Plasma vitamin B-6 forms and their relation to transsulfuration metabolites in a large, population-based study

Øivind Midttun, Steinar Hustad, Jørn Schneede, Stein E Vollset, and Per M Ueland

ABSTRACT

Background: Vitamin B-6 exists in different forms; one of those forms, pyridoxal 5′-phosphate (PLP), serves a cofactor in many enzyme reactions, including the transsulfuration pathway, in which homocysteine is converted to cystathionine and then to cysteine. Data on the relations between indexes of vitamin B-6 status and transsulfuration metabolites in plasma are sparse and conflicting.

Objective: We investigated the distribution and associations of various vitamin B-6 species in plasma and their relation to plasma concentrations of transsulfuration metabolites.

Design: Nonfasting blood samples from 10 601 healthy subjects with a mean age of 56.4 y were analyzed for all known vitamin B-6 vitamers, folate, cobalamin, riboflavin, total homocysteine, cystathionine, total cysteine, methionine, and creatinine. All subjects were genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C→T polymorphism.

Results: Plasma concentrations of the main vitamin B-6 vitamers—PLP, pyridoxal, and 4-pyridoxic acid—were strongly correlated. Among the vitamin B-6 vitamers, PLP showed the strongest and most consistent inverse relation to total homocysteine and cystathionine, but the dose response was different for the 2 metabolites. The PLP–total homocysteine relation was significant only in the lowest quartile of the vitamin B-6 distribution and was strongest in subjects with the MTHFR 677TT genotype, whereas cystathionine showed a graded response throughout the range of vitamin B-6 vitamer concentrations, and the effect was not modified by the MTHFR 677C→T genotype.

Conclusion: This large population-based study provided precise estimates of the relation between plasma concentrations of vitamin B-6 forms and transsulfuration metabolites as modified by the MTHFR 677C→T genotype.

KEY WORDS Vitamin B-6, homocysteine, cystathionine, cysteine, methylenetetrahydrofolate reductase, transsulfuration

INTRODUCTION

Vitamin B-6 is a versatile enzyme cofactor that is involved in ≈100 enzymatic reactions (1). Vitamin B-6 exists in 7 forms: pyridoxine, pyridoxine 5′-phosphate (PNP), pyridoxal, pyridoxal 5′-phosphate (PLP), pyridoxamine, pyridoxamine 5′-phosphate (PMP), and the catabolite 4-pyridoxic acid (PA). Pyridoxal and PLP are the major vitamin B-6 forms obtained from animal food products, whereas pyridoxine, pyridoxamine, PNP, and PMP are the main forms obtained from plants (1). Pyridoxine is also the form given as vitamin B-6 supplement. Vitamin B-6 is absorbed in the jejunum and metabolized in the liver (2), which releases PLP (3) with pyridoxal and PA (2) into the circulation. The major catabolic pathway in humans is the hydrolysis of the metabolically active form PLP to pyridoxal, which is followed by oxidation to PA (4).

Orally supplemented pyridoxine is absorbed quickly, which results in a plasma pyridoxine peak that disappears in a few hours (2, 5, 6), strong increases in plasma pyridoxal (2, 5, 7, 8) and PA (2, 5, 7) that normalize in several hours, and an increase in plasma PLP that lasts >24 h (2, 5, 7–9). PLP, pyridoxal, and PA are the major vitamin B-6 forms in plasma (10–12), where most PLP (3), and some pyridoxal—but no PA or pyridoxine—are protein-bound (13). Free plasma pyridoxal but not protein-bound PLP can cross cell membranes (3, 14, 15). Once inside the cell, pyridoxal may be converted to PLP, which is the metabolically active form (1). Plasma PLP is the most commonly used vitamin B-6 index (14, 16, 17). However, pyridoxal (14, 18, 19) and the combinations PLP plus pyridoxal (14, 20) and PLP plus PA (21–23) have also been suggested as useful markers of vitamin B-6 status.

PLP serves as cofactor in both steps in the transsulfuration pathway, in which cystathionine β-synthase and cystathionine γ-lyase convert homocysteine to cystathionine and then to cysteine (24). An inverse relation between plasma PLP and total homocysteine (tHcy) in nonfasting (25) and fasting (23, 26) subjects has been reported by some authors, but most found no such relation (27–35). Similarly, some studies reported a tHcy-lowering effect of pyridoxine supplementation (36, 37), but most investigators found no such effect in fasting (29, 33, 38–45) or nonfasting (46) subjects. An inverse relation between plasma cystathionine and PLP during fasting was reported (35), and both
fasting (32) and nonfasting (46) plasma cystathionine concentra-
tions were reduced by pyridoxine supplementation. Studies of the
relation of plasma PLP (23, 35, 47) and pyridoxine supplementation
(32, 43) to total cysteine (tCys) has been negative.

The enzyme methylenetetrahydrofolate reductase (MTHFR; EC
1.5.1.20) catalyzes the irreversible conversion of 5,10—methy-
lenetetrahydrofolate to 5-methyltetrahydrofolate, which serves as
methyl donor in the remethylation of homocysteine to methi-
onine. Homozygosity for the common MTHFR 677C→T poly-
morphism is associated with higher plasma tHcy concentrations
(48) and stronger inverse relations of plasma tHcy with folate,
vitamin B-12, riboflavin (48), and possibly also with PLP (49).

This report focuses on the concentrations and interrelations of
all forms of vitamin B-6 and on the relations of the major vitamin
B-6 forms with plasma tHcy and its transsulfuration metabolites
cystathionine and cysteine. We also investigated the possible
effect modification by the MTHFR 677C→T genotype. The study was
carried out in a large cohort of healthy Norwegian subjects.

SUBJECTS AND METHODS

Subjects and recruitment

The present study includes 10 601 healthy subjects from the
Norwegian Colorectal Cancer Prevention cohort (50) who were
randomly selected from the population registries of Oslo and
Telemark counties in Norway from 1999 through 2001. All of the
participants (men and women) were 50–64 y old.

Written informed consent was obtained from all participants.
The Regional Ethics Committee and The Data Inspectorate ap-
proved the study protocol.

Blood collection and biochemical analyses

Blood was drawn from nonfasting subjects during normal
working hours at 3 study centers: Ullevål Hospital in Oslo,
Telemark Hospital in Skien, and Rjukan Hospital in Rjukan (all:
Norway). The blood was centrifuged at 1100 × g for 10 min at
23 °C, and serum and plasma (which had been drawn into tubes
containing EDTA) were separated and kept at −80 °C until they
were analyzed.

Plasma tHcy, tCys (51), vitamin B-6 and riboflavin (12), se-
rum folate (52), cobalamin (53) concentrations were measured,
and MTHFR 677C→T genotypes (54) were determined accord-
ing to published methods. Cystathionine was analyzed by includ-
ing it and a deuterated internal standard (d4-cystathionine) in an
existing liquid chromatography–tandem mass spectrometry as-
say (12). Ion pairs were 222.9/133.9 for cystathionine and 226.9/
137.9 for d4-cystathionine. Creatinine and total methionine (sum of
methionine and methionine sulfoxide) were analyzed by including
them and their deuterated internal standards (d3-creatinine and d4-
methionine) in a liquid chromatography–tandem mass spectrom-
etry assay (55) by using the ion pairs 114/44.2, 150.2/104, 166.1/
73.9, 117/47.2, and 154/108, respectively.

Statistical analysis

Concentrations are given as means and medians (5th, 95th
percentiles). Concentration means, age, and sex across geno-
types were compared by linear regression after adjustment
(where appropriate) for age, sex, and study center. Relations
between the vitamin B-6 vitamers PLP, pyridoxal, and PA; other
B vitamins; and metabolites were investigated by using partial
Spearman correlation after adjustment for age, sex, and study
center. The relations between PLP, pyridoxal, and PA were also
presented as scatterplots with lowess regression curves (56) with
the smoother span and delta both set at 0.01.

The relations between the metabolites and various forms of
vitamin B-6 were assessed in multiple linear regression models.
Separate regression models were constructed for each of the
major vitamin B-6 forms. Age was included as a continuous
variable. Categorical variables indicating study center enroll-
ment were used. Vitamin B-6 forms, creatinine, folate, cobal-
amin, riboflavin, and methionine were included as indicator vari-
ables, with one variable used for each concentration quartile. The
regression coefficients estimated the difference in mean tHcy
between the chosen reference category and the other categories.
Mean metabolite concentrations across quartiles of PLP, pyri-
doxal, or PA were also tested for linear trend. We investigated the
possible interaction between the MTHFR 677C→T genotype and a
vitamin B-6 vitamer by including product terms between genotype
and the vitamer concentration in multiple linear regression models
in which the transsulfuration metabolites served as the dependent
variable; all primary variables were retained in the model. Tests
were 2-tailed, and P < 0.05 was considered significant.

Statistical analyses were performed by using SPSS software
(version 11.0; SPSS, Chicago, IL), except for the lowess regres-
sion, which was computed by using R (57).

RESULTS

Population characteristics

The study population (n = 10 601, 49.2% male) was predom-
inantly (>98%) white and had a mean age of 56.4 y (Table 1).
MTHFR 677C→T genotype frequencies were 51.4%, 40.6%,
and 8.0% for the CC, CT, and TT genotypes, respectively, and
neither sex nor age varied between the genotypes (Table 1).

Vitamin B-6 vitamers

PLP, pyridoxal, and PA were present in all plasma samples.
The concentrations and distribution of these vitamers are sum-
marized in Table 1 and Figure 1. Median (5th, 95th percentiles)
concentrations were 43.7 (16–139), 9.5 (5–39), and 20.3
(10–100) nmol/L for PLP, pyridoxal, and PA, respectively. Only
PLP was related to the MTHFR 677C→T polymorphism, and its
lowest concentrations (as were those of folate) were found in
subjects with the TT genotype (Table 1). The concentration of
PLP ranged from 4 to 1100 nmol/L, whereas pyridoxal and PA
had a wider concentration range of 1 to ∼5000 nmol/L. All 3
species showed a skewed distribution with a long tail in the upper
region, and the distributions became essentially symmetric after
log transformation (Figure 1).

Pyridoxine and pyridoxamine were detected in 1.9% and
0.85% of the samples; their maximum concentrations were 2970
and 465 nmol/L, respectively. PMP and PNP were rarely de-
picted in plasma; if they were present, their concentrations were
always close to the lower limit of quantification of the assay (ie,
0.2 nmol/L for PNP and 4 nmol/L for PMP).

The concentrations of the main species—PLP, pyridoxal, and
PA—were strongly related (Figure 1). The plots of PLP versus
pyridoxal or PA showed the steepest increase at higher PLP
concentrations, whereas pyridoxal and PA had a linear relation

The American Journal of Clinical Nutrition
throughout the range of concentrations. All correlations were highly significant (P < 0.001) but were somewhat stronger between PLP and pyridoxal (Spearman r = 0.80) and between pyridoxal and PA (r = 0.79) than between PLP and PA (r = 0.67) (Table 2).

The vitamin B-6 vitamers showed moderate correlations with folate and riboflavin (r = 0.35–0.45) and a weaker correlation with cobalamin (r = 0.14–0.18). Methionine and creatinine were more strongly associated with PLP and PA, respectively, than with the other vitamin B-6 vitamers (Table 2).

Homocysteine

The median (5th, 95th percentiles) tHcy concentration for all subjects combined was 10.2 (6.8–16.4) μmol/L, and the concentration increased with the number of *MTHFR* 677T alleles (P < 0.001; Table 1). Plasma tHcy was negatively related to folate, cobalamin, and riboflavin (Table 2).

The association of plasma tHcy with either PLP, pyridoxal, or PA was assessed by using multiple regression analyses after...
table 2
Partial Spearman correlation coefficients

<table>
<thead>
<tr>
<th></th>
<th>tHcy</th>
<th>Cystathionine</th>
<th>tCys</th>
<th>PLP</th>
<th>PL</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystathionine</td>
<td>0.15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>tCys</td>
<td>0.37</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PLP</td>
<td>−0.23</td>
<td>−0.11</td>
<td>0.07</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PL</td>
<td>−0.20</td>
<td>−0.16</td>
<td>0.10</td>
<td>0.80</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PA</td>
<td>−0.21</td>
<td>−0.10</td>
<td>0.10</td>
<td>0.67</td>
<td>0.79</td>
<td>—</td>
</tr>
<tr>
<td>Folate</td>
<td>−0.44</td>
<td>−0.20</td>
<td>0.13</td>
<td>0.39</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Cobalamin</td>
<td>−0.24</td>
<td>−0.02</td>
<td>0.08</td>
<td>0.18</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>−0.18</td>
<td>0.003</td>
<td>0.09</td>
<td>0.35</td>
<td>0.39</td>
<td>0.45</td>
</tr>
<tr>
<td>Methionine</td>
<td>−0.07</td>
<td>0.33</td>
<td>−0.02</td>
<td>0.16</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>Creatine</td>
<td>0.20</td>
<td>0.19</td>
<td>0.16</td>
<td>0.07</td>
<td>0.08</td>
<td>0.19</td>
</tr>
</tbody>
</table>

1 Adjusted for age, sex, and study center. n = 10 601. tHcy, total homocysteine; tCys, total cysteine; PLP, pyridoxal 5'-phosphate; PL, pyridoxal; PA, pyridoxic acid. All correlations were significant if not indicated otherwise, P < 0.001.

2 P = 0.09.

3 P = 0.7.

4 P = 0.016.

adjustment for other B vitamins, creatinine, study center, age, and sex (Table 3). Plasma tHcy increased with decreasing concentrations of PLP only in the lowest PLP quartile. Furthermore, the tHcy differences across quartiles were investigated separately in the MTHFR 677C→T genotypes and was most pronounced (2.18 μmol/L) in the TT genotype (P < 0.001 for interaction between PLP and MTHFR). Plasma tHcy was similarly related to pyridoxal and PA, but the associations were in general weaker than those with PLP (Table 3).

Cystathionine and cysteine

The median (5th, 95th percentiles) concentrations for all subjects combined were 0.190 (0.091–0.525) μmol/L for cystathionine and 283.7 (237–338.2) μmol/L for tCys; the concentration of cystathionine did not vary with MTHFR 677C→T genotype, whereas tCys was lowest in the TT group (Table 1). Plasma cystathionine (but not tCys) was higher in men than in women [x (5th, 95th percentiles) concentrations: 0.257 (0.099–0.580) and 0.218 (0.086–0.471) μmol/L, respectively] (P < 0.001). Cystathionine was inversely related to folate, but not to cobalamin or riboflavin, and was positively related to creatine and methionine (Table 2).

We investigated the relations of cystathionine to the vitamin B-6 vitamers by using a multiple regression model similar to that described for tHcy but with additional adjustment for methionine. Plasma cystathionine increased (P for trend ≤ 0.007) with

Table 3
Difference in plasma total homocysteine across quartiles (Q) of vitamin B-6 vitamers and MTHFR 677C→T genotypes

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Upper cutoff</th>
<th>All genotypes (n = 10 576)</th>
<th>CC (n = 5452)</th>
<th>CT (n = 4299)</th>
<th>TT (n = 850)</th>
<th>P²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLP</td>
<td></td>
<td>32.6</td>
<td>0.73 (0.52, 0.95)</td>
<td>0.57 (0.35, 0.79)</td>
<td>0.54 (0.21, 0.87)</td>
<td>2.18 (0.64, 3.72)</td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td>48.0</td>
<td>0.18 (0.02, 0.38)</td>
<td>0.25 (0.05, 0.46)</td>
<td>0.10 (0.20, 0.40)</td>
<td>−0.39 (−1.79, 1.01)</td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td>73.1</td>
<td>0.09 (−0.10, 0.28)</td>
<td>0.17 (−0.03, 0.36)</td>
<td>0.09 (−0.19, 0.37)</td>
<td>−0.46 (−1.81, 0.89)</td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td>< 0.001</td>
<td></td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>PLP</td>
<td></td>
<td>7.5</td>
<td>0.22 (0.01, 0.43)</td>
<td>0.06 (−0.16, 0.28)</td>
<td>0.01 (−0.32, 0.33)</td>
<td>2.03 (0.60, 3.46)</td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td>10.0</td>
<td>−0.14 (−0.34, 0.06)</td>
<td>−0.09 (−0.30, 0.12)</td>
<td>−0.10 (−0.41, 0.20)</td>
<td>−0.46 (−1.85, 0.93)</td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td>14.7</td>
<td>0.00 (−0.19, 0.20)</td>
<td>0.09 (−0.12, 0.29)</td>
<td>0.00 (−0.29, 0.29)</td>
<td>0.10 (−1.24, 1.44)</td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td>< 0.001</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>PLP</td>
<td></td>
<td>15.2</td>
<td>0.34 (0.13, 0.56)</td>
<td>0.29 (0.07, 0.50)</td>
<td>0.34 (0.014, 0.66)</td>
<td>1.41 (−0.07, 2.89)</td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td>20.4</td>
<td>0.03 (−0.18, 0.23)</td>
<td>0.11 (−0.10, 0.32)</td>
<td>−0.01 (−0.32, 0.30)</td>
<td>0.03 (−1.41, 1.47)</td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td>31.7</td>
<td>0.04 (−0.16, 0.23)</td>
<td>0.05 (−0.16, 0.25)</td>
<td>0.01 (−0.29, 0.31)</td>
<td>0.23 (−1.10, 1.55)</td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td>< 0.001</td>
<td></td>
<td>0.05</td>
<td>0.07</td>
</tr>
</tbody>
</table>

1 Comparison of mean values (and 95% CIs) between the highest (referent) quartile (Q4) and each of the other quartiles. MTHFR, methylenetetrahydrofolate reductase; PLP, pyridoxal 5'-phosphate; PL, pyridoxal; PA, pyridoxic acid. Data were obtained by multiple regression with total homocysteine as the dependent variable. The models were adjusted for age, sex, study center, and concentrations of folate, cobalamin, riboflavin, and creatinine.

2 P for interaction between MTHFR 677C→T genotype and vitamin B-6 vitamer.

3 P for trend across quartiles of vitamin B-6 vitamers.
VITAMIN B-6 AND TRANSSULFURATION METABOLITES

TABLE 4
Difference in plasma cystathionine across quartiles (Q) of vitamin B-6 vitamers and MTHFR 677C→T genotypes

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Determinant</th>
<th>Upper cutoff</th>
<th>All genotypes (n = 10,576)</th>
<th>CC (n = 5,452)</th>
<th>CT (n = 4,299)</th>
<th>TT (n = 850)</th>
<th>P²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PLP</td>
<td>nmol/L</td>
<td>nmol/L</td>
<td>nmol/L</td>
<td>nmol/L</td>
<td>nmol/L</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>32.6</td>
<td>47.1 (34.8, 59.3)</td>
<td>41.9 (24.5, 59.2)</td>
<td>52.5 (33.0, 71.9)</td>
<td>40.8 (0.2, 81.4)</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>48.0</td>
<td>33.2 (21.9, 44.4)</td>
<td>37.7 (21.6, 53.8)</td>
<td>30.5 (13.0, 48.1)</td>
<td>17.0 (−19.7, 53.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>73.1</td>
<td>25.5 (14.9, 36.2)</td>
<td>20.1 (4.9, 35.4)</td>
<td>28.4 (11.9, 44.8)</td>
<td>36.5 (1.2, 71.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P¹</td>
<td>< 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | PL | | | | | | |
| P¹ | < 0.001 | | | | | | |

	PA						
Q1	15.2	32.5 (20.5, 44.6)	37.4 (20.2, 54.5)	29.8 (10.7, 48.8)	−0.3 (−38.7, 38.0)	0.24	
Q2	20.4	31.6 (20.1, 43.1)	39.8 (23.2, 56.3)	24.7 (6.7, 42.8)	0.8 (−36.5, 38.1)		
Q3	31.7	22.4 (11.3, 33.5)	22.2 (6.3, 38.1)	26.0 (8.7, 43.4)	−1.5 (−35.9, 32.8)		
P¹	< 0.001						

¹ Comparison of mean values (and 95% CIs) between the highest (referent) quartile (Q4) and each of the other quartiles. MTHFR, methylenetetrahydrofolate reductase; PLP, pyridoxal 5′-phosphate; PL, pyridoxal; PA, pyridoxic acid. Data were obtained by multiple regression with cystathionine as the dependent variable. The models were adjusted for age, sex, study center, and concentrations of folate, cobalamin, riboflavin, creatinine and methionine.

² P for interaction between MTHFR 677C→T genotype and vitamin B-6 vitamer were obtained by including product terms between genotype and the vitamer concentration in the multiple linear regression models.

³ P for trend across quartiles of vitamin B-6 vitamers.

decreasing concentration of PLP, pyridoxal, or PA when investigated in the entire study population (Table 4). There was no significant vitamin B-6 vitamer × genotype interaction (P for interaction > 0.24). Notably, the dose-response relation was different from that observed with tHcy, in that cystathionine concentration decreased throughout the concentration range of PLP, pyridoxal, or PA.

We also investigated the possible relations of tCys to PLP by using multiple regression after adjustment for other B vitamins, creatinine, study center, age, and sex. No such relation was observed (data not shown; P for trend = 0.59).

DISCUSSION

We measured the concentrations of various vitamin B-6 species in human plasma and assessed their relation to the metabolites involved in transsulfuration—homocysteine, cystathionine, and cysteine—in a large population of healthy adults. We found strong correlations between the 3 major vitamin B-6 vitamers—PLP, pyridoxal, and PA—all of which showed a relation to other B vitamins, in particular folate and riboflavin. Vitamin B-6 vitamers, especially PLP, were inversely related to tHcy and cystathionine but not to tCys.

Vitamin B-6

We detected PLP, pyridoxal, and PA in all of the plasma samples, and these vitamer concentrations were strongly correlated. Pyridoxine and pyridoxamine were found in 1.9% and 0.9% of the samples, respectively. The very high PLP (10, 11), pyridoxal (10, 11, 58), and PA (10, 11, 58) concentrations observed in some samples are most likely caused by the recent intake of high doses of vitamin B-6, although we do not have vitamin supplementation data to verify that possibility. Nonfasting populations are expected to show a greater variation in vitamin B-6 concentrations than are fasting populations, because higher vitamin B-6 concentrations may be attained after a recent meal containing vitamin B-6 and also after the ingestion of a vitamin supplement, which sometimes accompanies a meal. The large variation in PLP, pyridoxal, and PA at high total vitamin B-6 concentrations could be explained by variable vitamin B-6 intakes and the incomplete conversion of pyridoxine to other forms after recent supplementation because the conversion of pyridoxine to other vitamin B-6 forms takes a few hours (5, 6, 58). The presence of pyridoxamine in some samples was always accompanied by very high PLP, pyridoxal, and PA concentrations and sometimes also by high pyridoxine concentrations, which suggests that it is related to a recent intake of a supplement containing pyridoxine. The faster and stronger increases in plasma concentrations of pyridoxal and PA than in those of PLP that are induced by recent vitamin B-6 supplementation (2, 5, 7) may explain the increased strength of PLP-pyridoxal and PLP-PA to relations with increasing PLP concentrations (Figure 1).

The 3 main vitamin B-6 species showed a moderate correlation with the concentrations of other B vitamins, in particular folate and riboflavin. This correlation is probably due to overlapping dietary sources of these 3 B vitamins, including fruit and vegetables (59). The weak association with cobalamin is probably explained by the fact that cobalamin is mainly derived from food items other than fruit and vegetables—primarily, animal products (59).

Of the vitamin B-6 vitamers, PA showed the strongest relation to creatinine. This finding is in agreement with published data showing that PA is sensitive to renal function (23) and that it accumulates during renal failure (60).
The associations of vitamin B-6 vitamers with other B vitamins and renal function indicate that these factors are potential confounders in investigations of the relation of vitamin B-6 status and clinical outcomes or metabolite concentrations. It has been suggested that the ratio of PA to pyridoxal can distinguish between increases in PA concentrations that are due to increased dietary intake and those that are due to renal impairment (60).

Homocysteine

The influence of vitamin B-6 on tHcy is moderate in this study and is present only at vitamer concentrations in the lowest quartile, which agrees with findings of a previous study (25). We also found that this relation was strongest for PLP and pyridoxal in the TT group. The genotype effects may explain why most authors report no PLP-tHcy relation (27–35). This also agrees with the fact that most studies report no effect of vitamin B-6 supplementation on fasting plasma tHcy concentrations (29, 33, 38–45).

PLP serves as the cofactor of cystathionine β-synthase (24), which could partly explain the inverse relation between vitamin B-6 and plasma tHcy. Vitamin B-6 nutrition may also affect homocysteine status by influencing the folate-metabolizing enzyme serine hydroxymethyltransferase (61).

Cystathionine and cysteine

All 3 major vitamin B-6 forms—in particular, PLP and pyridoxal—were inversely related to cystathionine concentrations. This suggests that cystathionine degradation catalyzed by cystathionine γ-lyase is the rate-limiting step in transsulfuration. Cystathionine was found to be inversely related to the concentration of the major B-6 vitamer forms throughout their concentration ranges, which is consistent with the linear relation of PLP concentrations to cystathionine γ-lyase activity in the liver of rats (62). Thus, the dose response differed from that observed for tHcy, which increased only at low vitamin B-6 vitamer concentrations. Such differences between the relations of vitamin B-6 status to homocysteine and to cystathionine are in accordance with the greater sensitivity of cystathionine γ-lyase enzyme than of cystathionine β-synthase to vitamin B-6 status (35, 62–64).

Plasma concentrations of cystathionine increase (65) and those of PLP decrease (66, 67) in the hours after the consumption of proteins, and recent protein intake may therefore enhance the inverse relation of vitamin B-6 to cystathionine. Conversely, vitamin B-6 intake, either from food or vitamin supplement, may counteract this short-term effect.

In accordance with published reports, we observed no relation between PLP and the concentration of tCys (23, 35, 47). However, this observation allows no inference about the role of transsulfuration in cysteine homeostasis, partly because tCys is mainly protein-bound in plasma and undergoes complex displacement and sulfide exchange reactions with homocysteine (68). Furthermore, cysteine is a component of dietary protein and is obtained from food.

MTHFR 677C→T polymorphism

We observed that plasma tHcy increased and folate decreased according to the number of MTHFR 677T alleles. A folate × MTHFR 677C→T genotype interaction as a determinant of plasma tHcy has been shown in numerous studies (48, 69). The association of PLP (70), pyridoxal, and PA with tHcy is modified by the MTHFR 677C→T genotype. Thus, vitamin B-6 shares this effect modification with other nonfolate B vitamins involved in homocysteine metabolism, including riboflavin (69) and cobalamin (71). A likely explanation is that impaired 5-methyltetrahydrofolate formation and homocysteine remethylation in the TT genotype direct homocysteine to the transsulfuration pathway.

Of the vitamin B-6 vitamers, only PLP had its lowest concentrations in subjects with the TT genotype, and this difference between genotypes was modest compared with that found for folate in these subjects. One may speculate whether a lower PLP concentration reflects a greater flux through the transsulfuration pathway in subjects with the TT genotype. Likewise, it has been speculated that greater metabolic activity decreases the concentrations of cofactors involved, including vitamin B-6 (72).

Neither the cystathionine concentration nor the relation of vitamin B-6 to cystathionine was modified by the MTHFR 677C→T genotype. This finding agrees with the fact that MTHFR and related folate species are not involved in cystathionine metabolism (24).

Conclusions

In this study, we showed that plasma concentrations of the main vitamin B-6 vitamers were strongly correlated but also had a moderate association with other B vitamins, in particular folate and riboflavin, that was due to overlapping dietary sources of these vitamins. The population size was large enough to provide precise estimates of the metabolic effects of differences in vitamin B-6 status on the plasma concentrations of tHcy and cystathionine. These associations were in accordance with experimental data on the role of PLP as a cofactor for cystathionine β-synthase and cystathionine γ-lyase. PLP and pyridoxal had the strongest association with these transsulfuration metabolites, which may reflect the role of PLP as cofactor and the ability of pyridoxal to cross cell membranes (3, 14, 15). The inverse relation between PLP and tHcy was strongest and the PLP concentration was lowest in subjects with the MTHFR 677TT genotype, possibly because of impaired homocysteine remethylation and increased flux through the transsulfuration pathway. Thus, the present study shows that the transsulfuration metabolites in humans reflect the role of vitamin B-6 as a cofactor for cystathionine β-synthase and cystathionine γ-lyase.

We thank Geir Hoff and Trygve Grotmol at The Cancer Registry of Norway for organizing the study and the technical staff at the Section for Pharmacology for analyzing the plasma samples.

The authors’ responsibilities were as follows—JS and PMU: study design; ŌM, SH, SEV, and PMU: data management, statistical analysis, and interpretation of the data; ŌM, PMU, and SH: writing of the manuscript; and SEV and JS: review of the manuscript. PMU has received consulting fees from Nycomed and is a member of the steering board of the nonprofit Foundation to Promote Research into Functional Vitamin-B12 Deficiency. None of the other authors had a personal or financial conflict of interest.

REFERENCES

VITAMIN B-6 AND TRANSSULFURATION METABOLITES

