Baumgartner & Ambuehl (2020) and is available as software package for the R environment (Ambuehl & Baumgartner 2020).

This project has three objectives. The first is to fill all remaining gaps in the methodological protocol of CNA and to complement the CNA R-package accordingly. In particular, tools for robustness tests of CNA models shall be developed. The second objective is to systematically test the inferential potential of CNA by applying it to real-life studies from varying disciplines and, thereby, to explore the applicability of CNA outside of the standard domain of CCMs. The third objective is to analyze the relationship between CNA and methods from other theoretical traditions—in particular Bayes-nets methods (cf. Spirtes et al. 2000; Pearl 2000) and regression-analytical methods (Gelman and Hill 2007). Are there substantive points of contact between these methodological traditions? Are there ways to fruitfully integrate them in multi-method studies? What are the conditions that determine what method is best suited to investigate a given phenomenon or to answer a given research question?

Collaborators on this project:

Further Ongoing Projects

A Bayesian Theory of Constitution

The goal of this project is to develop a Bayesian theory of constitution that identifies as constituents those spatiotemporal parts of a phenomenon whose causal roles contain the phenomenon’s causal role. By drawing on the conceptual resources of Bayesian networks, the project should pave the way for a Bayesian methodology for constitutional discovery. Collaborator: Lorenzo Casini.

Is it Possible to Generate Empirical Evidence for the Existence of Macro-To-Micro Causation?

In recent years, numerous non-reductive physicalists (e.g. Shapiro, Sober, Raatikainen, Menzies) have argued that, by adopting a variant of Woodward’s (2003) popular interventionist theory of causation, it becomes possible to provide empirical evidence in favor of the existence of macro-to-micro downward causation. This projects intends to show that all of these proposals are bound to fail, for it is impossible, in principle, to generate evidence for downward causation. The question as to the existence of macro-to-micro causation is of inherently pragmatic nature.