A major research question in the group is how to model the mechanisms of behavioural control in animals. This has led us to studies of how evolution by natural selection can adapt the hormone system into allostatic control of the phenotype, but most of our efforts are towards understanding cognitive control of behaviour. We study how to model the modular and degenerate architecture from sensing via cognition to behaviour. Further, we study ecological effects of the architecture through evolutionary simulation models. The targets of the models are usually animal behaviour and ecology but can also be animal wellbeing and animal welfare in aquaculture. In the future maybe evolution of consciousness and human cultures.

Right: The architecture from sensing to hunger includes both modularity and degeneracy. Degeneracy is the ability of structurally different components in an organism to perform the same function (here: evoke appetite) so that the failure or absence of a component can be counteracted through compensatory adjustments elsewhere. Modularity is the independence and interchangeability of components in the serial structure of an architecture, for instance that one hormonal function can be replaced by another in the appetite regulation after sensing food, and that evolution of hormonal control does not impact evolution of a neuronal response. Modularity and degeneracy increase the robustness of the organism and the evolvability of the system.

Jump to section:

 

Cognition and the architecture for decision-making

We study how to model central processes and architectures that enable animals (often fish) to make adaptive desicions, and what impacts these decision-making processes have on the behaviour of individuals and on the ecology and evolution of populations.

Experimenters normally use simple artificial environments and experimental systems focused on a single problem or context that are controllable and lack ambiguity. The natural environment is very different: it is usually complex, heterogeneous, continuously changing, and stochastic. What is the “context” may not be obvious for the organism. The animal is bombarded with numerous, conflicting, and often novel stimuli. A considerable fraction of incoming sensory information is irrelevant, and distracting, the relevant sensory input is often partial, inaccurate, and ambiguous. Thus, the fundamental problem of adaptive behavior and decision-making in a naturally complex environment iswhat are the best stimuli to respond to and what are the best contexts to choose for achieving a specific goal such as allostasis, survival, or reproduction (Budaev & al 2019).

We find the two-step survival circuit concept of Joseph LeDoux very useful. In the first part, survival circuits compete to determine the animal’s Global Organismic State. This is thus a “context” competition to determine what is the current reality: which model of the world shall the animal use now. Thereafter attention will focus on the winning context to determine an appropriate behaviour.

Lately we have focussed on the second half of this process, after an animal has decided its priorities (determined the currently best model of reality) until it decides its behaviour. We investigate the prediction machine concept from neuroscience: that the animal will re-use its neuronal winding from sensing to emotion to simulate the likely feeling it would obtain by executing a behavioural option (Budaev & al 2019, and also Budaev & al 2018).

We first found that modelling a very simple desicion architecture can be sufficient to divide a population into genetically determined personality types (Giske & al 2013). Some may be quite distinct while others show gradual transitions. Further, the degeneracy and modularity of the architecture lead to rich genetic variation in the population that will simplify adaptation to new ecological conditions, if or when this happens (Giske & al 2014). Hence, this architecture facilitates evolvability, and central elements in the architecture are very old (Andersen & al 2016). These results are robust with respect to changes in the architecture (Eliassen & al 2016).

The prediction machine concept and re-use of neuronal wiring (called re-entrance) create a link between animal behaviour and animal welfare, as the normal decision-making process in a animal tries to predict its near-future emotional wellbeing (Budaev & al 2020), which in some situations can lead to stress in the animal.

For more details, links to source codes etc. see The AHA Model web page.