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Abstract

Lowered rearing density has repeatedly been shown to increase the performance of
hatchery-reared salmonids stocked into natural environments. One possible mecha-
nism for this pattern could be that lower densities enhance brain development,
which has been shown to be the case in other hatchery enhancement strategies, like
environmental enrichment. Here, we investigated the size of the brain in hatchery-
reared Atlantic salmon Salmo salar kept at standard (high) and reduced (low) tank
densities. In contrast to our predictions, we found that fish reared at high density
had larger dry mass of cerebellum and telencephalon, correcting for body size. No
differences were detected for total brain mass. Furthermore, we found that the rela-
tive size of both telencephalon and cerebellum, in relation to total brain mass,
changed with body size. Cerebellum increased in relative size with increased body
size, while the opposite pattern was observed for telencephalon. Overall, these
results reveal substantial brain plasticity depending on the surrounding environment
as well as ontogenetic adaptive changes in the brain of the Atlantic salmon.

Introduction

Stocking of hatchery-reared salmonids to enhance or re-establish
populations has been a common practise in fisheries, conserva-
tion and restoration programmes for decades, but the relevance of
these programmes has been questioned due to the low survivabil-
ity of stocked fish as compared to wild conspecifics (Schuck,
1948; Jonsson & Jonsson, 2011). Particular critique has been
directed to the fact that many stocking programmes are more con-
cerned with the number of fish to be stocked rather than their
quality and the number of surviving fish (e.g. Johnsson, Brock-
mark & N€aslund, 2014). The survival rates of stocked individuals
are commonly less than half of those of wild fish with the same
genetic origin (Jonsson & Jonsson, 2011). Particularly high mor-
tality rates of hatchery salmonids are seen soon after the release
(Saloniemi et al., 2004; Aarestrup et al., 2014; Melnychuk et al.,
2014). Consequently, several recent studies have focused on rear-
ing methods aiming to modify the hatchery environment for the
production of wild-like fish with higher post-stocking survivabil-
ity (Br€ann€as & Johnsson, 2008; Johnsson et al., 2014). Fish den-
sity reduction in the rearing tanks is a promising modification,
which repeatedly has been shown to increase the post-release sur-
vival of salmonids (Brockmark & Johnsson, 2010; Brockmark,
Adriaenssens & Johnsson, 2010; Barnes et al., 2013; Kavanagh
& Olson, 2014; Larsen et al., 2016; but also see Clarke, Cameron
& Carmichael, 2013). Improved survival of fish reared at reduced
densities is, at least partially, believed to be a consequence of
development of higher cognitive capacity as well as expression

of behaviours more suited for the natural environment (Brock-
mark et al., 2010; Johnsson et al., 2014). Lower tank densities
may, for instance, provide a social environment where interac-
tions among individuals are more similar to the natural environ-
ment, allowing for individual recognition and social learning
(Griffiths et al., 2004; Chapman, Ward & Krause, 2008; Brock-
mark & Johnsson, 2010). Lowered densities may also reduce
crowding stress and related physiological problems (Ellis et al.,
2002; Ashley, 2007; Rosengren et al., 2016).
In hatchery-reared salmonids, studies of brain size have sug-

gested positive effects of environmental enrichment in captive
environments (N€aslund & Johnsson, 2016), potentially driven
by increased cognitive stimulation and brain cell proliferation
in more complex environments (Salvanes et al., 2013). Intra-
specific brain size variation in teleost fishes can depend on
both genetic inheritance (guppy Poecilia reticulata: Kotrschal
et al., 2013; Chen et al., 2015) and the environment (Atlantic
salmon Salmo salar: Salvanes et al., 2013; shortfin molly Poe-
cilia mexicana: Eifert et al., 2014), and is possibly associated
with cognitive capacity (Kotrschal et al., 2013; but see Healy
& Rowe, 2013). Furthermore, studies in three-spined stickle-
backs Gasterosteus aculeatus show that there can be substan-
tial independence in growth among different brain regions,
allowing for independent responses to environmental factors
through phenotypic plasticity (Noreikiene et al., 2015).
Here, we investigated brain size of hatchery-reared Atlantic

salmon sampled from an experiment aimed at investigating post-
release survival of fish reared at normal or reduced density. In this
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experiment, reduced density led to increased survival during sea-
ward migration, when the fish were released into a natural stream
just prior to the onset of the physiologically induced migration
(see Larsen et al., 2016). We specifically investigated the size of
telencephalon and cerebellum as these substructures previously
have been shown to be affected by the hatchery rearing environ-
ment in salmonid fish (Lema et al., 2005; Kihslinger, Lema &
Nevitt, 2006; Kihslinger & Nevitt, 2006). The relative sizes of
brain substructures are generally associated with the relative
importance of the associated functions of the substructures in fish
(e.g. Kotrschal, van Staaden & Huber, 1998; Ito et al., 2007).
However, the specific functions of distinct brain substructures are
convoluted; in general, specific substructures have multiple func-
tions (Striedter, 2005). Nevertheless, based on multiple lines of
evidence, the telencephalon is commonly assumed to govern sev-
eral cognitive functions (Broglio, Rodriguez & Salas, 2003;
Rodr�ıguez et al., 2006; Ebbesson & Braithwaite, 2012) and the
cerebellum is involved in motor coordination (Kotrschal et al.,
1998; Roberts, Dean & Paul, 2002) as well as some cognitive
functions (Rodr�ıguez et al., 2006). We also investigated whole-
brain size, as some studies suggest effects of rearing environment
on the overall size (N€aslund et al., 2012; Brown et al., 2013).
We hypothesised that brain growth, in particular telencephalic
and/or cerebellar growth, would be affected by social interactions.
Based on results from previous studies, lower density was
assumed to convey more social stimulation as a consequence of
higher potential for individual recognition, resource defence and
individual decision making in a less crowded environment
(Brockmark et al., 2010; Johnsson et al., 2014). Consequently,
we predicted that low-density fish would have larger brains, or
larger brain substructures related to cognitive ability previously
shown to be positively affected by increased environmental com-
plexity (cerebellum: Kihslinger & Nevitt, 2006; telencephalon:
Kihslinger et al., 2006; Salvanes et al., 2013).
The fish in our study showed bimodal size distribution,

which is common in hatchery environments (e.g. Thorpe,
1977; Jonsson & Jonsson, 2011). At the time of sampling, the
fish in the upper modal group, but not in the lower modal
group, were generally going through smoltification (the physio-
logical transformation for a life in marine environment) (Larsen
et al., 2016). Previous studies have indicated that the brain
undergoes major changes during smoltification (Ebbesson &
Braithwaite, 2012). To investigate whether ontogenetic changes
in gross brain morphology also occur at this stage, we
explored effects of body size on the size of telencephalon and
cerebellum in relation to total brain size.

Materials and methods

Rearing and handling of the fish is described in detail in Lar-
sen et al. (2016). In short, the fish were F1 offspring from 47
females and 27 males, caught in River Stor�a, Denmark, in
autumn 2011. From the fry stage, two density treatments were
used – high density (HD: 7500 fish m�2) and low density
(LD: 2500 fish m�2) – each replicated three times in conven-
tional indoor hatchery tanks (2 9 2 m, water level 35 cm)
(Danish Centre for Wild Salmon, Randers, Denmark). On 16
June 2012, the density of fish was reduced to 1500 fish m�2

and 500 fish m�2 in HD and LD tanks respectively. Water
temperature (recirculating system, 30 L min�1) and light
regime followed natural cycles.
On 20 March 2013, 12 fish were sampled randomly from

each tank (i.e. 36 fish per treatment), euthanized by a benzo-
caine overdose and decapitated after recording total body
length (from the tip of the nose to the end of the spread-out
caudal fin; precision: 1 mm) and body mass (precision: 0.1 g).
Heads were preserved in 4% phosphate-buffered formaldehyde
and stored at 4°C. To facilitate standardized separation of cere-
bellum from the rest of the brain (as judged from previous
pilot dissections of salmonid brains), the heads were dorsoven-
trally bisected along the midsagittal plane using a scalpel on
25 June 2014 (Fig. 1a).
On 20 July 2015, the brains were dissected out of each half

of every head. The cerebellum and telencephalon were sepa-
rated from the rest of the brain (see Fig. 1). Cerebellum, telen-
cephalon and the rest of the brain (see Fig. 1c) were all
separately dried (right and left parts added together) in alu-
minium foil at 70°C for 35 h and thereafter the dry mass was
recorded to the nearest 0.01 mg (Precisa XR 205SM-DR; Pre-
cisa Gravimetrics AG, Dietikon, Switzerland).

Statistical analyses

Whole-brain dry mass

The dry mass of the whole brain (i.e. telencephalon, cerebel-
lum and the rest of the brain added together; nHD = 35,
nLD = 36) was analysed using a general linear model with
body length (L) as a covariate and density treatment (D) as a
two-level fixed factor. The whole-brain dry mass appeared to
have a linear relationship with body length (see Fig. 2) and
was consequently not log-transformed. Tank effects were ini-
tially tested using tank (T) as a fixed factor nested within D [T
(D)]. As no tendency for effect was detected (P > 0.9), it was
subsequently removed from the analysis. The interaction
between D and L (T 9 D) was also initially included, but not
retained in the final model (P > 0.2). Residuals from the
model were found to be slightly negatively skewed; however,
both density groups showed the same distribution pattern and
the analysis was therefore retained.

Telencephalon dry mass

The dry mass of telencephalon (nHD = 36, nLD = 36) was anal-
ysed the same way as the whole brain. No tank effects were
detected (P > 0.8) and neither were there any evidence of a
T 9 D interaction (P = 0.24). For this reason, these terms
were excluded in the final model.

Cerebellum dry mass

The dry mass of cerebellum (nHD = 35, nLD = 36) was anal-
ysed the same way as the whole brain. No tank effects were
detected (P > 0.9) and neither were there any evidence of a
T 9 D interaction (P = 0.12). These terms were therefore not
included in the final model.

76 Journal of Zoology 301 (2017) 75–82 ª 2016 The Zoological Society of London

Brain growth plasticity in Atlantic salmon J. N€aslund et al.

 14697998, 2017, 1, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1111/jzo.12392 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [03/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Size of telencephalon and cerebellum in relation
to whole-brain size

To compare the proportional size of telencephalon and cerebel-
lum in relation to the whole brain, we divided the dry mass of
each substructure with the dry mass of the whole brain. The
resulting quotients were analysed using the same model and
term-selection procedure as in the analyses above. No tank
effects were detected (P > 0.35) and neither were there any
evidence of a T 9 D interaction (P > 0.57), and consequently
these terms were not included.

General notes

During the dissection and weighing, the experimenter (JN) was
blinded with respect to treatment.
All statistical analyses were carried out in IBM SPSS Statis-

tics 22 (IBM Corp., Armonk, NY, USA). Handling, rearing,
tagging and sampling of fish were conducted in accordance to
the guidelines described in permission (2012-DY-2934-00007)
from the Danish Experimental Animal Committee.

Results

Whole-brain dry mass

Whole-brain dry mass was strongly positively related to body
length (F1,68 = 1000, P < 0.001), but no effects of density
treatment on whole-brain dry mass were detected
(F1,68 = 0.026, P = 0.87) (Fig. 2a,b).

Telencephalon dry mass

Telencephalon dry mass was positively related to body length
(F1,69 = 470, P < 0.001) and found to be higher in the HD
treatment (F1,69 = 5.3, P = 0.024) (Fig. 2c,d).

Cerebellum dry mass

Cerebellum dry mass was positively related to body length
(F1,68 = 840, P < 0.001) and found to be higher in the HD
treatment (F1,68 = 4.7, P = 0.033) (Fig. 2e,f).

Size of telencephalon and cerebellum in
relation to whole-brain size

The proportional size of both telencephalon and cerebellum
changed with size of the fish (F1,68 > 45, P > 0.001). The pro-
portional size of telencephalon decreased with size (Fig. 3a)
and cerebellum increased with size (Fig. 3b).
In concordance with the previous analyses where body size

was corrected for, the HD treatment had relatively larger size
of both telencephalon (F1,68 = 5.9, P = 0.018; Fig. 3a) and
cerebellum (F1,68 = 10, P = 0.002; Fig. 3b) when correcting
for overall brain size.

Discussion

The results presented here demonstrate that Atlantic salmon
juveniles reared at the higher density had larger cerebella and
telencephala as compared to fish reared at the lower density,

(a)
(b) (d)

(c)

Figure 1 Illustration of the brain dissection scheme. (a) Midsagittal cut through the head of an Atlantic salmon. (b) Outlined main brain

substructures. (c) Midsagittal and (d) dorsal schematic illustrations of the brain substructures included (Cb, Tel and ‘rest of the brain’) and

excluded (i–vi) in the analysis. In grey: Cb – cerebellum (corpus cerebelli, crista cerebellaris and eminentia granularis, not including valvula

cerebellaris); Tel – telencephalon. In white: ‘rest of the brain’ (i.e. the parts of diencephalon, mesencephalon and rhombencephalon not

specifically mentioned; see fig. 15.4a–d in Meek & Nieuwenhuys, 1998). Striped (excluded): i, medulla spinalis; ii, saccus vasculosus; iii,

hypophysis (pituitary gland); iv, nervus opticus; v, bulbus olfactorius and nervus olfactorius; vi, saccus dorsalis and epiphysis (pineal gland).

Terminology adapted from Meek & Nieuwenhuys, 1998.
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both relative to body size and relative to overall brain size. No
differences were detected in total brain size between the den-
sity treatments. Furthermore, we demonstrate a change in rela-
tive mass of cerebellum and telencephalon, compared to total
brain mass, with body size. The relative mass of the cerebel-
lum increased with body size, while the relative mass of the
telencephalon decreased with size. These latter changes may be
related to the smoltification process (Ebbesson & Braithwaite,
2012).

Rearing environment affects the brain

Studies on guppies suggest a link between overall brain size
and cognitive capacity (Kotrschal et al., 2013). Judging from
other studies, both telencephalon and cerebellum are specifi-
cally associated with cognition in fish (Salas et al., 1996;
Rodr�ıguez et al., 2006; Ebbesson & Braithwaite, 2012).
Regarding environmental effects on cognitive ability, studies
on brown trout Salmo trutta have shown that lowered tank
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density could increase cognitive ability (Brockmark et al.,
2010) and thus we hypothesised that growth of telencephalon
and cerebellum could be stimulated at lower density. However,
the results did not support this hypothesis. Instead, we provide
contrasting evidence that the average mass of telencephalon
and cerebellum of the high-density fish were higher than for
low-density fish. We specifically note that the higher migration
success of individuals reared in the low-density treatment,
demonstrated in Larsen et al. (2016), was neither matched by
larger brains nor with larger telencephala or cerebella, which
indicates that brain size may not be a suitable indicator of
post-release performance.
Interestingly, stocking density in aquaria influence brain size

of juvenile daffodil cichlids Neolamprologus pulcher with fish
in denser groups developing larger cerebellum and hypothala-
mus, but smaller tectum opticum and no significant effects on
telencephalon, dorsal medulla or bulbus olfactorius (Fischer
et al., 2015). Thus, cerebellum growth may be stimulated in
higher density environments, perhaps related to increased
demands on locomotor performance and manoeuvrability in
relation to other individuals (Roberts et al., 2002). However,
while the results from Fischer et al. (2015) are partly consis-
tent with our study and thus could suggest some generality of
the effects of fish density, direct comparisons could be

inappropriate; first, due to group sizes being much lower in the
cichlid study, and second, due to the differences in evolution-
ary history and ecology between the species.
We found no differences in total brain mass, which suggests

that there is no general differential energy allocation to brain
growth between the density groups, assuming that all brain
regions are equally expensive to build. The larger size of cere-
bellum and telencephalon in the high-density treatments along
with the similarity in total brain dry mass between treatments
opens for the possibility that other brain substructures than the
ones specifically investigated here are relatively larger in low-
density fish. Potentially, there may be trade-offs in growth
among different brain structures, which may give rise to the
effects detected here. Additional studies are needed to investi-
gate this.
Studies comparing hatchery-reared fish with wild, or semi-

naturally reared, fish have provided mixed evidence for the
direction of the effects of environment on brain size. In Atlan-
tic cod Gadus morhua, hatchery-reared individuals with wild
parentage had lower relative brain mass than wild conspecifics
(Mayer et al., 2011). Similar effects have been seen in the sal-
monid family, of which the Atlantic salmon is a member. For
instance, domesticated rainbow trout Oncorhynchus mykiss
have been shown to have smaller sizes of several brain
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structures than wild conspecifics (Marchetti & Nevitt, 2003;
Brown et al., 2013). Judging from these studies, the general
wild-type brain is larger than the hatchery-type brain, implying
that hatchery fish potentially could be maladapted to a natural
environment. However, several recent studies have, in contrast,
shown that hatchery-reared fish end up with larger relative
brain size than conspecifics reared in natural, or semi-natural,
environments. For instance, Atlantic salmon individuals being
reared continuously in the hatchery (the same hatchery as in
the present study) had a higher brain:body mass ratio than
individuals that were released into the wild half a year earlier
(N€aslund et al., 2012). Hatchery-reared chinook salmon Oncor-
hynchus tshawytscha, originating from wild parents and being
released as pre-smolts, were found to have larger relative brain
size than wild conspecifics, even after 3 years at sea (Wiper,
Britton & Higgs, 2014). Investigating male clonal lines of rain-
bow trout, domesticated lines (>10 generations in hatchery)
had larger brains than wild lines (wild parents) (Campbell
et al., 2015). Furthermore, coho salmon Oncorhynchus kisutch
reared in a semi-natural stream channel were found to develop
smaller brains than hatchery-reared fish (Kotrschal et al.,
2012). In the same study, growth hormone transgenic coho
were shown to develop smaller cerebella in the semi-natural
channel than in hatchery tanks, which is consistent with the
present study since the fish density in the hatchery tanks was
lower. Altogether, the evidence for larger brains in wild or
semi-naturally reared fish (with respect to both environmental
complexity and fish density) is equivocal and requires more
investigations.

Ontogenetic effects on the relative size of
telencephalon and cerebellum

We found that the relative size of cerebellum, in relation to
the total brain size, increased with body size. This effect could
be related to the smoltification, when salmonid fish transform
morphology and physiology for a life in marine environments
(McCormick, 2013). Heightened levels of neural plasticity and
reorganization in the brain have also been repeatedly shown in
smoltifying salmonids, albeit mainly in the telencephalon (re-
viewed in Ebbesson & Braithwaite, 2012). The size distribu-
tion of the experimental population was bimodal, and the
upper size mode contained the fish undergoing smoltification,
while the lower mode likely contained mainly fish delaying
their smoltification to the next year (Thorpe, 1977; Metcalfe,
1998; authors’ observations). A previous study on wild brown
trout show that anadromous adult individuals have relatively
larger cerebella than stream-resident adult individuals (Kolm
et al., 2009), which suggests an adaptation to a more mobile
life in the marine environment where good manoeuvrability is
of high importance to catch prey and avoid predation.
In contrast to the cerebellum, the telencephalon decreased in

size relative to the whole brain with increased body size. This
effect was not detected in comparisons between anadromous
and stream-resident brown trout (Kolm et al., 2009). The
apparent difference between these species may, however, be a
consequence of their different habitat choice in the sea. Brown

trout post-smolts live in coastal areas of the sea, where envi-
ronmental complexity is a feature of the environment, while
Atlantic salmon post-smolts live in a pelagic environment
devoid of structural complexity (Jonsson & Jonsson, 2011).
Thus, a reduced size of telencephalon in Atlantic salmon
smolts may be a consequence of reduced need for cognitive
capacity in a pelagic marine environment being less complex
than stream or coastal environments (see e.g. Shumway, 2008).

Conclusions

We conclude that higher stocking density in hatchery tanks
results in larger sizes of telencephalon and cerebellum in the
salmon brain. As a consequence of this result, we put forward
the new hypothesis that growth of these structures may be
stimulated in a high-density environment as a consequence of
higher demand for manoeuvrability and increased cognitive
demands. We also show that the relative size of telencephalon
and cerebellum changes with body size, which could be an
effect of smoltification in larger fish. Overall, the results add
to previous evidence showing that there is substantial brain
growth plasticity in fish depending on the surrounding environ-
ment and developmental stage. Results also suggest that
increased post-release performance of salmon reared at the
lower density may not be due to larger total brain size or lar-
ger cerebellum or telencephalon size.
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