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Precision fish farming

Digital Twin concept

— Model-based predictive control

- AI+ML+ data-oriented

- Agent-based models

The digital salmon

— The predictive brain: Bayesian and AHA approaches
— Feeding decisions and behaviour

— Stress, allostasis and uncertainty

— Subjective feelings, suffering and wellbeing

What is like to be a salmon?



* Precision fish farming:

- Use of technology to help fish farmers monitor and
manage the fish and the farm to optimise operations.

- Heavy use of digital technology: sensors, big data, Al,
ML, model-based control

* Observe - Interpret —» Decide - Act
- Smart sensors, computer vision, echo-sounders ...
— Statistical models, appetite indexes, welfare metrics ...
— Decision support, what-if scenario modelling ...

- Integrated operations, automated control, actuators
automated feeders, optimised logistics ...



 Fgre, M. et al. Precision fish

farming: A new framework to 205 Oecis,
Improve production in 7 goni Argie s,

: . (Ae R Z‘/;;C. %
aquaculture. Biosyst. Eng. 173, & =0 /‘9’/5 =)
176-193 (2018). & & ce-baseq, Y 2

& é\e’(\ 5% & B
.
. &
%o & S
6 CY Q‘Z: :S' )
5. =z Mtoring a® v &
% %o L &
©, % > K
O)O J\@O \_0'{0 60
s SOrg PO g



 Predictive control

- A management strategy to forecast possible development of a
problem from early signs and begin mitigation measures before the
problem occurs

* Fish health and stress
— Stress is a major cause of fish mortality, poor growth and quality
- Fish welfare and stress are of major concern for consumers

— Stress is part of everyday life of all animals, but how to predict
development of acute of chronic stress?

* Observe - Interpret — Decide - Act
- Ask the fish:: observe .
. . Predictive |
- Interpret fish behaviour:: Index, model }digital twin am Model of

model of the  the fish
whole farm

- What-if scenario modelling:: model

— Act to mitigate developing problem



* Digital twin

- “Digital replications of living as well as non-living entities
that enable data to be seamlessly transmitted between
the physical and virtual worlds” (El Saddik, 2018).

- Holistic and dynamic process model

- Model evolves over time: Constantly updated for current
data and knowledge

 data assimilation

 Computer simulation
e Data assimilation

* Complexity, stochasticity, unplanned effects



* Smart control based on Digital twin

Scenario evaluation

Data ingestion Optimisation

routines

Decision model




* The digital fish

— Crucial component of the holistic fish farm
Digital twin

Life history

Behaviour, cognition, stress response

Feeding, appetite, dynamic energy budget
* Growth, performance
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 Digital twin of the fish:

 Dynamic
* Stochastic
 Variable * Input
 Data-driven  Environment parameters (e.g. temperature)
e Decision-making * Feed parameters (e.g. item size, energy
» Continuous content)
* Fish parameters (e.g. fish mass)
* Qutput

* Feed consumption and loss
* Feeding decisions and behaviour
e Appetite level

* Physiological parameters (SMR, energy
budget, stomach and gut fullness,
absorption etc.)

e Fish growth



e “What | cannot create | do not understand”
-- Richard Feynman

* How to create a (digital) fish?

- Represent the fish internal “machinery” or algorithm
that can run for simulations

— Start from the animal’s own
point of view

— Cognition, decision-making,
trade-offs

- Behaviour




e Start from metaphysics
— Architecture
— Cognition
— Decision-making
- Behaviour



* The predictive brain

- Cognition is based on building Predictive processing;

“any type of processing which

Internal model incorporates or generates
~ Top-d - d not just information about the
op- _OVyn expectation an past or the present, but
prediction also future states of the body
L. : or the environment.”
- Prediction error analysis - Bubic et al 2010
* Agency

- Autonomy (goal-directed, top-down)
- Spontaneity (default background activity)

 Modularity

- Modules that can be reused
and rearranged (also through random error)



* Alternative views on consuming food a item...

Stimulus - Response

versus
Internal model -~ Expectation - Action




 What is like to be a polyp? A sessile filtrator? A worm?
— Source of autonomy (central pattern generator?)

- Receptors - sensing - pattern matching with model -
response

A DRI

A
N




* Cognition and decision-making is a
Bayesian decision network:
- the organism puts forward hypotheses
- calculates probabilities
- makes the best probable decision
- calculates the prediction error (e=|O-P|)
- update prior P for next cycle Prior P

P(stimulus|food)P( food)

P(stimulus)

P(food|AE > e)P(AE > ¢)

P(food|stimulus) =

P(AFE > e|food) =

P(food)



* Active inference paradigm for cognition:
probabilistic inference

* Fundamental principle to minimizing
uncertainty (quantified as the information-
theoretic “free energy”)

- updating the brain’s internal model (priors)
of the environment to fit with the sensory data

- actions for better sensory information to
update the internal model

- actions to move the organism into an
environment that better agrees with its
Internal model

* Generative model: joint probability distribution
P(x,y) of inputs (independent var) x and outputs
(dependent var) y

AC TIVIE
INFERENCE

The Free Energy Principle in
Mind, Brain, and Behavior

THOMAS PARR
GIOVANNI PEZZULO
KARL J. FRISTON




e Assumptions:

- Animals (brains) should be able to
represent, calculate and use probabillity

- Use probabilities and accumulate
Information about the different choice
options

- Animals should ideally possess as much
Information as possible: update information
continuously



 Computational Complexity — Tractabllity

- resources (time, memory etc) needed to
complete the calculation according to
specific algorithm f(n), given n Is input size

- polynomial
- exponential
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Computational Complexity
and Human Decision-Making

1.2,%

Peter Bossaerts and Carsten Murawski’

THE ROLE OF COMPUTATIONAL COMPLEXITY
IN PERCEPTUAL THEORY

The rationality principle postulates that decision-makers always choose the Trends
best action available to them. It underlies most modern theories of decision- )

A ol = —= - New research showing that the quality
making. The principle does not take into account the difficulty of finding the
best option. Here, we propose that computational complexity theory (CCT)
provides a framework for defining and quantifying the difficulty of decisions. We
review evidence showing that human decision-making is affected by compu-
tational complexity. Building on this evidence, we argue that most models of
decision-making, and metacognition, are intractable from a computational
perspective. To be plausible, future theories of decision-making will need to
take into account both the resources required for implementing the computa-
tions implied by the theory, and the resource constraints imposed on the

of human decisian-making decreases
with the computational complexity of
decision problems challenges the core
assumption of most madels of deci-
sion-making: that decision-makers
always oplimise.

CCT can help explain behavioural
biases, such as choice overload and

negative elasticity of labour supply,

Integrating CCT with decision theory

Johnt K. Tsotsos

Department of Computer Science
University of Toronto, Toronto, Canada
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decision-maker by biology. and neurcbiology promises to lay the
foundations of a more realistic theory
of decision-making and
The Rationality Principle metacognition.
_Mnst modem theaories of decision-makina._including rational choice theorv [1-41 aametheory The
[T e S e terms o
“Bayesian Just-So Stories in Psychology and Neuroscience =~ Fatrer.  BAYESIANISM AND CAUSALITY, OR, WHY I AM
: ep
tists att ONLY A HALF-BAYESIAN
y . . essence
Jeffrey S. Bowers Colin J. Davis s
University of Bristol Royal Holloway University of London ;‘:vte l;
al
is satisf 1 INTRODUCTION
According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in complex
solving a wide range of lfns!(s, We challenge th1s view and argue that more tradmcnal,'n»on-Ba'yeMEm of the pi [ turned Bayesian in 197]’ as soon as | began reacling Savage’s monograph The
approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence siich. é6i F dati “Stistical Tile Sy 19621, The : . .
for Bayesian theories in psychology is weak. This weakness relates to the many arbitrary ways that priors, il’\telligej oundations 0)( tatistica H'ﬂ rence [ avage, ] € arguments were unas-

likelihoods, and utility functions can be altered in order to account for the data that are obtained, making
the models unfalsifiable. It further relates to the fact that Bayesian theories are rarely better at predicting
data compared with alternative (and simpler) non-Bayesian theories. Second, we show that the empirical
evidence for Bayesian theories in neuroscience is weaker still. There are impressive mathematical
analyses showing how populations of neurons could compute in a Bayesian manner but little or no
evidence that they do. Third, we challenge the general scientific approach that characterizes Bayesian
theorizing in cognitive science. A common premise is that theories in psychology should largely be
constrained by a rational analysis of what the mind ought to do. We question this claim and argue that
many of the important constraints come from biological, evolutionary, and processing (algorithmic)
considerations that have no adaptive relevance to the problem per se. In our view, these factors have
contributed to the development of many Bayesian “just so™ stories in psychology and neuroscience: that

sailable: (1) It is plain silly to ignore what we know, (i1) It 1s natural and useful
to cast what we know in the language of probabilities, and (iii) If our subjective
probabilities are erroneous, their impact will get washed out in due time, as the
number of observations increases.

Thirty years later, | am still a devout Bayesian in the sense of (i), but I now doubt
the wisdom of (ii) and I know that, in general, (iii) is false. Like most Bayesians, I
believe that the knowledge we carry in our skulls, be its origin experience, school-
ing or hearsay, is an invaluable resource in all human activity, and that combining
this knowledge with empirical data is the key to scientific enquiry and intelligent
behavior. Thus, in this broad sense, I am a still Bayesian. However, in order to
be combined with data, our knowledge must first be cast in some formal language,

_and what T have come tn realize in the nast ten vears i that the lanonace of nroha-




 Behavioural ecology

- animals have limited resources (energy, time,
opportunity etc.)

- omniscient Bayesian machine is not a realistic
assumption for an animal

- obtaining as full as possible information is
not reasonable strategy (diminishing returns)
given the costs

* Heuristics
- cheap and quick (and dirty) approximations that
are good enough most of the time
- down-weighting and limiting information input
- live with (some) uncertainty, not get rid of it
- computationally cheap and tractable decisions



* Tinbergen and Marr

- The levels of analysis

1. Computational
theory

Proximate
(How)

4

\

Ultimate
(Why)

[\

Mechanism Ontogeny Function Evolution
2. Control sytems, 3. Physical
algorithm implementation

'

l

Mathematical models
(analytical, equations)

Process simulation

l

'

Bayesian models,
active inference

Algorithm, heuristics,
computational agent

Tinbergen's
Category

Tinbergen's
Questions

Marr's
Levels

Modelling
approach

Model type



* Process-based simulation models
— Building blocks (modules)
- Information and energy links
- Feedback loops

- Parameters estimation and optimisation



e The FishMet model



* The FishMet model
- Agent model: feeding, appetite, energy budget, growth

Feed protocol:
food_provision_pattern
food_input_rate

Feed item in
tank accessible
to the fish

Decision to
ingest food
= item

Unused feed,

Evacuation

Appetite
Stomach Midgut
Water uptake Transfer to midgut Delay Digestion/absorption
—> > —>
Activity Energy budget /
a

sinking

QR

'

Growth



* Feeding decisions

— appetite - ingestion rate
- stomach & gut fullness
— absorption - growth




e The AHA model



Selective attention

Behaviour
fear
Global
Social motivation organismic
state
hunger
b g
e

Perception




 The AHA model

— Decision-making: emotion, motivation, cognition

iy

Behaviour

<>

strongest SC taking control

Stimulus jﬁé %ﬁt Sensing
sc| [sc }sc

Response

Reentrant
processing

Arousal

Reentrant processing:
prediction



Predict oneself: The
minimum expected
arousal principle




* Simulation theory of cognition

Review

Germund Hesslow™

Department of Experimental Medical Science, University of Lund, Sweden

The current status of the simulation theory of cognition
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An Embodied Approach to
Understanding: Making Sense of the
World Through Simulated Bodily
Activity

Educational Psychology Program, College of Education, The University of Alabama, Tuscaloosa, AL, USA




e Scenario: evolution of reentrant architecture

Developmental mutation:
Modularity in evolution: reuse wrong wiring by disturbed
molecular signalling

(Fluorescence image taken
from dissertation of Daniel
Koch, 2008)

v




* Internal state as source of information for adaptive decisions:

- Decision policy based on self-assessment of ones’
own energy reserves Is approximates omniscient
Bayesian policy "

Similar principles could well apply in other (non-fora-
ging) contexts: any physiological or psychological state
variable that is altered by experience might function as an
efficient integrator (a ‘memory’) of past experiences. An

TrUSt your gur USIng phyS|0|0g|ca| States obvious candidate is emotions and moods, which have
as a source of information is almost as ERE e e SR E RN | EBind may help an
effective as optimal Bayesian learning

Andrew D. Higginson', Tim W. Fawcett!, Alasdair I. Houston?

and John M. McNamara3 Effects of the Emotion System on Adaptive Behavior
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Approaches to understanding adaptive behaviour often assume that animals . ,
Mooij 2003; McNamara and Houston 2009; Fawcett et al.

apstracr: A RHRIIETORIGRERRUNEHON in: tvolutionary be-:  shya3 Tyie mindn mndeibls thar tha larks f & Kalictis thane



e Stress and wellbeing



 Homeostatic response: predictive versus reactive
e Stress and wellbeing: allostasic regulation

- Allostasts: predictive regulation of body functions and budget
that enables organism to maintain stability of its
homeostasis through change

- Costs of allostatic preparation:
(a) the challenge is wrongly estimated (prediction error Is
excessive)
(b) the challenge exceeds the capacity (or reserves) of the
organism
(c) the challenge is chronic and will continue for a long time.

- Allostatic load: adverse effects on the health and wellbeing



» Stress and well-being: active inference
— Organism minimises uncertainty (“free energy”)

— Minimising this free energy is costly.
An organism unable to reduce the informational free
energy, finds itself persistently in a high uncertainty
state irrespective of its own actions.

— This increasingly depletes the brain energy
=> allostatic load and systemic pathology.

— habituate to the adverse environment by altering the
iInternal model and goal state of the system



* Both allostasis and Bayesian active inference models
align with the AHA model

- The need state —. GOS arousal = signal of poor internal
model (big prediction error) - uncertainty

— Fish response depends on its Global Organismic State
— Simultaneous pressures lead to stress

- Uncertainty increase behavioural heterogeneity/complexity,
but not at high arousal/stress

» Stress is linked with low behavioural heterogeneity/complexity
- High need state and stress may cause ambiguity bias
- Subjective suffering - self-simulation of negative emotion
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To understand animal wellbeing, we need to consider subjective
phenomena and sentience. This is challenging, since these
properties are private and cannot be observed directly. Certain
motivations, emotions and related internal states can be
inferred in animals through experiments that involve choice,
learning, generalization and decision-making. Yet, even
though there is significant progress in elucidating the
neurobiology of human consciousness, animal consciousness is
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* Predictive Digital Twin

of the salmon



Prediction error feedback

Attention

toar Behaviour
Stimuli |
perception : — Glol_aal _
social motivation | P organismic [—
state
hunger —
y> Metabolism
Appetite Digestio
Pp absorpti(r))n» Energy %) Reserves
\ > Growth
— <

Feeding ! ﬁ
Decision Evacuation




e What is like to be a salmon?

 Digital twin autonomous agent model:
- Motivation, emotion, appetite, global state, stress
— Decision-making and behavioural action selection
- Sentience (by reentrant self-simulation)
- Feeding, food intake, dynamic energy budget
- Growth, health status

 Virtual fish growing in a virtual farm
— Decision support for physical farm



* Thank you!
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